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Abstract — A fast backward elimination algorithm is introduced based on a QR de-
composition and Givens transformations to prune radial basis function networks. Nodes
are sequentially removed using an increment of error variance criterion. The procedure is
terminated by using a prediction risk criterion so as to obtain a model structure with good
generalisation properties. The algorithm can be used to postprocess radial basis centers
selected using a & means routine and in this mode provides a hybrid supervised center
selection approach.
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1 Introduction

The Radial basis function (RBF) model was traditionally used for strict interpolation in multi-
dimensional space(Powell, 1985). More recently, RBF neural networks have been employed in
non-linear systems identification. The centers are assumed to sample the data set and reflect
the distribution of the data, but the set of candidate centers can be very large, and in practice,
a network with a finite basis selected from the data set is usually adopted. One approach is to
randomly select the centers from the data(Broomhead and Lowe, 1988). Alternatively a k-means
clustering technique can be employed(Moody and Darken, 1989). Usually the network weights
are learnt at a later stage using least squares methods.

Selecting a finite basis from a large set of candidates corresponds to the classical model subset
problem in linear regression(Draper and Smith, 1981). The forward regression method has been
successfully used for RBF neural networks and other nonlinear system models(S.Chen et al,
1989, 1991). An alternative approach is to use backward elimination. Backward elimination
starts by building the full model using all the basis funtions, the full model could be the whole
data set, or a predetermined set obtained from k-means clustering. The basis functions are
then eliminated one at a time based on the least deterioration in model fit. The use of the
backward elimination method for RBF networks is analogous to the pruning procedure in MLP
networks(R.Reed, 1993). One drawback of the backward elimination procedure is that it is com-
putationally expensive compared with forward regression. In this study, a new backward elimi-
nation algorithm that is computationally fast is introduced, based on the orthogonal-triangular
decomposition of the regression matrix and a Givens transformation. A prediction risk criterion
is used as a measure of the generalisation capability of the resulting model to terminate the
procedure(Barron,A.R., 1984, Liu, 1995). The new method can be used as a supervised center
selection approach from the full model set, or it can be used together with a k-means clustering

method to constitute a hybrid supervised method.

2 RBF Neural Network Formulation and The k-means Clus-
tering Method

" A RBF neural network can be formulated as

M
y(t) = > pi(1)6: +(2) (1)
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where t = 1,2,3,.... N, and N is the sample size of the estimation set. The regressors take the
form

pi(t) = 2([|x(t) - <ill, 5:) (2)
x(t) o [y(t i 1)» L 'sy(t - n!{)?“(t = 1)? o 'su(t - nﬂ)ae(t - 1)1' ‘ ‘,E(t - nt)] (3)
| o || denotes the Euclidean norm, f; are some positive scalars called widths, ®(|| o ||, ;) is a

function from R* — R, and ¢; € R(®y+nutnc) | < 1 < M are the RBF centers. The thin-plate-
spline function

®(z) = mzlogzg (z>0) (4)

will be used in the present study.

The k-means clustering algorithm partitions the data set into k clusters and determines k cluster
centers. Usually, the number of centers are predetermined. The k-means clustering method
starts with initial centers ¢;(0): 1 <4 < M and an initial learning rate @(0), and computes the
distances

pi(t) = lIx(t) — (- 1|, 1 <i< M (5)
to find a minimum distance
k = arglmin{pi(1),1 < i < M}] (6)

If k = arg[min{p;(t),1 < i < M}] then

e(t) = ce(t—1)+ cr(t)[x(t) —ci(t - 1)]
ci(t) = ¢;(t - 1), Vi % k

The learning rate should be a(t) < 1 and should slowly decrease to zero. A typical choice is

a(t - 1)

VEsTony i

a(t) =

where int(z) denotes the integral part of z.




3 A Givens Rotation Based Fast Backward Elimination Algo-
rithm
Eq.(1) can also be written in a matrix form as
y=PO4+= (8)

where ©T = [91, " M], yT = [y(1)3 ' --,y(N)] ) ET = [E(l)! Ee '1€(N)]7 and

m(1)  pa(1) -+ pa(1)
po | m(2) pA2) -+ pu(2) B -]
Pi(N) pa(N) pu(N)

A QR decomposition can then be performed on the regression matrix P

P-_—[PlaP?»"'aPM]:[QIsQ2s"‘7CIM]R (9)

The Increment of Error Variance due to the elimination of the last column PM can be computed
as [EVyr = N < qu,y >2%, where < o > denotes the inner product. If each regressor in P is
in turn moved to the last column, the respective increment of error variance due to the effect of
this being removed can be calculated. For example, if the column p; is permuted with the last
column pys, then the permutation matrix of the regression matrix P is

-

Pi,M — [Pl;'",Pi—-lapM,PH—l:"‘aPi] = [plaPZ)" '1PM}T-.',M (10)

where I 3r is the permutation matrix of a unit matrix where the i¢th and M’th column are
interchanged. Substitute Eq.(9) into Eq.(10) to yield

Pinm = [q1,9s, - aumRI; pr (11)

Since RigM is no longer triangular, qi,q2,--+,qa are no longer an orthogonal basis of P,M
However, a series of Givens transformations can be used to form a new QR decompostion for
P,M Let Q = [G1,- -+, @n] denote the new basis. The increment of error variance due to the
elimination of the regressor p; can then be computed as TEV; = — < dqur,y >2.

A total of M‘—H’—l) Givens rotations will be needed to compute the new QR decomposition
of P,M The aim of the fast backward elimination algorithm is to sequentially change the

position of each regressor to the last column with the main advantage of decreasing the number




of Givens rotations. The proc'.edur:e can be summarized as:
(i)- Initially, the full model is composed of M Tegressors.

(ii). Perform QR decomposition on the regression matrix P using Givens transformations(G.A.F,
Seber, 1976). Compute I EVyy.

(iii). Permute pps_y with pas, so that the new regression matrix becomes [py,- - “PM-2,PMPM-1]=
QRTM_LM. Only one Givens rotation G(1) on the (M — 1)th and Mth rows of the matrix
RTM_I,M will be needed to retriangularize it. Denote R(1) = G(I)R‘I'M_.LM as the new triangu-
lar matrix. The new regression matrix then has a new orthornormal-triangular decomposition

[P1,*, PM=2,PM, Par-1] = QR (12)

where Q1) = Q{G(l)}T, which is computed by rotating the last two columns of the orthonormal
matrix Q. Compute I EVys_;.

(iv). At the kth step, k = 2,---, M —1, the existing regression matrix takes the form [pq,p,, - - -

k]

PM-k; PM; PM-1, " **, PM-k+1], and the existing orthonormal and triangular matrices from the
last step are denoted as Q(*=1) and R(k-1) respectively. In order to place the regressor pas_x
in the last column, sequentially permute the Tegressor pay—x with its right adjacent regressors
PM; PM-1," "+ and pas—k+1. Thus the new regression matrix

[Plypz, " 'spM—k—lﬁpM:pM—lx v 'va—k+11pM—-k]

= Q(k_l)R{k_l)iMuk,M—k+liM—k+1,M—k+2 o Taroam (13)

Only k Givens transformations are needed to retriangularize the matrix

R¥ MY pbst it ek Toim
Denote
R = @RRy o i Tar i st U (14)

as the new triangular matrix, where G(¥) = GxG(*)e-1 ... G(K): is 2 series of k Givens transfor-
mations, in which, GU‘)J', j=1,--+,kis a Givens transformation applied to R(k)ﬂ"liM_k.{.j_l,M_kH
on the (M — k4 j — 1)th, and (M — & + j)th rows, where R(¥o = R(k=1) and

R*)s = gk R(k)"“iM—k+j-1,M—k+j, j=1,--k (15)




are triangular matrices. Denote
R*) = Rk (16)

Eq.(13) can be rewritten as
[Pl, P2, "y PM—-k-1,PMPM-1,"" “yPM-k+1, PM-—k]

Q(k-l){G(k)}TG(k)R(k-l)iM—k,M—k-f-liM—k+1.M—k+2 = 'iM-l,M
= QWR()

(17)

where Q(¥) = QU‘“I){G(“)}T is the new orthorgonal basis. Numerically, the orthornormal ma-
trix Q(*) is computed by rotating columns of the Q(5=1) using orthorgonal matrices {G(¥) }T,{G(kh}T,
ey {G(")*}T sequentially. Compute I EVps_j. '

(vi). Find the minimum increment of error variance due to the elimination of py,ps, -+, pm.

n = argmin{/EV;,i = 1,---, M}] (18)

(v). A prediction risk describes the expected performance of an estimator in predicting new
observations, which is defined as(Barron, A.R.,1984, Liu,1995)

2n
= ey + 20 (19)

where the €2 and €2, are the sum of squared error on the validation set and the estimation set
respectively. In practice, the variance of the noise o2 is replaced by the variance of prediction
error in the estimation set ¢2,,. The regressor p, is eliminated from the regression matrix P
while the prediction risk is monitored simultaneously. If a minimum of the prediction risk is
not reached, go back to step (ii). The new regression matrix is also denoted as P for simplicity
of notation, and the number of the regressors M is decreased by 1. The procedure terminates
at an optimal structure which is evaluated by the prediction risk criterion, where the ny =
arg{min{eZ ), Vn.;;}] is the number of the parameters.

Remarks:

(1). To eliminate one regressor or basis function from M regressors or basis functions, only
M(M- . . 5 . -
—-%H Givens row rotations are needed to form new triangular matrices, and another M%I_ll

Givens column rotations are needed to form a new orthnormal basis.

(ii). The Givens rotation-based computation approach retriangularizes the matrix by rows, and




P O —

re-orthornormalise the matrix by columns. The fetch and store is very efficient. Also, the
inherent recursive nature of the Givens transformation minimizes the memory requirements for
intermediate variables such as R(k}‘,R(k)z, oo, RFMk=1 Thege matrices are accommodated by
the same variable in the program which is updated by sequential row operations.

4 Numerical Examples

Example 1: Consider a NAR time series

y(1) = (0.8-0.5exp(—y?(t—1))y(t—1) - (0.3 4 0.9 exp(—y?(t — 1)))y(t - 2)
+0.1sin(3.1415926y(t — 1)) + (1) (20)

where the noise £(t) was a gaussian white sequence with mean zero and variance 0.01. The
estimation data set consisted of 500 data points. A thin-plate-spline RBF was used to model
the system. The structure of the RBF model was defined by ny = 2. The initial centers were
randomly selected from the data set, and then the k-means clustering method was used to
select the centers(S.Chen, et al, 1992). The parameters in the k-means clustering method were
chosen to be a(0) = 0.9. and the number of centers was set to be 30. The fast backward
elimination algorithm was then applied to postprocess the centers obtained from the k-means
routine. Twenty redundant centers were eliminated and the number of centers was reduced to
10. The distribution of the data set and the positions of the centers is plotted in Fig.1. The
evolution of the increment of error variance in the training set as the centers were removed is
shown in Fig.2.

Model validity tests are procedures which are used to detect the inadequacy of a fitted model.
Correlation based validation involves computing correlation functions composed of model resid-
uals and system inputs and testing if these satisfy certain conditions given in the form of con-
fidence intervals. The new higher order correlation tests which use mode] residuals combined
with system inputs and outputs(Billings and Zhu,1994) were used in the present study. The
results plotted in Fig.3 indicate that the pruned network is appropriate.

Example 2. Consider a nonlinear system

y(t) = —0.6377y(2— 1)+ 0.07298y( — 2) + 0.03597u(t — 1) + 0.06622u(t — 2)
+0.06568u(t — 1)y(t — 1) + 0.02375u*(t — 1) + 0.05939 + &(¢) (21)

where the system input u(t) was a uniformly distributed sequence, and the noise £(t) was a




gaussian white sequence with mean zero and variance 0.05. A data sequence of 500 samples
was generated, and a thin-plate-spline RBF network was used to model the system. The input
nodes of the system were defined as {u(t — 2),u(t—1),y(t - 2),y(t - 1)}. The initial centers
were randomly selected from the data set, and the k-means clustering method was then used to
select the centers. The number of centers was defined to be 40. The fast backward elimination
algorithm was then applied, and the number of centers was reduced to 12. The increment of error
variance in the training data set plotted against the number of eliminated centers is illustrated
in Fig.4. and shows that 28 redundant centers were eliminated. The procedure stoped at the
circle point. The one-step ahead prediction error was used for model validation of the final
network and the results plotted in Fig.5 demonstrate that the pruned network is a valid model
of the system.

5 Conclusions

A backward elimination algorithm has been introduced for RBF neural network pruning. An
initial set of RBF neural network centers can he predetermined using k-means clustering or
several alternative methods. But the complexity of the resulting network may be larger than
necessary. The backward elimination algorithm starts with a comparatively large network and
removes the centers which increase the training error least. The algorithm is based on the QR
decomposition of the regression matrix and a Givens triangularisation method. The algorithm
is effecient in that the number of Givens rotations is small due to the recursive nature of the
algorithm. The effectiveness of the new algorithm has been demonstrated using numerical
examples, and the final pruned networks were tested using model validity tests. Although the
algorithm was introduced based on the RBF architecture, it is applicable to the general class of
linear-in-the-parameters system models.
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Figure 1: Distribution of observations and RBF centers in example 1; (a)Distribution of obser-
vations; (b) Positions of the original RBF centers using k-means clustering; and (c) Positions of
the final centers after fast backward elimination




-

o
T

oo sat

o o o o
N @
—

g n e g e
h L » b @
Py

tha incrament of emor vaianca in he

o

2 P [ 18 18 20

L ] 10 12 14
he number of centers sliminaled

. Figure 2: The increment of error variance in example 1: starting from 30 centers, the algorithm
terminated at the circle point when 20 centers were eliminated.
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Figure 3: Model validity tests for example 1; (a) Model validity test
validity test ®(,..2(7)
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Figure 4: The increment of error variance in example 2: starting from 40 centers, the algorithm
terminated at the circle point when 28 centers were eliminated

Figure 5: Model validity tests for example 2; (a) Model validity test &, (7); (b) Model validity
test @,.y.2(7) and (c) Model validity test Boeguz () ‘
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