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MULTIDIMENSIONAL STOCHASTIC DIFFERENTIAL

EQUATIONS WITH DISTRIBUTIONAL DRIFT

FRANCO FLANDOLI1, ELENA ISSOGLIO2, AND FRANCESCO RUSSO3

Abstract. This paper investigates a time-dependent multidimensional
stochastic differential equation with drift being a distribution in a suit-
able class of Sobolev spaces with negative derivation order. This is done
through a careful analysis of the corresponding Kolmogorov equation
whose coefficient is a distribution.

Key words and phrases: Stochastic differential equations; distribu-
tional drift; Kolmogorov equation.

AMS-classification: 60H10; 35D05; 35D10; 35K10.

1. Introduction

Let us consider a distribution valued function b : [0, T ] → S ′(Rd), where
S ′(Rd) is the space of tempered distributions. An ordinary differential equa-
tion of the type

(1) dXt = b(t,Xt)dt, X0 = x0,

x0 ∈ R
d, does not make sense, excepted if we consider it in a very general

generalized functions sense. Even if b is function valued, without a minimum
regularity in space, problem (1), is generally not well-posed. A motivation
for studying (1) is for instance to consider b as a quenched realization of
some (not necessarily Gaussian) random field. In the annealed form, (1) is
a singular passive tracer type equation.

Let us consider now previous equation with a noise perturbation, which
is expected to have a regularizing effect, i.e.

(2) dXt = b(t,Xt)dt+ dWt, X0 = x0,

whereW is a standard d-dimensional Brownian motion. Formally speaking,
the Kolmogorov equation associated with previous stochastic differential
equation is

(3)

{
∂tu = b · ∇u+ 1

2∆u on [0, T ]× R
d,

u(T, ·) = f on R
d,

for suitable final conditions f . Equation (3) was studied in the one-dimensio-
nal setting for instance by [17] for any b which is derivative of a continuous
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2 MULTIDIMENSIONAL SDES WITH DISTRIBUTIONAL DRIFTS

function and in the multidimensional setting by [10], for a class of b of
gradient type belonging to a given Sobolev space with negative derivation
order. The equation in [10] involves the product of distributions in the
sense of paraproduct, which is a natural extension of pointwise product for
distributions.

The point of view of the present paper is to keep the same interpretation
of the product as in [10] and to exploit the solution of a PDE of the same
nature as (3) in order to give sense and study solutions of (2). A solution
X of (2) is often identified as a diffusion with distributional drift.
Of course the sense of equation (2) has to be made precise. The type of
solution we consider will be called virtual solution, see Definition 23. That
solution will fulfill in particular the property to be the limit in law, when
n→ ∞, of solutions to classical stochastic differential equations

(4) dXt = dWt + bn(t,Xt)dt,

where bn = b⋆φn and (φn) is a sequence of mollifiers converging to the Dirac
measure.

Diffusions in the generalized sense were studied by several authors begin-
ning with, at least in our knowledge [14]; later on, many authors considered
special cases of stochastic differential equations with generalized coefficients,
it is difficult to quote them all: in particular, we refer to the case when b
is a measure, [4, 12, 16]. In all these cases solutions were semimartingales.
More recently, [5] considered special cases of non-semimartingales solving
stochastic differential equations with generalized drift; those cases include
examples coming from Bessel processes.

The case of time independent SDEs in dimension one of the type

(5) dXt = σ(Xt)dWt + b(Xt)dt,

where σ is a strictly positive continuous function and b is the derivative
of a real continuous function was solved and analyzed carefully in [7] and
[8], which treated well-posedness of the martingale problem, Itô formula
under weak conditions, semimartingale characterization and Lyons-Zheng
decomposition. The only supplementary assumption was the existence of
the function Σ(x) = 2

∫ x
0

b
σ2 dy as limit of appropriate regularizations. Bass

and Chen [1] were also interested in (2) and they provided a well-stated
framework when σ is γ-Hölder continuous and b is γ-Hölder continuous,
γ > 1

2 . In [17] the authors have also shown that in some cases the SDE can
be considered in the strong (probabilistic) sense, i.e. when the probability
space and the Brownian motion are fixed at the beginning.
As far as the multidimensional case is concerned, it seems that the first
paper was again of Bass and Chen, see [2]. Those authors have focused (2)
in the case of a time independent drift b which is a measure of Kato class.

Coming back to the one-dimensional case, the main idea of [8] was the so
called Zvonkin transform which allows to transform the candidate solution
process X into a solution of a stochastic differential equation with continu-
ous non-degenerate coefficients without drift. Recently [11] has considered
other type of transforms to study similar equations. Indeed the transfor-
mation introduced by Zvonkin in [20], when the drift is a function, is also
stated in the multidimensional case. In a series of papers the first named
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author and coauthors (see for instance [6]), have efficiently made use of a
(multidimensional) Zvonkin type transform for the study of an SDE with
measurable non necessarily bounded drift, which however is still a function.
Zvonkin transform consisted there to transform a solution X to (2) (which
makes sense being a classical SDE) through a solution ϕ : [0, T ]×R

d → R
d of

a PDE which is close to the associated Kolmogorov equation (3) with some
suitable final condition. The resulting process Yt = ϕ(t,Xt) is a solution of
an SDE for which one can show pathwise existence and uniqueness.

Here we have imported that method for the study of our time-dependent
multidimensional SDE with distributional drift.

The paper is organized as follows. In Section 2 we adapt the techniques of
[10], based on paraproducts for investigating existence and uniqueness for a
well chosen PDE of the same type as (3), see (6). In Section 3 we introduce
the notion of virtual solution of (2). The construction will be based observing
that Yt = ϕ(t,Xt) where ϕ(t, x) = x+u(t, x), (t, x) ∈ [0, T ]×R

d and u being
the solution of (6). Section 3.3 shows that the virtual solution is indeed the
limit of classical solutions of regularized stochastic differential equations.

2. The Kolmogorov PDE

2.1. Setting and preliminaries. Let b be a vector field on [0, T ]×R
d, d ≥

1, which is a distribution in space and weakly bounded in time, that is
b ∈ L∞([0, T ];S ′(Rd;Rd)). Let λ > 0. We consider the following parabolic
PDE in [0, T ] × R

d

{
∂tu+ Lbu− (λ+ 1)u = −b, on [0, T ] × R

d

u(T ) = 0 on R
d,

(6)

where Lbu = 1
2∆u + b · ∇u has to be interpreted componentwise, that is

(Lbu)i =
1
2∆ui + b · ∇ui for i = 1, . . . , d. A continuous function u : [0, T ] ×

R
d → R

d will also be considered without any comment as u : [0, T ] →
C(Rd;Rd). In particular we will write u(t, x) = u(t)(x) for all (t, x) ∈
[0, T ]× R

d.

Remark 1. All the results we are going to prove remain valid for the equa-
tion {

∂tu+ Lb1u− (λ+ 1) u = −b2, on [0, T ]× R
d

u (T ) = 0 on R
d,

where b1, b2 both satisfy the same assumptions as b. We restrict the discus-
sion to the case b1 = b2 = b to avoid notational confusion in the subsequent
sections.

Clearly we have to specify the meaning of the product b · ∇ui as b is a
distribution. In particular, we are going to make use in an essential way
the notion of paraproduct, see [15]. We recall below a few elements of this
theory; in particular, when we say that the paraproduct exists in S ′ we mean
that the limit (14) exists in S ′. For shortness we denote by S ′ and S the

spaces S
′

(Rd;Rd) and S(Rd;Rd) respectively. Similarly for the Lp-spaces,
1 ≤ p ≤ ∞.

Definition 2. Let b, u : [0, T ] → S
′

be such that
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(i) the paraproduct b (t) · ∇u (t) exists in S
′

for a.e. t ∈ [0, T ] ,
(ii) there are r ∈ R, q ≥ 1 such that b, u, b · ∇u ∈ L1

(
[0, T ];Hr

q

)
.

We say that u is a mild solution of equation (6) in S
′

if, for every ψ ∈ S
and t ∈ [0, T ], we have

〈u (t) , ψ〉 =

∫ T

t
〈b (r) · ∇u (r) , P (r − t)ψ〉 dr(7)

+

∫ T

t
〈b (r)− λu (r) , P (r − t)ψ〉 dr.

Here (P (t))t≥0 denotes the heat semigroup on S generated by 1
2∆ − I,

defined for each ψ ∈ S as

(P (t)ψ) (x) =

∫

Rd

pt (x− y)ψ (y) dy

where pt(x) is the heat kernel pt(x) = e−t 1
(2tπ)d/2

exp
(
−

|x|2d
2t

)
. The semi-

group P (t) extends to S ′, where it is defined as

(PS′ (t)h) (ψ) = 〈

∫

Rd

pt(· − y)ψ(y)dy, h〉,

for every h ∈ S ′, ψ ∈ S.
The fractional Sobolev spaces Hr

q are the so called Bessel potential spaces
and will be defined in the sequel.

Remark 3. If b, u, b·∇u a priori belong to spaces L1
(
0, T ;Hri

qi

)
for different

ri ∈ R, qi ≥ 1, i = 1, 2, 3, then (see e.g. (20)) there exist common r ∈ R,
q ≥ 1 such that b, u, b · ∇u ∈ L1

(
[0, T ];Hr

q

)
.

The semigroup (PS′ (t))t≥0 maps any Lp
(
R
d
)
into itself, for any given

p ∈ (1,∞); the restriction (Pp (t))t≥0 to Lp
(
R
d
)
is a bounded analytic

semigroup, with generator −Ap, where Ap = I − 1
2∆, see [3, Thm. 1.4.1,

1.4.2]. The fractional powers of Ap of order α ∈ R are then well defined,

see [13]. The fractional Sobolev spaces Hs
p(R

d) of order s ∈ R are then

Hs
p(R

d) := A
s/2
p (Lp(Rd)) for all s ∈ R and they are Banach spaces when

endowed with the norm ‖ · ‖Hs
p
= ‖A

s/2
p (·)‖Lp . The domain of A

s/2
p is then

the Sobolev space of order s, that is D(A
s/2
p ) = Hs

p(R
d), for all s ∈ R. Fur-

thermore, the negative powers A
−s/2
p act as isomorphism from Hγ

p (Rd) onto

Hγ+s
p (Rd) for γ ∈ R.
We have defined so far function spaces and operators in the case of scalar

valued functions. The extension to vector valued functions must be under-
stood componentwise. For instance, the space Hs

p

(
R
d,Rd

)
is the set of all

vector fields u : Rd → R
d such that ui ∈ Hs

p

(
R
d
)
for each component ui of

u; the vector field Pp (t)u : Rd → R
d has components Pp (t)u

i, and so on.
Since we use vector fields more often than scalar functions, we shorten some
of the notations: we shall write Hs

p for Hs
p

(
R
d,Rd

)
. Finally, we denote by

H−β
p,q the space H−β

p ∩H−β
q with the usual norm.

For the following, see [19, Section 2.7.1]. Let us consider the spaces
C0,0(Rd;Rd) and C1,0(Rd;Rd) defined as the closure of S with respect to
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Figure 1. The set K(β, q).

the norm ‖f‖C0,0 = ‖f‖L∞ and ‖f‖C1,0 = ‖f‖L∞ + ‖∇f‖L∞ , respectively.
For α > 0 we will consider the Banach spaces

C0,α = {f ∈ C0,0(Rd;Rd) : ‖f‖C0,α <∞}

C1,α = {f ∈ C1,0(Rd;Rd) : ‖f‖C1,α <∞},

endowed with the norms

‖f‖C0,α := ‖f‖L∞ + sup
x 6=y∈Rd

|f(x)− f(y)|

|x− y|α

‖f‖C1,α := ‖f‖L∞ + ‖∇f‖L∞ + sup
x 6=y∈Rd

|∇f(x)−∇f(y)|

|x− y|α
,

respectively.
Form now on, we are going to make the following standing assumption

on the drift b and on the possible choice of parameters:

Assumption 4. Let β ∈
(
0, 12
)
, q ∈

(
d

1−β ,
d
β

)
and set q̃ := d

1−β . The drift

b will always be of the type

b ∈ L∞
(
[0, T ];H−β

q̃,q

)
.

Remark 5. The fact that b ∈ L∞
(
[0, T ];H−β

q̃,q

)
implies, for each p ∈ [q̃, q],

that b ∈ L∞
(
[0, T ];H−β

p

)
.

Moreover we consider the set

(8) K(β, q) :=

{
κ = (δ, p) : β < δ < 1− β,

d

δ
< p < q

}

which is drawn in Figure 1. Note that K(β, q) is nonempty since β < 1
2 and

d
1−β < q < d

β .

Definition 6. Let (δ, p) ∈ K(β, q). We say that u ∈ C
(
[0, T ] ;H1+δ

p

)
is a

mild solution of equation (6) in H1+δ
p if

(9) u (t) =

∫ T

t
Pp (r − t) b (r) ·∇u (r) dr+

∫ T

t
Pp (r − t) (b (r)− λu (r)) dr,

for every t ∈ [0, T ].
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Remark 7. Notice that b · ∇u ∈ L∞
(
[0, T ] ;H−β

p

)
by Lemma 10. By Re-

mark 5, b ∈ L∞
(
[0, T ] ;H−β

p

)
. Moreover λu ∈ L∞

(
[0, T ] ;H−β

p

)
by the

embedding H1+δ
p ⊂ H−β

p . Therefore the integrals in Definition 6 are mean-

ingful in H−β
p .

Note that setting v(t, x) := u(T − t, x), the PDE (6) can be equivalently
rewritten as

{
∂tv = Lbv − (λ+ 1)v + b, on [0, T ]× R

d

v(0) = 0 on R
d .

(10)

The notion of mild solutions in S ′ and in H1+δ
p are analogous to Definition

2 and Definition 6, respectively. In particular the mild solution in H1+δ
p is

given by

(11) v(t) =

∫ t

0
Pp(t− r) (b(r) · ∇v(r)) dr +

∫ t

0
Pp(t− r)(b(r)− λv(r))dr.

Clearly the regularity properties of u and v are the same.
For a Banach space X we denote the usual norm in L∞(0, T ;X) by ‖f‖∞,X

for f ∈ L∞(0, T ;X). Moreover, on the Banach space C0([0, T ];X) with
norm ‖f‖0,X := sup0≤t≤T ‖f(t)‖X for f ∈ C0([0, T ];X), we introduce a

family of equivalent norms {‖·‖
(ρ)
0,X , ρ ≥ 1} as follows:

‖f‖
(ρ)
0,X := sup

0≤t≤T
e−ρt‖f(t)‖X .

Next we state a mapping property of the heat semigroup Pp(t) on L
p(Rd):

it maps distributions of fractional order −β into functions of fractional order
1 + δ and the price one has to pay is a singularity in time. The proof is
analogous to the one in [10, Prop. 3.2] and is based on the analyticity of the
semigroup.

Lemma 8. Let 0 < β < δ, δ + β < 1 and w ∈ H−β
p (Rd). Then Pp(t)w ∈

H1+δ
p (Rd) for any t > 0 and moreover there exists a positive constant c such

that

(12) ‖Pp(t)w‖H1+δ
p (Rd) ≤ c ‖w‖

H−β
p (Rd)

t−
1+δ+β

2 .

Proposition 9. Let f ∈ L∞
(
[0, T ];H−β

p

)
and g : [0, T ] → H−β

p for β ∈ R

defined as

g (t) =

∫ t

0
Pp(t− s)f (s) ds.

Then g ∈ Cγ
(
[0, T ] ;H2−2ǫ−β

p

)
for every ǫ > 0 and γ ∈ (0, ǫ).

Proof. First observe that for f ∈ D(Aγ
p) then there exists Cγ > 0 such that

(13) ‖Pp(t)f − f‖Lp ≤ Cγt
γ‖f‖H2γ

p

for all t ∈ [0, T ] (see [13, Thm 6.13, (d)]).
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Let 0 ≤ r < t ≤ T . We have

g(t) − g(r) =

∫ t

0
Pp(t− s)f (s) ds−

∫ r

0
Pp(r − s)f (s) ds

=

∫ t

r
Pp(t− s)f (s) ds+

∫ r

0
(Pp(t− s)− Pp(r − s)) f (s) ds

=

∫ t

r
Pp(t− s)f (s) ds

+

∫ r

0
Aγ

pPp(r − s)
(
A−γ

p Pp(t− r)f(s)−A−γ
p f (s)

)
ds,

so that

‖g(t)− g(r)‖
H2−2ǫ−β

p

≤

∫ t

r
‖Pp(t− s)f(s)‖

H2−2ǫ−β
p

ds

+

∫ r

0
‖Aγ

pPp(r − s)
(
A−γ

p Pp(t− r)f(s)−A−γ
p f (s)

)
‖
H2−2ǫ−β

p
ds

≤

∫ t

r
‖A1−ǫ−β/2

p Pp(t− s)f(s)‖Lpds

+

∫ r

0
‖A1−ǫ−β/2+γ

p Pp(r − s)
(
A−γ

p Pp(t− r)f(s)−A−γ
p f(s)

)
‖Lpds

= : (S1) + (S2).

Let us consider (S1) first. We have

(S1) ≤

∫ t

r
‖A1−ǫ

p Pp(t− s)‖Lp→Lp‖A−β/2f(s)‖Lpds

≤

∫ t

r
Cǫ(t− s)−1+ǫ‖f(s)‖

H−β
p

ds

≤Cǫ(t− s)ǫ‖f‖
∞,H−β

p
,

having used [13, Thm 6.13, (c)]. Moreover, the term (S2), together with
(13), gives

(S2) =

∫ r

0

∥∥∥A1−ǫ+γ
p Pp(r − s)

(
Pp(t− r)A−γ−β/2

p f(s)−A−γ−β/2
p f(s)

)∥∥∥
Lp

ds

≤ C

∫ r

0
(r − s)−1+ǫ−γ

∥∥∥Pp(t− r)A−γ−β/2
p f(s)−A−γ−β/2

p f(s)
∥∥∥
Lp

ds

≤ C

∫ r

0
(r − s)−1+ǫ−γ(t− r)γ‖A−γ−β/2

p f(s)‖H2γ
p
ds

≤ C(t− r)γ
∫ r

0
(r − s)−1+ǫ−γ‖f(s)‖

H−β
p

ds

≤ C(t− r)γ
∫ r

0
(r − s)−1+ǫ−γ‖f‖

∞,H−β
p

ds

≤ C(t− r)γrǫ−γ‖f‖
∞,H−β

p
.
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Therefore we have g ∈ Cγ
(
[0, T ] ;H2−2ǫ−β

p

)
for each 0 < γ < ǫ and the

proof is complete. �

We now recall a definition of a paraproduct between a function and a
distribution (see e. g. [15]) and some useful properties.
Suppose we are given f ∈ S ′(Rd). Choose a function ψ ∈ S(Rd) such that
0 ≤ ψ(x) ≤ 1 for every x ∈ R

d, ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3
2 .

Then consider the following approximation Sjf of f for each j ∈ N

Sjf(x) :=

(
ψ

(
ξ

2j

)
f̂

)∨

(x),

that is in fact the convolution of f against the smoothing function ψ. This
approximation is used to define the product fg of two distributions as fol-
lows:

(14) fg := lim
j→∞

SjfSjg

if the limit exists in S ′(Rd). The convergence in the case we are interested in
is part of the assertion below (see [9] appendix C.4, [15] Theorem 4.4.3/1).

Lemma 10. Let 1 < p, q < ∞ and 0 < β < δ and assume that q > p ∨ d
δ .

Then for every f ∈ Hδ
p(R

d) and g ∈ H−β
q (Rd) we have fg ∈ H−β

p (Rd) and
there exists a positive constant c such that

(15) ‖fg‖
H−β

p (Rd)
≤ c‖f‖Hδ

p(R
d) · ‖g‖H−β

q (Rd)
.

As a consequence of this lemma, for 0 < β < δ and q > p ∨ d
δ and if

b ∈ L∞([0, T ];H−β
q ) and u ∈ C0([0, T ];H1+δ

p ), then for all t ∈ [0, T ] we have

b(t) · ∇u(t) ∈ H−β
p and

‖b(t) · ∇u(t)‖
H−β

p
≤ c‖b‖

∞,H−β
q

‖u(t)‖Hδ
p

having used the continuity of ∇ from H1+δ
p to Hδ

p . Moreover any choice
(δ, p) ∈ K(β, q) satisfies the hypothesis in Lemma 10.

The following lemma gives integral bounds which will be used later. The
proof makes use of the Gamma and the Beta functions together with some
basic integral estimates. We recall the definition of the Gamma function:

Γ(a) =

∫ ∞

0
e−tta−1dt,

and the integral converges for any a ∈ C such that Re(a) > 0.

Lemma 11. If 0 ≤ s < t ≤ T < ∞ and 0 ≤ θ < 1 then for any ρ ≥ 1 it
holds

(16)

∫ t

s
e−ρrr−θdr ≤ Γ(1− θ)ρθ−1.

Moreover if γ > 0 is such that θ + γ < 1 then for any ρ ≥ 1 there exists a
positive constant C such that

(17)

∫ t

0
e−ρ(t−r)(t− r)−θr−γdr ≤ Cρθ−1+γ .
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Lemma 12. Let 1 < p, q < ∞ and 0 < β < δ with q > p ∨ d
δ and let

β + δ < 1. Then for b ∈ L∞([0, T ];H−β
p,q ) and v ∈ C0([0, T ];H1+δ

p ) we have

(i)
∫ ·
0 Pp(· − r)b(r)dr ∈ C0([0, T ];H1+δ

p );

(ii)
∫ ·
0 Pp(· − r) (b(r) · ∇v(r)) dr ∈ C0([0, T ];H1+δ

p ) with

∥∥∥∥
∫ ·

0
Pp(· − r) (b(r) · ∇v(r)) dr

∥∥∥∥
(ρ)

0,H1+δ
p

≤ c(ρ)‖v‖
(ρ)

0,H1+δ
p

;

(iii) λ
∫ ·
0 Pp(· − r)v(r)dr ∈ C0([0, T ];H1+δ

p ) with

∥∥∥∥λ
∫ ·

0
Pp(· − r)v(r)dr

∥∥∥∥
(ρ)

0,H1+δ
p

≤ c(ρ)‖v‖
(ρ)

0,H1+δ
p

,

where the constant c(ρ) is independent of v and tends to zero as ρ tends to
infinity.

Observe that (δ, p) ∈ K(β, q) satisfies the hypothesis in Lemma 12.

Proof. (i) By Lemma 8 we have that Pp(t)b(t) ∈ H1+δ
p and

∥∥∥∥
∫ ·

0
Pp(· − r)b(r)dr

∥∥∥∥
(ρ)

0,H1+δ
p

= sup
0≤t≤T

e−ρt

∥∥∥∥
∫ t

0
Pp(t− r)b(r)dr

∥∥∥∥
H1+δ

p

≤ sup
0≤t≤T

∫ t

0
e−ρt(t− r)−

1+δ+β
2 ‖b(r)‖

H−β
p

dr

≤ ‖b‖
∞,H−β

p
sup

0≤t≤T

∫ t

0
e−ρt(t− r)−

1+δ+β
2 dr

≤ c‖b‖
∞,H−β

p
ρ

δ+β−1

2 <∞,

having used Lemma 11 for the last inequality.
(ii) Similarly to part (i) we have

∥∥∥∥
∫ ·

0
Pp(· − r) (b(r) · ∇v(r)) dr

∥∥∥∥
(ρ)

0,H1+δ
p

= sup
0≤t≤T

e−ρt

∥∥∥∥
∫ t

0
Pp(t− r) (b(r) · ∇v(r)) dr

∥∥∥∥
H1+δ

p

≤ c sup
0≤t≤T

∫ t

0
e−ρt(t− r)−

1+δ+β
2 ‖v(r)‖H1+δ

p
‖b(r)‖

H−β
q

dr

≤ c‖b‖
∞,H−β

q
sup

0≤t≤T

∫ t

0
e−ρr‖v(r)‖H1+δ

p
e−ρ(t−r)(t− r)−

1+δ+β
2 dr

≤ c‖v‖
(ρ)

0,H1+δ
p

‖b‖
∞,H−β

q
ρ

δ+β−1

2 <∞.
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(iii) Similarly to parts (i) and (ii) we get

∥∥∥∥
∫ ·

0
Pp(· − r)v(r)dr

∥∥∥∥
(ρ)

0,H1+δ
p

= sup
0≤t≤T

e−ρt

∥∥∥∥
∫ t

0
Pp(t− r)v(r)dr

∥∥∥∥
H1+δ

p

≤ c sup
0≤t≤T

∫ t

0
e−ρt‖v(r)‖H1+δ

p
dr

≤ c‖v‖
(ρ)

0,H1+δ
p

ρ−1 <∞. �

2.2. Existence. Let us now introduce the integral operator It(v) as the
right hand side of (11), that is, given any v ∈ C0([0, T ];H1+δ

p ), we define for
all t ∈ [0, T ]

(18) It(v) :=

∫ t

0
Pp(t− r) (b(r) · ∇v(r)) dr +

∫ t

0
Pp(t− r)(b(r)− λv(r))dr.

By Lemma 12, the integral operator is well defined and it is a linear operator
on C0([0, T ];H1+δ

p ).
Let us remark that Definition 6 is in fact meaningful under the assump-

tions of Lemma 12, which are more general than the one of Definition 6 (see
Remark 14).

Theorem 13. Under the condition of Lemma 12, there exists a unique mild
solution v to the PDE (11) in H1+δ

p . Moreover for any 0 < γ < 1 − δ − β

the solution v is in Cγ([0, T ];H1+δ
p ).

Proof. By Lemma 12 the integral operator is a contraction for some ρ large
enough, thus by the Banach fixed point theorem there exists a unique mild
solution v ∈ C0([0, T ];H1+δ

p ) to the PDE (11). For this solution we obtain
Hölder continuity in time of order γ for each 0 < γ < 1− δ−β. In fact each
term on the right-hand side of (18) is γ-Hölder continuous by Proposition 9

as b, b · ∇v, v ∈ L∞([0, T ];H−β
p ). �

Remark 14. By Theorem 13 and by the definition of K(β, q), for each
(δ, p) ∈ K(β, q) there exists a unique mild solution in H1+δ

p . However notice
that the assumptions of Theorem 13 are slightly more general than those of
Assumption 4 and of the set K(β, q). Indeed, the following conditions are
not required for the existence of the solution to the PDE (Lemma 12 and
Theorem 13):

• the condition d
δ < p appearing in the definition of the region K(β, q)

is only needed in order to embed the fractional Sobolev space H1+δ
p

into C1,α (Theorem 15).
• the condition q < d

β appearing in Assumption 4 is only needed in

Theorem 18 in order to show uniqueness for the solution u, indepen-
dently of the choice of (δ, p) ∈ K(β, q).

The following embedding theorem describes how to compare fractional
Sobolev spaces with different orders and provides a generalisation of Mor-
rey inequality to fractional Sobolev spaces. For the proof we refer to [19,
Thm. 2.8.1, Remark 2].
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Theorem 15. Fractional Morrey inequality. Let 0 < δ < 1 and d/δ <
p < ∞. If f ∈ H1+δ

p (Rd) then there exists a unique version of f (which we

denote again f) such that f is differentiable. Moreover f ∈ C1,α(Rd) with
α = δ − d/p and

(19) ‖f‖C1,α ≤ c‖f‖H1+δ
p

, ‖∇f‖C0,α ≤ c‖∇f‖Hδ
p
,

where c = c(δ, p, d) is a universal constant.
Embedding property. For 1 < p ≤ q <∞ and s− d

p ≥ t− d
q we have

(20) Hs
p(R

d) ⊂ Ht
q(R

d).

Remark 16. According to the fractional Morrey inequality, for u(t) ∈ H1+δ
p

then ∇u(t) ∈ C0,α for α = δ − d/p if p > d/δ. In this case the condition on
the paraproduct q > max{p, d/δ} reduces to q > p.

2.3. Uniqueness. In this section we show that the solution u is unique,
independently of the choice of (δ, p) ∈ K(β, q).

Lemma 17. Let u be a mild solution in S
′

such that u ∈ C
(
[0, T ] ;H1+δ

p

)

for some (δ, p) ∈ K(β, q). Then u is a solution in H1+δ
p .

Proof. As explained in Remark 7, b · ∇u, b, λu ∈ L∞
(
[0, T ] ;H−β

p

)
. Given

ψ ∈ S and h ∈ H−β
p , we have

(21) 〈h, P (s)ψ〉 = 〈Pp (s)h, ψ〉

for all s ≥ 0. Indeed, Pp (s)h = P (s)h when h ∈ S and 〈P (s)h, ψ〉 =
〈h, P (s)ψ〉 when h, ψ ∈ S, hence (21) holds for all h, ψ ∈ S, therefore for

all h ∈ H−β
p by density. Hence, from identity (7) we get

〈u (t) , ψ〉 =

∫ T

t
〈Pp (r − t) b (r) · ∇u (r) , ψ〉 dr

+

∫ T

t
〈Pp (r − t) (b (r)− λu (r)) , ψ〉 dr.

This implies (9). �

Theorem 18. The solution u of (6) is unique, in the sense that for each
κ1, κ2 ∈ K(β, q) there exists κ0 = (δ0, p0) ∈ K(β, q) such that uκ1 , uκ2 ∈
C0([0, T ];H1+δ0

p0 ) and the two solutions coincide in this bigger space.

Proof. In order to find a suitable κ0 we proceed in 2 steps.
Step 1: Assume first that p1 = p2 =: p. Then Hδi

pi ⊂ Hδ1∧δ2
p . The

intuition in Figure 1 is that we move downwards along the vertical line
passing from 1

p .

Step 2: If, on the contrary, 1
p1

< 1
p2

(the opposite case is analogous)

we may reduce ourselves to Step 1 in the following way: Hδ2
p2 ⊂ Hx

p1 for

x = δ2 −
d
p2

+ d
p1

(using Theorem 15, equation (20)). Now Hx
p1 and Hδ1

p1 can

be compared as in Step 1. The intuition in Figure 1 is that we move the
rightmost point to the left along the line with slope d.

By Theorem 13 we have a unique mild solution uκi in C0([0, T ];H1+δi
pi )

for each set of parameters κi = (δi, pi) ∈ K(β, q), i = 0, 1, 2. By Steps 1 and
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2, the space with i = 0 includes the other two, thus uκi ∈ C0([0, T ];H1+δ0
p0 )

for each i = 0, 1, 2 and moreover uκi are mild solutions in S ′. Lemma 17
concludes the proof. �

2.4. Further regularity properties. We derive now stronger regularity
properties for the mild solution v of (11). Since v(t, x) = u(T − t, x) the
same properties hold for the mild solution u of (9).

In the following lemma we show that the mild solution v is differentiable
in space and its gradient can be bounded by 1

2 for some λ big enough. For
this reason here we stress the dependence of the solution v on the parameter
λ by writing vλ.

Lemma 19. Let (δ, p) ∈ K(β, q) and let vλ be the mild solution to (11) in
H1+δ

p . Fix ρ such that the integral operator is a contraction and let λ > ρ.

Then vλ(t) ∈ C1,α with α = δ − d/p for each fixed t and

sup
(t,x)∈[0,T ]×Rd

|∇vλ(t, x)| → 0, as λ→ ∞

where the choice of λ depends only on δ, β, ‖b‖
∞,H−β

p
and ‖b‖

∞,H−β
q

.

Proof. Lemma 8 ensures that Ptw ∈ H1+δ
p for w ∈ H−β

p and so ∇Ptw ∈

Hδ
p . By the fractional Morrey inequality (Theorem 15) we have that Ptw ∈

C1,α(Rd) and for each t > 0

(22) sup
x∈Rd

| (∇Ptw) (x)| ≤ c‖∇Ptw‖Hδ
p
≤ c‖Ptw‖H1+δ

p
≤ ct−

1+δ+β
2 ‖w‖

H−β
p
,

having used (12) in the latter inequality. Notice that the constant c depends
only on δ, p and d.

If we assume for a moment that the mild solution vλ of (11) is also a
solution of

vλ =

∫ t

0
e−λ(t−r)Pp(t− r) (b(r) · ∇vλ(r)) dr(23)

+

∫ t

0
e−λ(t−r)Pp(t− r)b(r)dr,

then differentiating in x we get

∇vλ(t, ·) =

∫ t

0
e−λ(t−r)∇Pp(t− r) (b(r) · ∇vλ(r)) dr

+

∫ t

0
e−λ(t−r)∇Pp(t− r)b(r)dr.
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Take the Hδ
p -norm and use (22) with Lemma 10 to obtain

‖∇vλ(t)‖Hδ
p
≤c

∫ t

0
e−λ(t−r)(t− r)−

1+δ+β
2 ‖b(r)‖

H−β
q

‖∇vλ(r)‖Hδ
p
dr

+ c

∫ t

0
e−λ(t−r)(t− r)−

1+δ+β
2 ‖b(r)‖

H−β
p

dr

≤c′‖b‖
∞,H−β

q
sup

0<r<t
‖∇vλ(r)‖Hδ

p

∫ t

0
e−λ(t−r)(t− r)−

1+δ+β
2 dr

+ c‖b‖
∞,H−β

p

∫ t

0
e−λ(t−r)(t− r)−

1+δ+β
2 dr,

so that by Lemma 11 we get

sup
0≤t≤T

‖∇vλ(t)‖Hδ
p
≤c′‖b‖

∞,H−β
q

sup
0≤t≤T

‖∇vλ(t)‖Hδ
p
λ

δ+β−1

2

+ c‖b‖
∞,H−β

p
λ

δ+β−1

2 .

Choosing λ > λ∗ :=

(
1

c′‖b‖
∞,H

−β
q

) 2

δ+β−1

yields

sup
0≤t≤T

‖∇vλ(t)‖Hδ
p
≤

c‖b‖
∞,H−β

p
λ

δ+β−1

2

1− c′‖b‖
∞,H−β

q
λ

δ+β−1

2

,

which tends to zero as λ → ∞. The fractional Morrey inequality (19)
together with the latter bound gives

sup
0≤t≤T

(
sup
x∈Rd

|∇vλ(t, x)|

)
≤ sup

0<t<T
c‖∇v(t)‖Hδ

p

≤
c‖b‖

∞,H−β
p
λ

δ+β−1

2

1− c′‖b‖
∞,H−β

q
λ

δ+β−1

2

(24)

which tends to zero as λ→ ∞.
It is left to prove that a solution of (11) in H1+δ

p it is also a solution of
(23). There are several proofs of this fact, let us see one of them. Computing
each term against a test function ψ ∈ S we get the mild formulation

〈v (t) , ψ〉 =

∫ t

0
〈b (r) · ∇v (r) , P (t− r)ψ〉 dr

+

∫ t

0
〈b (r)− λv (r) , P (t− r)ψ〉 dr

used in the definition of mild solution in S ′. Let us choose in particular
ψ = ψk where ψk (x) = eix·k, for a generic k ∈ R

d, and let us write vk (t) =〈
v (t) , eix·k

〉
(the fact that ψk is complex-valued makes no difference, it is

sufficient to treat separately the real and imaginary part). Using the explicit
formula for P (t), it is not difficult to check that

(25) P (t)ψk = e−(|k|
2+1)tψk
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and therefore

vk (t) =

∫ t

0
e−(|k|

2+1)(t−r)gk (r) dr − λ

∫ t

0
e−(|k|

2+1)(t−r)vk (r) dr

where gk (r) = 〈b (r) · ∇v (r) + b (r) , ψk〉. At the level of this scalar equation
it is an easy manipulation to differentiate and rewrite it as

vk (t) =

∫ t

0
e−(|k|

2+1+λ)(t−r)gk (r) dr.

This identity, using again (25), can be rewritten as

〈v (t) , ψk〉 =

∫ t

0
e−λ(t−r) 〈b (r) · ∇v (r) + b (r) , P (t− r)ψk〉 dr

and then we deduce (23) as we did in the proof of Lemma 17. �

Lemma 20. Let v = vλ for λ as in Lemma 19. Then v and ∇v are jointly
continuous in (t, x).

Proof. It is sufficient to prove the claim for∇v. Let (t, x), (s, y) ∈ [0, T ]×R
d.

We have

|∇v(t, x) −∇v(s, y)| ≤|∇v(t, x)−∇v(s, x)|+ |∇v(s, x)−∇v(s, y)|

≤ sup
x∈Rd

|∇v(t, x)−∇v(s, x)|+ |∇v(s, x)−∇v(s, y)|

≤‖v(t, ·) − v(s, ·)‖C1,α + ‖v(s, ·)‖C1,α |x− y|α

≤‖v(t, ·) − v(s, ·)‖H1+δ
p

+ ‖v(s, ·)‖H1+δ
p

|x− y|α

≤‖v(t, ·) − v(s, ·)‖H1+δ
p

+ ‖v‖Cγ ([0,T ];H1+δ
p )|x− y|α

≤‖v‖Cγ ([0,T ];H1+δ
p )(|t− s|γ + |x− y|α)

having used the embedding property (19) with α = δ − d/p and the Hölder
property of v from Lemma 19. �

Lemma 21. For λ large enough the function x 7→ ϕ(t, x) defined as ϕ(t, x) =
x + u(t, x) is invertible for each fixed t ∈ [0, T ] and the inverse (t, y) 7→
ϕ−1(t, y) is jointly continuous. Moreover ϕ−1 is Lipschitz with Lipschitz
constant k = 2.

We will sometimes use the shorthand notation ϕt for ϕ(t, ·) and analo-
gously for its inverse.

Proof. Step 1 (invertibility of ϕt). Let t be fixed and x1, x2 ∈ R. Recall
that by Lemma 19 for λ large enough we have

(26) sup
(t,x)∈[0,T ]×Rd

|∇u(t, x)| ≤
1

2

so that

|u(t, x2)− u(t, x1)| ≤

∫ 1

0
|∇u(t, ax2 + (1− a)x1)||x1 − x2|da ≤

1

2
|x1 − x2|.

Then the map x 7→ y−u(t, x) is a contraction for each y ∈ R
d and therefore

for each y ∈ R
d there exists a unique x ∈ R

d such that x = y−u(t, x) that is
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y = ϕ(t, x). Thus ϕ(t, ·) is invertible for each t ∈ [0, T ] with inverse denoted
by ϕ−1

t .
Step 2 (Lipschitz character of ϕ−1

t ). To show that ϕ−1
t is Lipschitz with

constant k we can equivalently show that for each x1, x2 ∈ R
d it holds

|ϕt(x1)− ϕt(x2)| ≥
1
k |x1 − x2|. We have

|ϕt(x1)− ϕt(x2)| ≥ inf
x∈Rd

|∇ϕ(t, x)||x1 − x2| =
1

2
|x1 − x2|

because of (26) together with ∇ϕ = I +∇u.
Step 3 (continuity of s 7→ ϕ−1(s, y)). Let us fix y ∈ R

d and take t1, t2 ∈
[0, T ]. Denote by x1 = ϕ−1(t1, y) and x2 = ϕ−1(t2, y) so that y = ϕ(t1, x1) =
x1 + u(t1, x1) and y = ϕ(t2, x2) = x2 + u(t2, x2). We have

|ϕ−1(t1, y)− ϕ−1(t2, y)| = |x1 − x2|

= |u(t1, x1)− u(t2, x2)|

≤ |u(t1, x1)− u(t1, x2)|+ |u(t1, x2)− u(t2, x2)|(27)

≤
1

2
|x1 − x2|+ |u(t1, x2)− u(t2, x2)|.

Let us denote by w(x) := u(t1, x) − u(t2, x). Clearly w ∈ H1+δ
p for each

t1, t2 and by Theorem 15 (Morrey inequality) we have that w is continuous,
bounded and

|u(t1, x2)− u(t2, x2)| ≤ sup
x∈Rd

|w(x)| ≤ c‖w‖H1+δ
p

.

By Theorem 13 u ∈ Cγ([0, T ];H1+δ
p ) and so ‖w‖H1+δ

p
≤ c|t1 − t2|

γ . Using

this result together with (27) we obtain

1

2
|x1 − x2| =

1

2
|ϕ−1(t1, y)− ϕ−1(t2, y)| ≤ c|t1 − t2|

γ ,

which shows the claim.
Continuity of (t, y) 7→ ϕ−1(t, y) now follows. �

Lemma 22. If bn → b in L∞
(
[0, T ];H−β

q̃,q

)
then vn → v in C0([0, T ];H1+δ

p ).

Proof. Let λ > 0 be fixed. We consider the integral equation (11) on H1+δ
p

so the semigroup will be denoted by Pp. Observe that by Lemma 8 we have

‖Pp(t− r) (bn(r) · ∇vn(r)− b(r) · ∇v(r)) ‖H1+δ
p

≤c(t− r)−
1+δ+β

2 ‖bn(r) · ∇vn(r)− b(r) · ∇v(r)‖
H−β

p

≤c(t− r)−
1+δ+β

2

(
‖bn(r)‖H−β

q
‖vn(r)− v(r)‖H1+δ

p

+ ‖bn(r)− b(r)‖
H−β

q
‖v(r)‖H1+δ

p

)

≤c(t− r)−
1+δ+β

2

(
‖bn‖∞,H−β

q
‖vn(r)− v(r)‖H1+δ

p

+ ‖bn − b‖
∞,H−β

q
‖v(r)‖H1+δ

p

)
,
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where the second to last line is bounded through Lemma 10. Thus, by (11)

‖v − vn‖
(ρ)

0,H1+δ
p

= sup
0≤t≤T

e−ρt‖v(t) − vn(t)‖H1+δ
p

≤ sup
0≤t≤T

e−ρt

(∫ t

0
‖Pp(t− r) (bn(r) · ∇vn(r)− b(r) · ∇v(r))‖H1+δ

p
dr

+

∫ t

0

∥∥Pp(t− r)
(
bn(r)− b(r) + λ(v(r)− vn(r))

)∥∥
H1+δ

p
dr

)

≤ sup
0≤t≤T

e−ρt

(
c‖bn‖∞,H−β

q

∫ t

0
(t− r)−

1+δ+β
2 ‖vn(r)− v(r)‖H1+δ

p
dr

+ c‖bn − b‖
∞,H−β

q

∫ t

0
(t− r)−

1+δ+β
2 ‖v(r)‖H1+δ

p
dr

+ c‖bn − b‖
∞,H−β

q

∫ t

0
(t− r)−

1+δ+β
2 dr + cλ

∫ t

0
‖v(r)− vn(r)‖H1+δ

p
dr

)

≤c‖bn‖∞,H−β
q

sup
0≤t≤T

∫ t

0
e−ρ(t−r)(t− r)−

1+δ+β
2 e−ρr‖vn(r)− v(r)‖H1+δ

p
dr

+ c‖bn − b‖
∞,H−β

q
·

· sup
0≤t≤T

∫ t

0
e−ρ(t−r)(t− r)−

1+δ+β
2 e−ρr

(
‖v(r)‖

H1+δ
p

+ 1
)
dr

+ cλ sup
0≤t≤T

∫ t

0
e−ρ(t−r)e−ρr‖vn(r)− v(r)‖H1+δ

p
dr,

where we have used again Lemma 8. Consequently

‖v − vn‖
(ρ)

0,H1+δ
p

≤c‖bn‖∞,H−β
q

‖vn − v‖
(ρ)

0,H1+δ
p

ρ
δ+β−1

2

+ c‖bn − b‖
∞,H−β

q

(
‖v‖

(ρ)

0,H1+δ
p

+ 1
)
ρ

δ+β−1

2

+ cλ‖vn − v‖
(ρ)

0,H1+δ
p

ρ−1.

The last bound is due to Lemma 11. Since ‖bn‖∞,H−β
q

→ ‖b‖
∞,H−β

q
then

there exists n0 ∈ N such that ‖bn‖∞,H−β
q

≤ 2‖b‖
∞,H−β

q
for all n ≥ n0.

Choose now ρ big enough in order to have

1− c
(
‖b‖

∞,H−β
q
ρ

δ+β−1

2 + λρ−1
)
> 0

and then we have for each n ≥ n0

‖v − vn‖
(ρ)

0,H1+δ
p

≤ c

(
‖v‖

(ρ)

0,H1+δ
p

+ 1
)
ρ

δ+β−1

2

1− c
(
‖b‖

∞,H−β
q
ρ

δ+β−1

2 + λρ−1
)‖bn − b‖

∞,H−β
q

which concludes the proof. �

3. The virtual solution

From now on, we fix λ and ρ big enough so that Theorem 13 and Lemma
21 hold true. As usual, the drift b is chosen according to Assumption 4.
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3.1. Heuristics and motivation. We consider the following d-dimensional
SDE

(28) dXt = b(t,Xt)dt+ dWt,

with initial conditionX0 = x where b is a distribution. Formally, the integral
form is

(29) Xt = x+

∫ t

0
b(s,Xs)ds+Wt,

and the integral appearing on the right hand side needs to be defined. We
aim to give a meaning to this equation, and in particular to the singular

term
∫ t
0 b(s,Xs)ds, by introducing a suitable notion of solution to the SDE

(28).
Let u(t, x) be a mild solution to the PDE (6) and Xt the process solution

to (28). Formally applying the Itô formula to u(t,Xt) we get

du(t,Xt) =

(
∂u

∂t
(t,Xt) +

1

2
∆u(t,Xt) +∇u(t,Xt)b(t,Xt)

)
dt

+∇u(t,Xt)dWt

=(λ+ 1)u(t,Xt)dt− b(t,Xt)dt+∇u(t,Xt)dWt.

The integral form of the last equation

u(t,Xt) = u(0, x)+(λ+1)

∫ t

0
u(s,Xs)ds−

∫ t

0
b(s,Xs)ds+

∫ t

0
∇u(s,Xs)dWs,

allows us to formally evaluate the singular term
∫ t
0 b(s,Xs)ds as

∫ t

0
b(s,Xs)ds = u(0, x)−u(t,Xt)+(λ+1)

∫ t

0
u(s,Xs)ds+

∫ t

0
∇u(s,Xs)dWs.

This motivates the following definition.

Definition 23. A process X := (Xt)t≥0 is called virtual solution to the
SDE (28) if it satisfies the integral equation
(30)

Xt = x+u(0, x)−u(t,Xt)+ (λ+1)

∫ t

0
u(s,Xs)ds+

∫ t

0
∇u(s,Xs)dWs+Wt,

for all t ∈ [0, T ], where u is the unique solution to the PDE (6).

3.2. Existence and uniqueness of the virtual solution. To find a
virtual solution X to (28), let us introduce the transformation ϕ(t, x) :=
x+ u(t, x) and set Yt = ϕ(t,Xt). From (30) we obtain

ϕ(t,Xt) = x+ u(0, x) + (λ+ 1)

∫ t

0
u(s,Xs)ds+

∫ t

0
∇u(s,Xs)dWs +Wt.

Since the function ϕ(t, ·) is invertible for all t, we can consider the SDE

(31) Yt = y0+(λ+1)

∫ t

0
u(s, ϕ−1(s, Ys))ds+

∫ t

0
∇u(s, ϕ−1(s, Ys))dWs+Wt,

where y0 = x+ u(0, x). If Y := (Yt)t≥0 is the solution of (31) then

Xt = ϕ−1(t, Yt)

will give us the virtual solution of the SDE with distributional drift (28).
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Proposition 24. There exists a unique weak solution Y to the SDE (31).

Proof. We know that u,∇u and ϕ−1 are jointly continuous in time and space
and u and ϕ−1 are Lipschitz continuous in space by Lemma 20 and Lemma
21. This implies that the drift of Y

µ(t, y) := (λ+ 1)u(t, ϕ−1(t, y))

is continuous and with linear growth and the diffusion coefficient

σ(t, y) := ∇u(t, ϕ−1(t, y)) + I = ∇ϕ(t, ϕ−1(t, y))

is continuous, where I denotes the (d× d)-identity matrix. Since by Lemma
19 the gradient of u is uniformly bounded we also have that σ is uniformly
bounded. Moreover σ is uniformly non-degenerate since for all x, ξ ∈ R

d

and t ∈ [0, T ]

|σT (t, x)ξ| = |ξ + ξ · ∇u(t, ϕ−1(t, y))|

≥ |ξ| − |ξ · ∇u(t, ϕ−1(t, y))| ≥
1

2
|ξ|

by (26). Thus Theorem 10.2.2 in [18] yields existence and uniqueness of a
weak solution. �

Theorem 25. There exists a unique in law virtual solution X to the SDE
(28) given by Xt = ϕ−1(t, Yt), where Y is the process given in Proposition
24.

Proof. The SDE (31) and the transformation ϕ(t, x) = x + u(t, x) imply
that the unique weak solution Y yields a virtual solution X. Suppose that
there exists another virtual solution Z := (Zt)t≥0 to (30). Then ϕ(t, Zt) is
a solution to (31). Since equation (31) admits uniqueness in law, the law of
Y coincides with the law of ϕ(t, Z) and by the invertibility of ϕ we get that
the laws of X and Z coincide. �

3.3. Virtual solution as limit of classical solutions. The concept of
virtual solution is very convenient in order to prove weak existence and
uniqueness; however, it may look a bit artificial. Moreover, a priori, the
virtual solution may depend on the parameter λ. These problems are solved
by the next proposition which identifies the virtual solution (for any λ) as
the limit of classical solutions. This result relates also to the concept of
solution introduced by Bass and Chen [2].

Proposition 26. Let bn : [0, T ]× R
d → R

d be vector fields such that

(i) bn ∈ C
(
[0, T ] ;C1

b

(
R
d;Rd

))
(bounded with bounded first derivatives)

(ii) bn → b in L∞
(
[0, T ] ;H−β

q̃,q

)
.

The unique strong solutions to the equations

(32) dXn
t = dWt + bn (t,X

n
t ) dt, X0 = x0

converge in law to the virtual solution X of equation (28).

Proof. Step 1 (Xn are virtual solutions). Let un be the unique classi-
cal solution of equation (6) replacing b with bn; un is (at least) of class
C1,2

(
[0, T ]× R

d;Rd
)
. Let ϕn (t, x) = x + un (t, x) so that again ϕn ∈

C1,2
(
[0, T ]× R

d;Rd
)
. Let Xn be the unique strong solutions of equations
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(32) and let Y n
t = ϕn (t,X

n
t ). By Itô formula, Y n satisfies equation (30)(with

bn replacing b) and thus Xn
t = ϕ−1

n (t, Y n
t ) is also a virtual solution. Let us

call b̃n and σ̃n the drift and diffusion coefficients of the equation satisfied by
Y n.

Step 2 (Uniformity of constants of b̃n and σ̃n). From assumption (ii)

it follows that the norm of bn in L∞
(
[0, T ] ;H−β

q̃,q

)
converges to the norm

of b as n → ∞; hence the bound (24) does not depend on n, for n large
enough. This allows us to choose λ independently of n (for n large enough).
Moreover, un and u are Lipschitz with constant not depending on n, since
sup(t,x)∈[0,T ]×Rd |∇un(t, x)| and sup(t,x)∈[0,T ]×Rd |∇u(t, x)| are bounded by a
constant not depending on n.

Then, by Lemma 21 we know that ϕ−1
n are Lipschitz (and have therefore

linear growth) with the same constant k = 2. The same holds for ϕ−1.

It follows that the vector fields b̃n have linear growth with constants in-
dependent of n, and similarly that the vector fields σ̃n are bounded above
and below by uniform constants.

Step 3 (Tightness and convergence). The family of the laws of Y n is

tight in C
(
[0, T ] ;Rd

)
. Indeed, by the uniform linear growth of b̃n and

boundedness of σ̃n, supt∈[0,T ] |Y
n
t | has all moments, independent of n. Then

we have that

E
[
|Y n

t − Y n
s |4
]
≤ C |t− s|2 ,

for some constant C > 0 independent of n. By Kolmogorov theorem, this
implies the tightness of the laws of Y n.

Since un ◦ ϕ
−1
n → u ◦ϕ−1 and ∇un ◦ ϕ

−1
n → ∇u ◦ϕ−1 pointwise, it is not

difficult to show that every converging subsequence of Y n converges in law
to a solution of (30). Since (30) admits uniqueness in law, the full sequence
Y n converges in law to the unique solution Y of (31).

Step 4 (Back to Xn). The final step consists in showing that Xn con-
verges to X in law. This follows by Skorohod theorem, which allows to
reduce the convergence in law to an ucp convergence and from the fact that
ϕ−1
n → ϕ−1 pointwise. The proof is complete. �

Examples of bn which verify (ii) in Proposition 26 are easily obtained
by convolutions of b against a sequence of mollifiers converging to a Dirac
measure.
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