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Abstract

In this paper, a multiple neural network
architecture is proposed for undertaking the
problems associated with incomplete or missing
data in on-line learning and classification tasks.
An autonomously learning neural network
classifier, which has been previously devised
based upon the integration of Fuzzy ARTMAP
and the Probabilistic Neural Network, is
employed as the basis for the development of
the multiple neural network system. Each
classifier is dedicated to handle a set of input
features independently, and produces a
prediction of the target class. Bayes’ theorem is
then applied to combine the outcomes from
disparate  classifier modules sequentially.
Applicability of the multiple neural network
system is demonstrated using a simulated data
set and a real medical diagnosis database, and
the results are compared with other approaches.

1 Introduction

In many real applications, data is sparse and of
variable quality. Often, a complete set of input
features may not be available for immediate
use. This problem occurs in many situations
where data is drawn from more than one source
or by different techniques. One of the
limitations of many neural network models is
that no provision is made to handle incomplete
data sets or missing data. It is assumed that all
the input data items are accessible for the
network to generate a result. However, it is not

unusual to encounter the missing data scenario
in many “real-world” applications.  For
example, in the case of medical diagnosis, some
of the data items such as ECG measurements,
X-ray, and other radiographic images need to
be interpreted and encoded by domain experts
and may not be available instantaneously.

In our previous work [1], we have developed
a hybrid network which is capable of
incremental learning, and thus avoid the
problems of catastrophic forgetting and re-
training when operating on-line in non-
stationary environments. The network is based
upon an integration of two network
architectures: Fuzzy ARTMAP [2] and the
Probabilistic Neural Network [3]. This hybrid
network has been shown to be capable of
providing outputs which estimate the Bayesian
a posteriori probabilities, and of achieving the
Bayes optimal results autonomously without
prior knowledge of impending changes in data
the environment. It also achieves comparable
performance with other approaches in a number
of benchmark problems [4, 5], but with the
ability of on-going (causal) learning.

Based on the hybrid network described in
[1], a multiple neural network architecture is
proposed here for incremental learning and
classification of incomplete data sets. The
system makes use of Bayes’ theorem to combine
decisions from multiple classifier modules
sequentially. When given an incomplete data
set, the important feature items can be grouped
together and presented to a classifier to give an
initial prediction. Then, data collected later




can be fused to another classifier to reinforce or
counteract the initial predictions. As a result,
the multiple classifier system is able to make
use of more and more information in
generating a predicted output with more
confidence as time goes on.

2 Probabilistic Fuzzy ARTMAP—
A Hybrid Network

2.1 Fuzzy ARTMAP

It is well documented that the family of
Adaptive Resonance Theory (ART) networks
offer an alternative for solving the so-called
stability-plasticity dilemma—how a learning
system can absorb new information without
forgetting previously learned information [6].
More recently, a supervised ART network
known as Fuzzy ARTMAP (FAM) which
realises a synthesis of ART and fuzzy logic has
been introduced. Figure 1 depicts a schematic
diagram of the FAM network. It consists of
two Fuzzy ART [7] modules, ART, and ART,,
linked by a map field, F,;. The ART, (ART)
module has two layers of nodes: F;, (F;;) is the
input layer; and F,, (Fs) is a dynamic layer
where each node encodes a prototype pattern of
a cluster of input patterns, and the number of
nodes can be increased when necessary.

Figure 1 The Fuzzy ARTMAP network

The key feature of FAM is in the inclusion
of a novelty detector in ART, to measure
against a threshold the similarity between the
prototype patterns stored in the network and the
input patterns. When the match criterion is not
satisfied, a new node is created, and the input is
coded as its prototype pattern. As a result, the
number of nodes grows with time, subject to the
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novelty criterion, in an attempt to learn a good
network configuration autonomously and on-
line. As different tasks demand different
network structures, this learning approach thus
avoids the need to specify a pre-defined static
network size, or to re-train the network off-line.

During supervised learning, ART, receives
a stream of input pattern vectors, {4}, whereas
ART, receives the corresponding target-class
vectors, {B}. In general, ART, consists of an
independent Fuzzy ART module to self-
organise the target vectors. However, in one-
from-N classification (i.e., each input pattern
belongs to only one of the N possible output
classes), ART,, can be replaced by a single layer
containing N nodes. Then, the N-bit teaching
stimulus can be coded to have unit value
corresponding to the target category and zero
for all others.

The learning algorithm of FAM is similar to
the sequential leader clustering algorithm [8].
However, FAM does not directly associate input
patterns at ART, with target patterns at ART,,.
Rather, input patterns are first classified into
prototypical category clusters before being
linked with their target outputs via a map field.
At each input pattern presentation, this map
field establishes a link from the winning
category prototype in F,, to the target output in
F3,. This association is used, during testing, to
recall a prediction when an input pattern is
presented to ART,.

2.2 The Probabilistic Neural Network

The Probabilistic Neural Network (PNN) is a
neural network model that implements the
Bayes’ theorem in its learning methodology. It
learns instantaneously in one-pass through the
data samples and is able to form complex
decision boundaries which approximate
asymptotically the Bayes optimal limits. In
addition, the decision boundaries can be
modified on-line when new data is available
without having to re-train the network.
Another advantage of the PNN is its speed of
learning , which is often orders of magnitude
faster than that of the Multi-Layer Perceptron
(MLP) trained with back-propagation [3].

The key feature of the PNN is its ability to
estimate the probability density functions (pdfs)
based on the data samples by using the Parzen-
windows technique [9]. Figure 2 depicts a
schematic diagram of the PNN for binary
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classification tasks (class A or B). The PNN
consists of four layers of nodes: the input layer,
pattern layer, summation layer, and output
layer. Nodes in the pattern layer are organised
in groups corresponding to different target
classes. The pattern nodes belonging to the
same output are then linked to a summation
node dedicated to that particular target class.

Predicted Output

Output layer
P(xiA) P(xIB)

L o OJ Summation layer

/Z,-:x.w

Category A Units Category B Units

é-y @ @gm Pattern layer
weight
vector, w

O O O ] Input layer

Input vector, x

Figure 2 The Probabilistic Neural Network

During operation, the input pattern, x, is
first fanned-out to the pattern layer where each
pattern unit computes a distance measure
between the input and the weight pattern
represented by that node. The distance measure
(e.g. dot-product) is then transformed by a
Parzen kernel function. Outputs from the
Parzen kernels are summed by the summation
nodes. These outputs correspond to estimates
of the pdfs of the input pattern with respect to
each target class, i.e. P(x1A), P(xIB). These

probability estimates will be utilised for the
combination of predictions from multiple
classifiers as presented in section 3.

2.3 Probabilistic Fuzzy ARTMAP

One disadvantage of the PNN is that it encodes
every input pattern as a new node in the
network, thus increases the network complexity
and computational cost if large or unbounded
data sets are used. Nevertheless, this problem
can be alleviated by using a clustering
technique such as FAM.

Our studies have found that there is a close
similarity in the network topology between
FAM and the PNN. Notice that in Figures 1
and 2, the F;, and F,, layers correspond to the

input and pattern layers whereas the map field
layer (Fg3) corresponds to the summation layer.
In one-from-N classification, each node in F,,
is permanently associated with only one node in
F gz, which is then linked to the target output in
F3,. Thus, the map field nodes can be used to
sum outputs from all the F,, nodes
corresponding to a particular target class,
taking the role of the PNN summation units.

In view of the suitability of the incremental
learning property and the similarity of the
network topology between FAM and the PNN,
a novel hybrid network, based on the
integration of a modified version of FAM [10]
and the PNN, has been proposed for on-line
classification and probability estimation tasks,
and is called Probabilistic Fuzzy ARTMAP
(PFAM) [1]. The on-line PFAM algorithm is
divided into two phases. First, the FAM
clustering procedure is used for classifying the
input patterns into different categories (learning
phase).  Subsequently, the PNN probability
estimation procedure is used to predict a target
output (prediction phase). The advantage of
this integration is two-fold: (i) a probabilistic
interpretation of output classes is established
which enables the application of Bayes, risk-
weighted, classification in FAM; (ii) the
number of pattern nodes in the PNN is reduced
by the clustering procedure of FAM.

The above description provides a conceptual
framework for incorporating FAM and the
PNN into a unified, hybrid system, and the
rationale behind their integration. In practice,
several modifications are necessary to allow
effective combination of both the networks, and
to increase generalisation ability of the
resulting system. These include procedures to
estimate kernel centres and widths. A detailed
explanation of all these procedures can be
found in [4, 5].

3 Sequential Evidence Aggregation in
a Multiple Neural Network System

In the field of pattern recognition, researchers
have shown that combining the decisions from
multiple classifiers applied to the same data set
can improve the performance of individual
classifiers [11]. Here, a multiple neural
network system is developed where decisions
from multiple PFAM classifiers are combined
so that (i) performance of the resulting system
can be enhanced; (ii) an alternative approach
for handling on-line learning and classification




tasks with incomplete data can be realised.
Figure 3 depicts a multiple classifier system
based on PFAM.

Overall Prediction

Decision Combination Algorithm
7 T T
Predlcuon 1 Predlu.ion 2 Prediction N

[PFAMl | | PFAM2 ] PFAM-N

Figure 3 A multiple neural network system

In the Artificial Intelligence (AI) research
community, Bayes’ rule has been widely used
for reasoning about partial beliefs under
conditions of uncertainty [12]. To understand
the Bayesian update of evidence under
uncertainty, let H;, i=1,---, M denote a set of

hypotheses, and each H; be associated with a
set of evidences, e;,---,e,. The posterior

probability of the i-th hypothesis can be
computed as

where P(H;) is the prior probablhty of H;,

and Ple;,--,e Zpe,,- e, H;)P(H;) is a

normalising factor to ensure the posterior
probabilities sum to unity. To enable
computation of the posterior probabilities, it is
assumed that the pieces of evidence are
conditionally independent given H; (although
this assumption may not always be true in every
domain). Hence, equation (1) can be simplified
to

n

P(Hjle,, - e,) = ———— P(H;) ——J]PlejH;)
(E], U H) i=1

One of the attractive properties of Bayes’
theorem is its amenability to recursive and
incremental computation schemes. The
recursive Bayesian update of belief functions is
implemented here to aggregate evidence from
multiple neural classifiers sequentially. Let the
input vector to the j-th classifier be x;. Upon

receiving x;, classifier j will yield a set of

conditional probabilities for M target classes
(hypotheses), i.e., P(x;IC;)i=1,---,M , which

is equivalent to Pe;IH;) above. For the first

T——

classifier, the posterior probability of class C;

can be computed as
P(x,IC;)P(C;)
M

Y P(x,IC;)P(C;)

i=1
where P(C;) is the prior probability of C;.
response to the second piece of evidence from
the second classifier, the update of posterior
probability can be computed incrementally
based on the first evidence as
P(x,1C;)P(C;1x,)

ZP(leC;)P(Cflxl)

i=1
Thus, comparing equations (3) and (4), we can
see that the current belief, P(C;lx;), assumes

P(Cilx;)= ©))

P(Cilxy, x3)=+ 4)

the role of the prior probability in the
computation of new belief, P(C;lx;,x;).
Equation (5) generalises the recursive Bayesian
update of belief functions to include the most
recent piece of evidence provided by the (j+1)-
th classifier,

Plx J+1|C‘)P(C‘|x1)

P(C;1x (5)

j'xj+1) (
P( xj,1C: )P(C;1x;)

Mz

-
1
—

Recall that during the prediction phase, the
PFAM network uses the Parzen-windows
technique to approximate the pdfs. In a
multiple classifier platform, the output pdfs
from various PFAM classifier thus constitute
the supporting evidence for the estimation of
the posterior probabilities of target classes. The
above Bayesian formalism can then be
employed to combine predictions from multiple
classifiers sequentially. During operation, the
multiple classifier system utilises whatever
information is available to give a set of initial
predictions for the target classes. Subsequently,
these predictions will be reinforced or
counteracied on arrival of new information.
Since not all information will be readily
accessible” for use in many real applications,
this multiple classifier system coupled with the
recursive Bayesian belief update formalism
serve as a simple but effective approach to
handle problems with incomplete or missing
data.

4 Experiments
In the following two sets of experiments, the

PFAM network was set to operate at its basic
conditions: ¢, =00 (conservative mode);




P.=00 (forced choice); B,=10 (fast
learning) [2]; overlapping parameter, r =20
[4,5].

4.1 Extension to the ¢“Circle-in-the-
Square” Benchmark Problem

The “circle-in-the-square” problem requires a
system to identify which points of a square lie
inside or outside a circle whose area equals half
that of the square. It has been used as a
benchmark problem for system performance
evaluation in the DARPA artificial neural
network technology program [13]. Asfour [14]
extends the two-dimensional “circle-in-a-
square” task to a three-dimensional case such
that the system now needs to identify if a
particle is travelling inside or outside a tube
residing within a rectangular box (Figure 4).
This task is employed to evaluate the
effectiveness of FAM and the Fusion ARTMAP
network [14] (a modularised ART-based
network for multi-sensor fusion and
classification) in handling problems with
missing data.

In the experiment, it is assumed that 5
sensors have been placed along the rectangular
box to detect the position of a moving particle
as shown in Figure 4. The sensor readings are
then fused to 5 different PFAM classifiers to
generate a prediction about whether the particle
is travelling inside or outside the tube. To
simulate a classification domain with missing
data, information from the sensors are shut
down one by one as if the sensors are faulty.

Sensor 2 Sensor 4

4

Sensor 1 Sensor 3 Sensor 5

Figure 4 The extended “circle-in-the-square” task
requires a system to identify whether a particle is
travelling inside or outside a tbe residing in a
rectangular box.

A training set of 100 samples and a test set
of 1000 samples were used in the experiment.
The experiment was repeated 10 times, and the
results were averaged across the 10 runs. Table
1 show the performance of the multiple PFAM
system as well as the results of FAM and
Fusion ARTMAP as reported in [14]. The

results show that the modularised approach of
Fusion ARTMAP and the multiple PFAM
system outperform the concatenated approach
of FAM.

Algorithm No. of Sensors

5 4 3 2 1
Fuzzy 82.24 8296 83.46 82.28 76.82
ARTMAP
Fusion 98.22 97.23 95.86 91.32 B88.53
ARTMAP
Multiple |98.49 98.08 96.49 92.66 86.41

PFAM System

Table1  Off-line learning results (expressed in
percentages) of different numbers of sensors used in
the classification process.

Since the PFAM is capable of learning on-
line, a dual-mode learning experiment was
conducted where each PFAM network was
trained, off-line, using 100 data samples.
Then, the trained network was engaged in on-
line learning using 900 data samples. During
the on-line operation, an input pattern was first
presented to ART, with its target output to
ART,. A predicted class was sent from the F,,
winner to ART,,, and the prediction was
compared with the target class to produce a
classification result (prediction phase). Then,
learning ensued to associate the input pattern
with its target class (learning phase). A 100-
sample moving window was applied for
calculating the on-line accuracy, e.g. the
accuracy at sample 200 was the percentage of
correct predictions from trials 101-200.

100 |- No. of classifiers

Accuracy (%)

No. of Input Samples

Figure 5 On-line leamning results of different
number of classifiers used in the extended “circle-in-
the-square” problem

Figure 5 depicts the on-line results averaged
over 10 independent runs. The error bars are
the standard deviations of the 10 runs to
indicate how the results spread across the
averaged results. It is clear that the accuracy
improves in accordance with the number of
classifiers used to give the final prediction,




hence justifying the application of multiple
neural network systems in classification tasks.

4.2 Diagnosis of Myocardial Infarction

This diagnostic study involved a databas¢ of
500 patient records admitted to the Northern
General Hospital, Sheffield, United Kingdom,
with a major complaint of chest pain (chest
pain is known to be strongly associated with
Myocardial Infarction (MI) or heart attack). A
total of 26 items of electrocardiagraphic and
clinical data such as Q waves, ST elevation, age
etc. were used as inputs to the multiple PFAM
systems. These input features were divided into
4 groups according to their significance to MI
(in consultation with a medical expert), and
distributed to 4 independent PFAM networks.

In the off-line experiment, the database was
divided into a training set of 300 samples and a
test set of 200 samples. The most significant
feature set formed the inputs to classifier 1,
whereas the least significant feature set formed
the inputs to classifier 4, Table 2 presents the
classification accuracy for the binary decision,
MI or not M1, from combining the predictions
from multiple PFAM classifiers consecutively.
It can be seen that the performance based on
the most significant feature set (Classifier 1)
was as good as those by combining more than
one classifier. In other words, contribution
from other input features which are not strongly
related to MI would increase the performance
slightly, as indicated in Table 2 (the results of
2, 3, and 4 classifiers).

No. of Classifiers
4 3 2 1

84.1 839 829 828

Table 2  Off-line learning results (expressed in
percentages) of the MI diagnosis.

As a comparison, the performanc: of the
admitting clinicians, and the best performances
achieved by an MLP (with optimal decision
threshold on a super-set of the same data) [15],
as well as by FAM (with voting strategy) [16]
are presented in Table 3. The results from the
multiple PFAM system are inferior to those of
the MLP and FAM. Note that the MLP and
FAM results were the best ones obtained after
fine-tuning  their  network  parameters.
However, the multiple PFAM system was
operated at its “basic” settings without any
efforts to “optimise” the network parameters.

5
Algorithm Accuracy (%)
Clinician 82
MLP 90
FAM 90

Table3 A comparison with other methods.

A further dual-mode learning experiment
was conducted where the multiple PFAM
system was trained using the first 100 samples
and then tested, along with on-line learning,
using the remaining 400 samples. Again, the
on-line accuracy was calculated with a 100-
sample moving window. Figure 6 indicates the
on-line performance, averaged over 10 runs, by
combining the predictions from the 4 PFAM
classifiers successively. The standard
deviations of the 10 runs are plotted as error
bars, Unlike Figure 5 where there is a clear
improvement in performance with respect to
the number of classifiers used, here a single
classifier is able to achieve a similar
performance comparable to those from more
than one classifiers. This phenomenon is
understandable as the input feature set to
classifier 1 is the most significant to the
prediction of MI. Nevertheless, as the system
encounters more and more samples, it was able
to achieve a better performance with a clear
delineation between the results by combining
various classifiers as demonstrated by the
accuracy of the last 100 samples in Figure 6.

No. of classifiers

Accurncy (%)

100 200 300 400
No. of Input Samples
Figure 6 On-line learning results of the MI
diagnosis.

S Summary

A composition of multiple neural network
classifiers has been studied to solve pattern
classification problems with incomplete or
missing data. An autonomously learning,
hybrid system of FAM and the PNN network is
utilised as the basis for the development of the
multiple classifier system. One advantage of




the system is the ability to combine decisions
from multiple classifier modules sequentially
using Bayes’ theorem. In this way, the most
significant and instantly available data items
can be grouped together to a classifier to give
an initial prediction. Then, data collected later
can be fused to another classifier to reinforce or
counteract the initial predictions. As more and
more information becomes available, this
multiple classifier platform coupled with the
sequential decision combination algorithm
enables the system to make predictions with
greater accuracy as time goes on.
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