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Influence of Measurement Cell on Predicted Attrition by the Distinct 
Element Method 
 
C.L. Hare, M. Ghadiri 
Institute of Particle Science and Engineering, University of Leeds, Leeds, LS2 9JT 
 
Abstract 
 
During agitated drying and mixing processes, particle beds are exposed to shear deformation.  
This leads to particle attrition, the extent of which is dependent on the prevailing stresses and 
strains in the bed.  The distributions of shear stresses and strain rates within the bed are 
highly non-uniform, requiring attention to localised conditions.  Therefore a narrow angular 
sector of the bed is divided radially and vertically into a number of measurement cells, within 
which the stresses and strain rates are calculated throughout one rotation by the Distinct 
Element Method.  These are then used in an empirical relationship of material breakage to 
predict the extent of attrition due to agitation.  Here we investigate the influence of the 
measurement cell size on the estimated stresses and strain rates, and the subsequent effect on 
the predicted attrition.  The measurement cell size is altered by varying the measurement 
sector size and the number of radial and vertical divisions within it.  The median particle size 
is also varied to establish its influence on the predicted attrition.  An increase in the average 
number of particles in a given cell, by varying the particle size or measurement cell 
dimensions, leads to a reduction in the estimated stresses and strain rates, and therefore a 
reduction in the predicted attrition.  Comparison of the predicted attrition with the 
experimental breakage in the agitated vessel shows that the prediction method is accurate 
when the cell dimensions are comparable to the width of a naturally occurring shear band. 
 
Keywords:  attrition, prediction, DEM, simulation, shear 
 
1. Introduction 
 
During processing and handling, particles are exposed to forces that may cause unwanted 
breakage, commonly referred to as attrition.  This can occur through sliding, impact and, 
most commonly, shear deformation.  In many particle processes, such as mixing/blending, 
granulation and discharge from hoppers, transitions from stationary state to flow are present.  
Particles are exposed to shear deformation within the transition region, which typically has a 
width in the range of 5 – 10 particle diameters [1].  The bed must dilate within this region to 
allow flow; consequently significant shear stresses are developed and breakage may occur by 
abrasion, wear, erosion and fragmentation.  The occurrence and extent of breakage are 
dependent on the prevailing stresses to which the particles are exposed and the resistance of 
the particles to these stresses. 
 
Particles experience stress due to force transmission through contacts with processing 
equipment and other particles.  The precise locations, directions and magnitudes of these 
contact forces within a bed are transient and highly dependent on the positions and 
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orientations of individual particles, otherwise known as the bed fabric [2].  Due to particle 
size and shape distributions, and a lack of knowledge of the precise position and orientation 
of the particles within a bed, the estimation of the contact forces in a particle bed is 
challenging.  Furthermore, particles always have a strength distribution, hence a rigorous 
mechanistic model to describe particle breakage under shear deformation has yet to be 
developed.  Developments in the Distinct Element Method (DEM) have enabled the force 
networks within a sheared bed to be estimated reliably for spherical particles [3-5].   Its 
potential to predict experimental breakage caused by shearing has also been demonstrated 
[6]. 
  
A number of empirical relationships have been developed to describe attrition due to shear 
deformation [7-10].  The model of Neil and Bridgwater [11], as given by Eq. 1, has been 
shown to provide the best fit to the widest range of stresses, strains and material types [10-
12]. 
 

 
ȕ

ĳ
N

SCS

ı
W k ī

ı
  

   
   

 (1) 

 
where W is the extent of attrition, ı and Ƚ are the applied stress and strain, respectively, ıSCS 
is the material side-crushing strength, and kN, ĳ and ȕ are material dependent parameters.  
Hare et al. [13] proposed a method to predict attrition in agitated particle beds by estimating 
the prevailing stresses and strains throughout the bed and applying a model of attrition to 
these beds conditions.  A modified form of the Neil and Bridgwater relationship (Eq. 1) was 
used to relate the attrition to the prevailing stresses and strains (see section 2) throughout the 
bed, which were in turn estimated using DEM.  Within the DEM simulations, the radial and 
vertical variations of stress and strain rate were estimated from the contact forces and particle 
velocities in an array of measurement cells.  However, these estimations are dependent on the 
dimensions of the chosen measurement cells.  Therefore, in this current work we analyse the 
influence of the measurement cell dimensions on the predicted stresses, strain rates and 
overall attrition within the agitated particle bed. 
 
2. Materials and methods 
 
A summary of the attrition prediction method proposed by Hare et al. [13] is given here.  The 
agitated particle bed is simulated using DEM.  The macroscopic forces in the simulation are 
validated by the impeller torque measurement, and the particle velocity distribution is 
validated by Positron Emission Particle Tracking (PEPT), as shown in [13].  These 
validations, along with the rationale for the properties of the simulated materials are detailed 
in [13].  The properties of the simulated and experimental materials are shown in Table 1. 
 
The simulated bed is divided into a number of measurement cells (Figure 1), within which all 
normal forces acting on each particle are considered to estimate the normal stresses, 
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where V is the total volume of the cell, N is the number of particles in the cell, F is the force 
acting in direction i on face i of the particle (the directions are defined in Figure 2), and rp is 
the particle radius [14].  From these normal stresses the deviatoric stress, ĲD, within each cell 
is established by Eq. 3 [15]: 
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To calculate strain rate in each cell, cylindrical coordinate system is used due to the axi-
symmetrical bed geometry.  The strain rate, Ȗ, within a cell is given by Eq. 4 [16], from which 
the strain is calculated. 
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where vș is the average particle velocity in the ș direction.  The estimation of stress and strain 
is carried out at a number of intervals over the period of one impeller rotation, once the bed is 
deemed to have reached steady-state.  The particle breakage after shearing at a range of 
stresses and strains is established experimentally in an annular shear cell, and the modified 
form of the relationship of Neil and Bridgwater [11] based on the shear stress (given by Eq. 
5) is then fitted to the results. 
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where Ĳref is the characteristic shear strength of the material, and KN, ĳ and ȕ are empirically 
determined constants.  This empirical relationship is then coupled with the estimation of 
stress and strain rate distributions to predict the attrition throughout one impeller rotation, 
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where Ȥc,n is the mass fraction in cell, c, at measurement interval, n, and tA and tB are the times 
at the start and end of the measurement interval [13].  Given that the bed is in a cyclic steady-
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state regime from a stress view point, the distribution of stresses and strain rates remain 
unchanged throughout subsequent impeller rotations.  Consequently the attrition is predicted 
for I rotations by: 
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The attrition of a 250 g bed of Paracetamol particles, with an approximate bed height of 50 – 
60 mm, in a cylindrical vessel of 94 mm diameter, agitated by a vertical-axis, retreat-curve 
impeller was considered in the work of Hare et al. [13].  Particles were sieved to the 500 – 
600 µm size range prior to agitation in the vessel or shearing in the shear cell.  The attrition 
was calculated as the mass percentage of material that passed through a sieve that was two 
standard sizes below the feed size, in this case a 355 µm sieve.  In the present work, the 
influence of the measurement cell size on the estimated stress and strain rate distribution is 
considered.  The number of radial and vertical divisions are set to be equal.  It is designated 
by nd and varied between the values of 2, 3 and 4.  The measurement sector size, șsec, is set at 
10o, 25o and 40o.  For the initial conditions of nd = 3 and șsec = 25o, the median simulated 
particle size is 2, 3 or 4 mm, whilst the span of the size distribution remains constant and 
equal to that of the experimental material (0.18).  Due to computational power and memory 
limitations, the particle size used in DEM simulations is much larger than the actual particle 
size in experiments.  However, scaling up of particle size in DEM simulations has been 
shown to be able to provide suitable velocity measurements when suitable scaling criteria are 
maintained [13, 17 – 18].  The simulation condition sets are shown in Table 2. 
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Table 1.  Experimental and simulated material properties 
Experiment Simulation 
Property Value Property Value 
Paracetamol: 
 Number of particles 13500 
Density, ȡ (kg/m3) 1300 Density, ȡ (kg/m3) 1300 
Sieve size, ds (ȝm) 500 – 600 Diameter, dmed (mm) 2, 3, 4  
Shear modulus, E (GPa) 11 Normal stiffness, Kn (N/m) 1.2  105 
Poisson’s Ratio, Ȟ 0.3 Shear stiffness, Ks (N/m) 9.9  104 
Coefficient of restitution, 
e 

0.42 Contact damping 
coefficient, ȗ 

0.27 

 Sliding friction, µs 0.5 
 Rolling friction, µr 0.1 
Stainless Steel (Impeller): 
Shear modulus, E (GPa) 200 Normal stiffness (N/m) 8.5  105 
Poisson’s ratio, Ȟ 0.3 Shear stiffness (N/m) 7.0  105 
Glass (Vessel): 
Shear modulus, E (GPa) 70 Normal stiffness (N/m) 4.5  105 
Poisson’s ratio, Ȟ 0.3 Shear stiffness (N/m) 3.7  105 
Global Properties: 
 Time step (s) 7 – 8  10-7 

 
Table 2.  Simulation condition sets used 
Parameter Values used 

șsec (
o) 10, 25, 40 

nd 2, 3, 4 
dmed (mm) 2, 3, 4 
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Figure 1. Measurement sectors and cells (a) șsec = 10o (b) șsec = 25o (c) șsec = 40o  
(i) nd = 2 (ii) nd = 3 (iii) nd = 4 
 

 
Figure 2. Axis direction definitions 
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3. Results and Discussion 
 
In the simulated particle bed, the onset of agitation leads to a sudden increase in the 
deviatoric stress within the bed and the torque acting on the impeller. After two complete 
rotations the impeller torque reaches a cyclic steady-state condition [13].  The impeller is 
rotated in an anti-clockwise direction at a fixed impeller speed of 78 rpm.  For the simulation 
conditions of dmed = 3 mm, șsec = 25o and nd = 3 (Figure 1b,ii), the variation of deviatoric 
stress with impeller position, șimp, in cell 3 is shown in Figure 3.  When the tip of the first 
impeller blade is in the angular central line of the measurement sector, then șimp = 0o (as 
shown in Figure 1).  șimp increases as the impeller is rotated; the second blade reaches the 
angular centre of the measurement sector at șimp = 180o.  As an impeller blade exits the 
measurement sector the deviatoric stress reduces to a negligible value, but it starts to rise 
again as the other impeller blade approaches the cell.  The rise begins when the impeller 
blade is approximately 90o from the angular centre of the measurement sector (șimp = 90o).  
The stress peaks slightly before the impeller blade reaches the angular centre of the 
measurement sector, and then decreases again as the blade passes through the measurement 
sector. 
 

 
Figure 3.  Deviatoric stress in cell 3 for șsec = 25o and nd = 3 
 
The variation of deviatoric stress with impeller rotation is similar in all cells, though the 
magnitude of deviatoric stress varies.  Figure 4 shows the arithmetic mean of the deviatoric 
stress calculated at a number of measurement intervals throughout one impeller rotation in 
each of the nine cells.  The stresses increase with radial position throughout the bed and 
decrease with vertical position.  It should be noted that the impeller height is approximately 
equal to the upper boundary of cells 1, 2 and 3.  This explains the dramatic decrease in 
deviatoric stress above this boundary – from cells 1 – 3, to cells 4 - 9. 
 

0

400

800

1200

0 90 180 270 360

D
ev

ia
to

ri
c 

st
re

ss
, Ĳ

D
 (

P
a)

 

Impeller rotational position, șimp (o) 



8 
 

 
Figure 4.  Average deviatoric stresses throughout one rotation for șsec = 25o and nd = 3 
 
The variation of strain rate in cell 3 with impeller position, using the same measurement 
system, is shown in Figure 5.  The strain rate does not display such a significant variation 
with impeller position as does the deviatoric stress.  The strain rate increases as the impeller 
approaches the measurement sector, and peaks slightly after the impeller reaches the angular 
centre of the measurement sector.  This corresponds to the increased particle velocity in the 
immediate wake of the impeller blade.  Following this peak, the strain rate decreases and 
remains relatively unchanged until the other impeller blade approaches. 
 

 
Figure 5.  Strain rate in cell 3 for șsec = 25o and nd = 3 
 
The total strain in each cell after one impeller rotation is shown in Figure 6.  The strain 
increases with radial position in a similar manner to the deviatoric stress.  The strain 
decreases slightly with vertical position, though this decrease is significantly less pronounced 
than the decrease in deviatoric stress with vertical position. 
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Figure 6.  Total strain throughout one rotation for șsec = 25o and nd = 3 
 
Throughout the course of the simulations with a median particle size of 3 mm, discussed 
above, the stresses and strain rates were measured for all combinations of șsec and nd shown 
in Figure 1.  The bed exhibits limited variation in packing fraction.  Since the cells are of 
equal volume, the number of particles in each cell is approximately the same. 
  
 
The influence of șsec on the average deviatoric stress in each cell was analysed for the case of 
nd = 3.  A decrease in the measurement sector size results in a slightly increased average 
deviatoric stress in the outer radial positions (cells 3, 6 and 9).  This increase is most likely 
attributed to the reduction in the number of particles in a cell, which causes the stresses to be 
averaged by a smaller number of particles.  Therefore the measured peak stresses are greater.  
However, this increase in stress is not noticeable in the majority of the bed. 
 
The variation of total strain through one rotation with measurement sector size was analysed.  
As with the average deviatoric stress, the total strain increases when the measurement sector 
size is reduced.  The total strain is slightly greater for șsec = 10o as compared to 40o in most of 
the measurement cells. 
 
The average deviatoric stress obtained for each cell for nd = 2 and 4 are shown in Figures 7 
and 8, respectively.  The stresses increase with radial position and decrease with vertical 
position in both cases, as in the case where nd = 3.  For the case of șsec = 25o for nd = 2, 3 and 
4, the greatest average deviatoric stress in any cell is 56 Pa (Figure 7), 92 Pa (Figure 4) and 
108 Pa (Figure 8), respectively.  By comparing Figures 3, 7 and 8, it can be seen that as nd is 
increased the greatest average deviatoric stress calculated in any of the cells increases. 
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Figure 7.  Average deviatoric stresses throughout one rotation for nd = 2 
 

 
Figure 8.  Average deviatoric stresses throughout one rotation for nd = 4 
 
Direct comparison of the deviatoric stresses between the different cases of nd is difficult since 
the cell boundaries do not overlap in all cases.  However, the cell boundaries of nd = 2 do 
overlap with those of nd = 4.  As an example, cell 1 where nd = 2 corresponds to the identical 
space as cells 1, 2, 5 and 6 where nd = 4 (see Figure 1).  By averaging the deviatoric stresses 
shown in Figure 8 so that they correspond to the identical measurement cells of nd = 2, the 
influence of nd on the deviatoric stresses can be ascertained.  This comparison is shown in 
Figure 9.  The average deviatoric stresses obtained when nd = 4 are greater than those 
obtained when nd = 2 throughout the entirety of the agitated bed. 
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Figure 9.  Average deviatoric stresses throughout one rotation for nd = 2 compared to 
the average of corresponding cells where nd = 4 
 
The total strains in each cell after one impeller rotation have also been calculated.  When nd = 
2 the total strain increases with radial position and decreases slightly with vertical position, in 
a similar manner to when nd = 3.  Though direct comparison between these two cases is 
difficult, the strain does appear to be generally increased when nd is increased.  For the cases 
of nd = 2, 3 and 4 the overall trends of total strain are similar. 
 
The influence of simulation particle size on the estimated stresses and strains is considered 
next.  The median particle diameter, dmed, is varied between 2, 3 and 4 mm in separate 
simulations.  In all cases the span of the distribution is fixed at 0.18, corresponding to that of 
the experimental Paracetamol.  For comparison of simulation particle size, the measurement 
system of șsec = 25o and nd = 3 is considered.  The variation in the average deviatoric stress in 
each measurement cell with particle size is shown in Figure 10.  An increase in particle size 
causes an increase in the deviatoric stress for all cells.  The average number of particles per 
cell is very similar in the two cases of (dmed = 3 mm; nd = 2), and (dmed = 2 mm; nd = 4).  
Since the boundaries of the cells where nd = 2 overlap with boundaries for nd = 4, the average 
stresses in the corresponding cells can be compared, using the same approach of that for 
Figure 9.  The average deviatoric stresses are found to be strikingly similar in every 
measurement cell for these two cases, as they have a similar number of particles.  This 
suggests that the increase in calculated stress with an increase in particle size is due to the 
reduction in the average number of particles in each cell.  Therefore the deviatoric stress is 
determined by the size of the cell dimensions relative to the particle size. 
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Figure 10.  Average deviatoric stresses throughout one rotation for șsec = 25o and nd = 3 
 
The total strain in each cell after one impeller rotation is shown in Figure 11 for median 
particle sizes of 2, 3 and 4 mm.  As with the average deviatoric stress, the total strain 
increases with particle size throughout the majority of the bed. 
 

 
Figure 11.  Total strain throughout one rotation for șsec = 25o and nd = 3 
 
The calculated values of deviatoric stress and strain rate in each cell, at each interval, are 
utilised in Eq. 6 to predict the attrition occurring due to one impeller rotation.  The values of 
Ĳref, KN, ĳ and ȕ have been experimentally determined by Eq. 5 from measurements of 
Paracetamol attrition at a range of shear stresses and strains, and are equal to 0.183 MPa, 
0.71, 1.28 and 0.49, respectively [13].  From the prediction of the attrition occurring due to 
one impeller rotation (Eq. 6), the attrition occurring after I rotations is given by Eq. 8.  An 
increase in deviatoric stress or strain rate will result in an increase in WI=1, as shown by Eqs. 
6 and 7 and therefore an increase in WI (Eq. 8).  Table 3 shows the variation in predicted 
attrition after one impeller rotation, WI=1, for dmed = 3mm as a result of varying the 
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measurement sector size and the number of divisions within.  An increase in sector size 
causes a slight decrease in predicted attrition, as a result of the reduction in total strain and a 
slight reduction in deviatoric stress.  However, the variation in predicted attrition with sector 
size is not substantial; an increase in sector size from 10o to 25o causes the predicted attrition 
to decrease by  2-6 %.  As nd is increased the predicted attrition increases significantly.  An 
increase in nd from 2 to 3 results in a 15-23 % increase in the predicted attrition.  This is a 
more substantial effect than a 15o change in the measurement sector size.  Direct comparison 
of the stresses and strains calculated with different values of nd is difficult.  However the 
stresses and strains do generally increase as nd is increased.  This increase appears to be due 
to the reduction in the number of particles in each cell, which makes the calculation more 
dependent on each individual particle.  Therefore, if a localised high stress region falls within 
a cell the average stress is greater when the cell size approximates the size of this high stress 
region.  As the cell size is increased to include more particles experiencing a lower stress, the 
average stress calculated for this cell decreases. 
 

Table 3.  Predicted attrition after one impeller rotation, WI=1 ( 10-2), for dmed = 3 mm 

șsec (
o) 

nd 
2 3 4 

10 0.99 1.21 1.28 
25 0.97 1.14 1.24 
40 0.96 1.11 1.13 

 
Another factor affecting the number of particles in each measurement cell is the median 
particle size.   Table 4 shows the variation in predicted attrition after one impeller rotation, 
WI=1, for șsec = 25o as a result of varying the median particle size and the number of divisions 
within the measurement sector.  When the median particle size is increased the predicted 
attrition increases.  In such a case the average number of particles per measurement cell is 
reduced, and hence the calculated stresses are increased.  Varying the median particle size 
from 3 mm to 2 or 4 mm leads to a change in the predicted attrition of up to 20 %. 
 

Table 4.  Predicted attrition after one impeller rotation, WI=1 ( 10-2), for șsec = 25 o 

dmed (mm) 
nd 

2 3 4 
2 0.80 0.95 0.97 
3 0.97 1.14 1.24 
4 1.08 1.35 1.43 

 
It is apparent that the average number of particles per measurement cell has a substantial 
effect on the predicted attrition.  Figure 12 shows the predicted attrition after one impeller 
rotation for all cases of dmed, șsec and nd.  The average number of particles per cell, Np,ave, 
varies between these different measurement systems.  It is clear that an increase in the 
number of particles per cell generally causes a reduction in the predicted attrition.  However, 
the predicted attrition is slightly less for the 10o sector size for a given number of Np,ave.  The 
initial case of dmed = 3 mm, șsec = 25o and nd = 3, utilised by Hare et al. [13], provides a very 
good agreement with the experimental data.  In this case the cell dimensions are in the range 
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of 4 – 8 particle diameters, which are comparable to the width of a naturally occurring shear 
band.  It therefore seems logical that when applying cells with prescribed volumes to DEM, 
the cell dimensions should be relevant to the phenomena of interest.  If the system 
experiences shear deformation, the measurement cell dimensions should be comparable to the 
dimensions of a naturally occurring shear band.  This has far reaching implications for the 
assessment of internal stresses in a particle bed, as the length-scale of the averaging 
procedure should be carefully considered. 
 

 
Figure 12.  Influence of the average number of particles per cell on the predicted 
attrition after one impeller rotation 
 
4. Conclusions 
 
Particle breakage in agitated vessels occurs due to the shear stresses and strains caused by the 
impeller motion.  A method to predict the extent of breakage by analysing the stress and 
strain rate distributions in a DEM simulation of the bed has been introduced.  The stresses 
and strain rates are estimated within a sector of the bed throughout one impeller rotation.  
This sector is divided radially and vertically into a number of cells.  The dimensions of the 
cells have been shown to be influential in estimating the magnitude of stresses and strain 
rates within.  An increase in the number of radial and vertical divisions, or the median 
particle size, results in an increase in the predicted attrition.  In all these cases the average 
number of particles in each cell is reduced, therefore  calculation of stress is more dependent 
on individual particles.  This means that in the high stress regions of the bed the cells no 
longer include particles that experience a low stress.  Consequently the calculated stresses 
and extent of attrition prediction increase. 
 
The predicted attrition was compared to the experimentally determined breakage in the 
agitated vessel [13].  The prediction was most accurate when the dimensions of the 
measurement cells were comparable with the width of a naturally occurring shear band.  
Since the breakage is caused by shear deformation, the stresses and strain rates over these 
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length scales determine the extent of breakage.  A wider implication is that when taking 
average values within measurement cells, the dimensions of these cells should be 
representative of the phenomena occurring in the system. 
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Nomenclature 
 
c measurement volume number 
dmed median particle diameter 
ds particle sieve size 
e coefficient of restitution 
E shear modulus 
F force 
I impeller rotations 
kN empirical constant in Neil and Bridgwater relation 
K stiffness 
n interval 
nd number of radial and vertical divisions 
Np,ave number of particles in a measurement volume 
r radial position 
rp particle radius 
t time 
v velocity 
V volume 
W Extent of attrition 
z vertical position 
ȕ rate of material degradation in Neil and Bridgwater relation 
Ȗ strain rate 
ī strain 
ȗ contact damping coefficient 
șimp angular rotation of the impeller 
șsec measurement sector angle 
Ȟ Poisson’s ratio 
ȡ density 
ı stress 
Ĳ shear stress 
ĲD deviatoric stress 
ĳ relative influence of strain and stress in Neil and Bridgwater relation 
Ȥ mass fraction 
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subscripts 
 
ii  in the i direction on the i face 
I=1 after one impeller rotation 
n normal 
ref reference 
s shear 
SCS side-crushing 
xx in the x direction on the x face 
yy in the y direction on the y face 
zz in the z direction on the z face 
ș in the ș direction 
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