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1. Introduction

For finite-dimensional linear delay systems of the form

#(t) = Az(t) + Bz(t — h)

it is well-known (see [[1],[2] |) that this system is stable, independently of the delay, iff

(i) A is asymptotically stable

(ii) pl(jwl — A)"'B] < 1,Yw >0
and

(iif) p[A™'B] < 1 or p[A~1B] =1 and det(A + B) # 0.
This has been proved using frequency domain ideas which do not generalize easily. Here we shall
give a 'state-space’ proof which will generalize to nonlinear distributed systems. In particular, we

shall consider systems of the form

in both the finite- and infinite-dimensional cases.
The notation will generally be standard- in particular, B.(§) denotes the open ball in C with

radius ¢ and centre §, and z denotes the function
zo(t) =2(l—0), 0< 0 < h.
a(A), p(A) denote the spectrum and spectral radius of A, respectively.

2. Finite-Dimensional Systems

We shall first give an elementary proof of the above result , which will generalize in a number of

ways. Thus, consider the linear delay system 200391366

(TR




@(t) = Az(t) + Bz(t - h) , z(t) = o(t),—h<t<0

Then,

T4+nh
z(7 + nh) = ez (nh) —3—/ eArtnh=s) Br(s — h)ds
nh

for 7 > 0. Define the functions

z(t+nh), n>0,0<7<h
z[n)(7) =
(-1’)(7-)? n=-1,-h<7<0

Then we have

T4+nh
eATHrh=s) By (s — h)ds

z[n](r) = CATJc[n—lj(h)Jr/

nh

= e*zln—1)(h) + /T e(7=9) Br[n — 1](s)ds |
whence
z[n] = Kz{n — 1]

where K : C1[0, h;R™] — C[0, h;R”] is the operator defined by

(Kp)(r) = e*"p(h) + f " A=) By(s)ds
0

It is necessary and sufficient for stability of (2.1) (independently of the delay) that

o(K) € By (0),

(2.1)

(2.3)




for any h > 0. The spectrum of K is given by those A’s for which there exists a p # 0 such that

\

ATp(h) + / eAT=9) Bp(s)ds = Ap(r). (2.4)
0
Differentiating gives
)= Ap+ ~Bp, p(0) = <p(h)
p=Ap+ 38p, pl0) = 1p(h) .

i.e.

{e}{p (‘4 5 %B) h}p(O) = A0} — gih) (2.5)

The result now follows easily from the above considerations, For example, the necessary condition
(ii) follows from (2.4) by letting h — oo and taking the Fourier transform. From (2.5) we get the
more general result:

Theorem 2.1 The equation (2.1) is asymptotically stable iff

Ada (exp (A ¥ %B) h)

for all A € C\{0}.0
Moreover, we have

Theorem 2.2 The equation (2.1) has a periodic orbit of period h if

lea (exp (A + ;B) h)

Jor some A € C\{0}.O

We can also obtain an explicit formula for the solution of the equation (2.1). For,

zln)(r) = A7 [m{n = 1]J(h) + ]UT e Baln — 1)(s)ds




()

A

h
= eAT/ k(s)z[n — 1)(s)ds
0
where k(s) is the distribution
k(s) = 8(s — h)I + xjo,r1(s)e™°B, (2.6)

and xjo,7](-) is the characteristic function of the interval [0,7]. Hence

z(r+nh) = zn](7) (2.7)

k h
= ghT / f k(sn)eA”“k{sn_])eA“’"‘ T
0 0

k(sz)cAS?k(sl)cAslk(so)q&(so)dso e dsy,

for0 <7 <h.
Next Consider the non-autonomous system
#(t) = A()(t) + B(t)a(t — h), a(t) = 4(t), ~h < £ < 0 (2.8)
Defining z[n] as in (2.2) we have

T4nh
z[n](1) = ®(7 + nh,nh)z[n — 1)(k) + /h P(1 + nh, s)B(s)z(s — h)ds

where @(t) is the transition matrix generated by A(t). Hence,

x[n)(1) = ®(r + nh,nh)zn — 1](h) + ‘/DT ®(1 + nh, s + nh)B(s + nh)z[n — 1](s)ds

i.e.




5.

zln] = Kzn — 1]

where K : C'[0, h;R™] — C*[0, h; R™] is the operator defined by

%

. As before, a necessary and sufficient condition for stability is that
J(R) g Bl {0)7
for any h > 0. The spectrum of K is given by

©(7 + nh,nh)p(h) + ]T (7 +nh,s 4+ nh)B(s + nh)p(s)ds = Ap(7).
0

Since @(nh, T + nh) = ®~1(7 + nh,nh), we have, by differentiating,

®(nh, 7 +nh)B(s + nh)p(t) = —XA(t)®(nh,T + nh)p(r)

+A2(nh, T + nh)p(T)

i.e.

as before. Hence,

@3 (%, 0)p(0) = Ap(0) = p(h),

(Kp)(T) = ®(7 + nh,nh)p(h) + /: ®(7 + nh, s + nh)B(s + nh)p(s)ds.




b

where ®,)(t, 5) is the transition operator generated by A(t) + 1 B(t). We therefore have

Thereom 2.3 The equation (2.8) is asymptotically stable (independently of the delay) iff

A g0 (20(h,0)

for all X\ € C\{0} and all h > 0.0
Theorem 2.2 also generalizes to

Thereom 2.4 The equation (2.8) has a periodic orbit of period h if
leo (@(,\)(h,O))

for some XA € C\{0}.O

Now consider the psendo-linear system

#(t) = A(z(t))z(t) + B(z(t))z(t — h),z(t) = ¢(t), ~h <t < 0 (2.10)

Let (% be the solution of the equation
&(t) = A(zo)z(t) + B(zo)z(t — h),z(t) = ¢(t),—-h <t <0

where ¢ = ¢(h), and consider the sequence of equations

#0(t) = AV )2 (1) + B (1) (e - ), 2D(2) = g(t), ~h <t <0 (2.11)

Thus,

#® — -1 = Azl-D(z)) (.’E(i)(t) = I(ffl)(t)) (2.12)
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+(AGE(W) - AEE-D@) 2D ()
+B(z0V(1)) (m(i)(t_ — ) — gD - h))

+(BEE(0) - B2 (1) 26t - b
First we must bound z{*=1)(t) on [~h, c0). To do this we make the assumption that

14(z) — AWl < allz - y|

1B() — B(y)|l < Bllz - y|

HCA(J:)t” < Me—wt

(4) ¢

IB(z)| <T

for any x,y € R™ and some positive a and 3. The following result is well-known ([3] ); however, the
simple proof below generalizes to the distributed case.

Lemma 2.5 If ||e®t|| < Me = (w > 0) and ﬂLBi[ < 1 then the delay equation

#(t) = Ax(t) + Bz(t — h)

is stable (independently of the delay). Moreover,

lz() < sup [lo(t)ll
t€(0,h]
Proof We have
t
z(t) = ety +] eA'=*) Br(s — h)ds
0

so that

t
lo(t)]] < Me=*|lzo]| + Me" [0 e 1B (s — h)|ds




and so if £(t) satisfies

§(t) = —wé(t) + M||BJE(t — h) (2.13)

then |[z(t)|| < £(t). We prove that

sp ()< sup £(1)

te[(n—1)h,nh] te[nh,(n+1)h]

from which the result follows (since the solution is eventually monotonically decreasing or oscillates,
and in both cases it is easy to see that it tends to zero as t — 00). In fact, this is easily seen to be
true by considering £ at nh and (n +1)h. For, at nh and (n+ 1)h, £is > 0,< 0 or = 0, and we
have nine cases to consider. For example, if £(nh) > 0 and £((n + 1)h) < 0 then £ has a maximum
in (nh, (n+ 1)h) where £(¢) = 0. The result follows from (2.13).0

Next we need the logarithmic norm of a matrix A, u(A), defined by

. L+ hrA|| -1
(A) = 1 e
#(4) h-‘]—'%l+ h

Lemma 2.6 Assume that

wA(z)) < —p

where p > 0, for allz € R™ and E < 1. Then () (t) is stable for each i > 0 and

|59®| < s Jon.
te[—h,0]

Proof We have

t
M = o4 =1(¢,0)z%(0) +] -1 (¢t 5)B(zV () (s — h)ds
0
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where ®(=1)(t, ) is the transition matrix generated by A(z!=D(t)). It is well-known (see () that

Hq»“-ﬂ(t,s)

< ex‘p Ut Iz (A(I{"’”(T))) d‘f‘]

and so

|20t 9)|| < exp(=p(t - s)).

Hence

griHY

IA

=) ds

m(i)(D)“ - fot e Hlt—s)

a:“J(o)“ + /Of e~H(t=9)] ”z“)(s _ h)“ ds.

B(x{ffl)(s))H “x(ﬂ(s_ )

e M

IA

By a standard comparison argument, we see that |z (t)|| < &(t) where

£(t) = —pé(t) + TE(t — h).

Hence, by lemma 2.5, we see that ||I(i){f)” — 0 as t — oo and, moreover,

le9®|| < s e O
te[—h,0]

Returning to (2.12) we have, putting 3 (t) = z() (1) — #0=1(1),

VO = S0(0O0) + [ B o) (A0(e) ~ AD(e)) 26
0

+B(@ D (8)y (s ~ h) + (B2 V(s)) - B(a(s))) 2¢=V(s ~ h)]ds
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and so (since 3¢9 (0) = 0)

ool = [l

R e

0] -

-6

under the assumptions of lemma 2.6. Suppose that

sup ||¢(t)]| = ©.
te[—h,0]

Then

el

”y(f)(t)“ < M “y(f)(o)” +j0f6_,u(fs){L “y(i—l)(b.)” 4

i J‘y(i){s - h)“}ds
where I = (a + 3)¥. Again, by a comparison argument, ||y (t)|| < n'?)(t) where n'!) satisfies

A0(t) = —pn@(t) + Lnt=(t) + Tp®(t — h). (2.14)

Now it is easy to see from lemma 2.5 that the operator P defined by

—uf(0)+Tf(h), 8 =h
Pi(6) =

4 0+h

generates a semigroup S(t) such that [ [|S(t)|| df < co. Hence, by (2.14) we have

3 i i
w0 < [ 8- o) Inf~(s)as
0
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and so

s ') < L g 7f0) [ IS a

0<s<t 0<s<t

= LK sup 'Qéitl)(s)
0<s<t

where K = [ ||S(t)| dt. Hence, collecting our results, we have
Theorem 2.7. Under the assumptions of lemma 2. 6, if LK < 1, then the system (2.10) has a

unique solution which is stable (independently of the delay).]

3. Multiple Delays

In this section we shall consider systems with multiple delays, which may be noncommensurate.
Only an outline of the linear theory will be given since the method generalizes in a straightforward

way to nonlinear systems as in the single delay case. The basic linear systems is of the form

&(t) = Ax(t) + Y Brz(t — hi) , 2(t) = ¢(t), —hm <t < 0. (3.1)
k=1

Here we have ordered the delays so that

Hence, as in section (2) we have

TH+nhy m
z(1 +nh) = e x(nhy) +/ gt~ Z Byx(s — hy)ds
nhi k=1

and so, if we put 5 = s — nhy,

T m
z(r + nhy) = ez (nh,) —F—/ eAlr—3) Z Brz(5+ nhy — hi)ds .
0 k=1
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Now write

hi=pihy+e,1<i<m

where p; is a positive integer and ¢; < h;. Then we have

z(r +nhy) = 47 z(nhy) + g U= S)ZB;,.,$ (5+ (n—pr)h, —e)ds

é“-;

= )+ eAT)N" Bra(5+ (n — pr)hy — e1)d5
/0 Z k ( Pr)hy k)

+/ gllr=3) ZBkm 5+ (n—pg)hy —ep)d5 .

k=1

Define, as before,

r(t+nh), n>20,0<7<hy
2 = [nl(r) =

r+(n+1)h, n<0,0<T<h
Then we have

z[n] = e*"z[n — 1)(R) + Z Kyz[n —pr— 1] + Z Lyzln— py)

k=1

where

(Kx&)(7) = fogk e BLE(s + hy — £4,)d5

and

(Li)(7) = f e Big(5 - e)d5 .

£k

Put
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Tpn+1[n] = z[n]
Zp.[n] = zn-1]
zi[n] = z[n—pn,)
Then,
zifl = zal-1]
z2[n] = wm3[n—1]
Tpn+1(n] = GA(JIpm+1P?"U(h1)+'§E:f(bfpmﬂpk+1P7“’1]4‘EE:I%Ipm—pk+2ﬁl—'U
k=1 k=1
and so
y[n] =Ty[n - 1]
where
y[n] = (z1[nl, -, 2p, 41 [n))T

and T is the matrix of operators
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[0 1
0 I
=
0" I
E1 B Spat1 T E

where

E_)= Z Kk‘!‘ Z Lk:

Pm*}‘k+1=j Pm—pp+2=]

and

(Bv)(7) = e u(hy).

We therefore obtain, as in the single delay case,

y[n] =Ty[n — 1]

where y[n] € @,,,+1C*[0,h1;R™] and T : &p,,4+1C[0, h1;R?] — @, +1C1[0, k1 R™. As in the single
delay case, therefore, a necessary and sufficient condition for stability of (3.1) (independently of the

delay) is

U(F) - 81(0)1

for any h; > 0.




] B

Lemma 3.1 The spectrum of T" is given by the numbers ) for which the equation

Ei1vy + ASv; + /\253'01 Fron sl /\E—l(Eg + E)v; = My

has a nonzero solution v;, where £ = p,,, + 1.

Proof The spectrum of I is given by the equation

I
0 J
0 I
= =i+ FE

The result follows since this implies

(2

U3

Vg

Ervp 4o+ (Ep+ E)ug

U1

Vg

Example In the case of two commensurate delays we have

)\’U]

A'UQ

Avp_y

A'l)g :

z(t) = Az(t) + Biz(t — h) + Baz(t — 2h) , z(t) =

Then we have the system

z[n] = e*z[n —1](h) + /: e"4) B z[n — 1](s)ds + fT e Byzn — 2)(s)ds.

0

v

g

o(t), —2h <t <0
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Hence, by lemma 3.1, the spectrum is given by

Ap(h) + [ A= Bip(s)as + 1 | <49 Bap(s)ds = N2p(r)
0 0

and differentiating gives

1

1 1
32 Bip+ 5 Bap . p(0) = 2P (h)-

)= A
b P+ 3

Hence, theorem 2.1 generalizes to

Theorem 3.2 The equation (3.1) is asymptotically stable, independently of the delay, iff
Ada (exp (A—}— iB1 -+ 1Bg) h)
A2 A
for all h > 0 and all A € C\{0}.C
4. Distributed Systems

In this section we shall generalize the results of section 2 to systems of the form

Y(1) = A@))%(t) + B(y(t))(t — h)

where t(t) € L2(Q), A(.) is an unbounded operator which satisfies:

(i) A(%) is sectorial for each v and

(A - A())7 < M/|A = a| for some a

(ii) A() generates a semigroup Tiyy with || Ty (8)|| < Ke™?, A% () Ty (1) < Breot

o

and B(.) is bounded. Many of the results are similar to the finite-dimensional case and so we simply

state the conclusions and note the differences in the proofs.

From the conditions on A(4) it can be proved that (see [[4]]):
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Lemma 4.1 If

Ke—é(t—s)

|7yt = s)(Atwn) - A < T

for some L, 3 > 0, and if

5
= > sup In(KE,(Mt))
27 o<tz

where

A = [P -a))/0®) b= KLMP, M = |j4(0)]
Eo(z) = % a""%/T(n(1-a)+1),
n=0

then the equation

Y(t) = Al (1) ()

has a unigue, exponentially stable solution, with

@)l < Me~0/Dt O

Starting with the linear system

p(t) = Ay(t) + By(t - h),

we have, from theorem 2.1:

— L |91 — va®

(4.2)

Theorem 4.2 If A satisfies the spectrum determined growth assumption, then the system (3. 2) is

asymptotically stable iff
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A ¢ o ([Tiarn/n(t)] k)

for all A € C\{0}, where T ayB/x) is the semigroup generated by A + B/x.0O
In the nonlinear case (equation (4.1)) we use lemma 4.1 instead of lemma 2.6, in order to bound

the evolution operator generated by A(1). The proof of theorem 2.7 then goes through virtually
unchanged, but with §/2 replacing pu, etc.

Example 4.3 The system

0w _ o

— +(1+0.~;2)%+/1 (2,1 — h)ds
ot~ 8a? Gy ™ J, TS

is exponentially stable (independently of the delay), for small initial functions ¥(0,z).0

5. Conclusions

In this paper we have extended some well-known results on the stability of linear delay systems, in-
dependent of the delay, to nonlinear finite- and infinite-dimensional systems. This has been achieved

by writing the equations in the form of difference equations in a Hilbert space.
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