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Abstract

An on-line, identification scheme using Volterra polynomial basis function (VPBF)
neural networks is considered for nonlinear control systems. This comprises of a struc-
ture selection procedure and a recursive weight learning algorithm. The orthogonal least
squares algorithm is introduced for off-line structure selection and the growing network
technique is used for on-line structure selection. An on-line recursive weight learning
algorithm is developed to adjust the weights so that the identified model can adapt to
variations of the characteristics and operating points in nonlinear systems. The conver-
gence of both the weights and estimation errors is established using a Lyapunov technique.
The identification procedure is illustrated using simulated examples.

Keywords: Neural networks, nonlinear system identification, recursive weighting
learning, growing network, Volterra polynornials, orthogonal least squares algorithm.
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On-Line Nonlinear System Identification

1 Introduction

It is well known that in the past three decades linear models have been widely used in sys-
tem identification for two major reasons. Firstly, the effects that different and combined
input signals have on the output are easily determined. Secondly, linear systems are homoge-
neous. However, most control systems encountered in practice are nonlinear. In many cases,
linear models are not suitable to represent these systems and nonlinear models have to be
considered. Since there are nonlinear effects in practical systems, e.g., harmonic generation,
intermodulation, desensitization, gain/expansion and chaos, neither of the above principles
for linear models are valid for nonlinear systems. Therefore, nonlinear system identification
is much more difficult than linear system identification.

The system identification procedure mainly consists of model structure selection and pa-
rameter estimation. The former is concerned with selecting which class of mathematical
operator is to be used as a model. The latter is concerned with an estimation algorithm and
usually requires input-output data from the process, a class of models to be identified and a
suitable identification criterion. A number of techniques have been developed in recent years
for model selection and parameter estimation of nonlinear systems. Forward and backward
regression algorithms were analyzed in [21]. Stepwise regression was used in [4] and a class of
orthogonal estimators were discussed in [18]. Algorithms with the objective of saving memory
and allowing fast computation have also been proposed in [9] [40]. Methods to determine the
a priori structural identifiability of a model have also been studied[24]. A survey of existing
techniques of nonlinear system identification prior to the 1980s is given in [2], a survey of the
structure detection of input-output nonlinear systems is given in [13] and a recent survey of
nonlinear black-box modelling in system identification can be found in [35].

An area of rapid growth in recent years has been neural networks. This approach makes
few restrictions on the type of input-output mapping that can be learnt. The application
of neural network architectures to nonlinear system identification has been demonstrated by
several studies in discrete time (see, for example, [3] [8] [16] [19] [29] [32] [39]) and in continuous
time [31] [33] [34]. The majority of nonlinear identification techniques using neural network
are off line which means the structure and parameters of the model are fixed after off-line
identification based on a set of input-output data. However, if there is a change in the
system operation or the real system input space is different from the one which was used
for off-line identification, this will lead to changes in the parameters of the neural network
based model, causing a deterioration in the performance of the identification. To avoid
this, some neural network based identification schemes view the problem as deriving model
parameter adjustment laws for the neural network. However, choosing the structure such
as the number of basis functions (hidden units in a single hidden layer) in the model must
be done a priori. This can often lead to an over- or under-determined network structure
which in turn results in an identification model that is not optimal. In the discrete-time
formulation, some approaches have been developed to determine the number of hidden units
(or basis functions) using decision theory [1] and model comparison methods such as minimum
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description length [36] and Bayesian methods [28]. The problem with these methods is that
they require all the observations to be available together and hence are not suitable for on-
line identification. Therefore, in order to have good identification performance, both the
structure and the parameters of the model need to be modified in response to variations of
the plant characteristics and operating point. Recently, new algorithms have been developed
which operates on a window of data and which can be used on-line to adaptively track the
variations of both model structure [11] [25] or topology [26] [27] and update the estimated
parameters or weights on-line.

This paper is mainly concerned with structure selection of nonlinear polynomials in the
VPBF network and parameter estimation of the selected model. In order to obtain a proper
sized network the orthogonal least squares algorithm is introduced for the off-line structure
selection and this is then augmented by the growing network technique which is used for on-
line structure selection. In the off-line selection stage, the orthogonal least squares technique is
used to select a set of Volterra polynomial basis functions and to arrange the order according to
their ability of reducing the approximation error. In the on-line selection, the growing network
technique is used to approach gradually the appropriate complexity of the network that is
sufficient to provide an approximation to the system to be identified that is consistent with
the observations being received. For the parameter estimation, a new on-line recursive weight
learning algorithm is developed using a Lyapunov synthesis approach. It is not necessary to
assume that the approximation error is white noise or that its upper bound is known. The
learning algorithm ensures that the weights and approximation accuracy converge to their
required regions.

2 Problem Formulation

Consider the nonlinear discrete system described by

X1 = G(Xy, ue) (1)
ye = h( Xy, u) (2)

where G(.) is a nonlinear function vector, h(.) a nonlinear function, X; the state vector, ¥
the output and u the input. Based on the input and output relation of a system, the above
nonlinear discrete system can also be expressed by a NARMA (Nonlinear Auto-Regressive
Moving Average) model [20], that is,

Yt = F(Yt1 Yt—2y -0r Yt—ms Ut—1, Ut—25 oy (— (3)
where f(.) is some nonlinear function, n and m are the corresponding maximum delays.

It is well known that neural networks provide a good nonlinear function approximation
techniques where the nonlinear function f(.) in the NARMA model can be approximated by
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a single-layer neural network. This consists of a linear combination of basis functions.

N
f(xe) =D wrdn(xe) (4)
k=1 -
where X = [Ys—1, Ytm2y -» Ytmns Ut—15 U2y -y Ut—m], Pk(X¢) is the basis function and wy the
weight.

According to the universal approximation theorem [14], there exist a finite number of

basis functions so that the neural network can approximate the nonlinear function precisely.

But, in practice, the problem is how to find-these basis functions. Fortunately , it has

been shown that the required approximation accuracy can be reached using an adequate

number of independent nonlinear basis functions, for example, Volterra polynomial functions,

radial functions, B-spline functions or wavelets. In this paper, a neural network which uses

. the Volterra polynomials as the basis functions will be studied. The representation of the
nonlinear function f(x¢) is then given by

}E(Xt) = wy + Wali—1 + WalYi—2 + oo+ Wng1Yi—n + WatoUi—1 + oo T Wngmp1 Ut—m

2 l
FWotmt2¥i_1 T Wngm43Yi—1Yt—2 + ... + WNUz_py

N
= Z Wedk(Xt) (5)
k=1

where

[f1, P2, B3, orvs Brt1s Bt 2y -oos Prtmot 15 Dt 2, Prbma 3, s ON](Xe)
= [1, Yt—1s Yt—25 vy Ytmry Wtm 1, oo Ut—mn, yf_l, Yt—1Yt—25 -5 ﬂi_m] (6)
N:(n+m+l)! 1)
I'(n+ m)!
is the set of the Volterra polynomial basis functions. Using the VPBF network, the nonlinear
function f(.) can be obtained by

¢ Fxe) = fxe) + o(x) (8)

Increasing the order [, the number N of basis functions becomes larger and larger. Thus,
the problem is how to estimate the function f(x¢) using a proper sized neural network so that
the approximation accuracy is within the required bound. The structure selection and the
weight learning of the neural network are discussed in the following sections.

3 Structure Selection for Neural Networks

There are many ways to select the basis functions. Here, off-line structure selection using
the orthogonal least squares algorithm [3] [5] and on-line structure selection using growing
network techniques are introduced for the basis function selection of Volterra polynomial
networks.
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3.1 Off-Line Structure Selection

It is assumed that a set of input-output data (y, usyt = 1,2,...,M) of the system is given.
Based on Eq.(5), the input-output relation may compactly be written in the following vector
form:

Y = &(x)W + O(x)) (9)

where the input vector Y € IRMX1 the weight vector W € RY*! the approximation error
vector O(x!) € RM*? and the basis function matrix ®(x) € IRM*N are, respectively,

Y=[p: v - wml” (10)
W=[w w .. wN]T (11)
0 =[o(x}) o(xh) .. o(xh)]” (12)

¢1(X1) 452(3(1) e ¢N(X1)
@(x) B 451(:X2) ‘252(:3{2) e ¢N(:X2) (13)

¢1(xne)  ba(xm) .- ¢n(xM)

An orthogonal decomposition of the matrix ®(x) gives

(I)(X) = PQ (14)

where P = [Py, Ps, .., Py] is an M x N matrix with orthogonal columns and @ is an N X N
unit upper triangular matrix. Using the above, Eq. (9) can be written as

Y = PV +0(x) (15)
W=Q v (16)
where V = {’vl,vg,...,ﬂN]T e RVX1 It can be seen that the optimal estimate V1 =
[vF, vF, ..., vff]T of the vector V is
¥y ;
W = P.T—P:’ for i=1,2....N (17)

so that |[Y — PV"*||, is minimal. The corresponding weight vector is W+ = @7*V*. The

error reduction ratio due to P; may be expressed by [5]

ro BAL K (18)
YTY

It is clear from Egs. (17) and (18) that r; > 0. Changing the order of the VPBF's will lead to

a change in the error reduction ratio r;. For N VPBF's, there are N! sorting possibilities. Let

(
The methods proposed in [5] [6] can be used to find the o-th sorting of the basis functions
$1(%¢), P2(Xt), ..., dN(x¢), which is the best sorting, such that

the ) denote the error reduction ratio r; corresponding to the j-th sorting of the VPBFs.

k ko
ZTED) > ZT‘,E-J) for FPbeje=10.. N E=L%.. N (19)
i=1 =1

In this way, the priority of all candidates is determined. Thus, denote the best sorting of
VPBFs by #8(x4), #5(xt), ..., 9%(%¢). The corresponding weight vector is denoted by W°.

4
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3.2 On-Line Structure Selection

For nonlinear systems, the system operation can change with time or the real system input
space is different from the one which was used for off-line identification. In order to produce
good identification performance, both the structure and the weights of the neural network
model may need to be modified in response to variations in the plant characteristics. Here,
the modification of the neural network structure will be taken into account. The adaptation
of the weights will be discussed in the next section.

According to approximation theory, a;ddiug‘ more independent basis functions to the net-
work will improve approximation. In off-line structure selection, the VPBFs were reordered
in terms of their priority. Here it is assumed that at time ¢ — 1 the basis functions of the
VPBF network consist of the first L best candidates ¢$(x:), #5(%¢), ..., #3(x¢). To improve
the approximation accuracy, the growing network technique [15] [17] [22] [23] is applied. This
means that one more VPBF, which is chosen from and is of the highest priority in the remain-
ing basis function candidates @3, (x:), $5(Xt), ..., ¢3,(%t), needs to be added to the network.
In this case, denote the structure of the VPBF network at time ¢ — 1 as fit-1(x,) and the
structure immediately after the addition of a basis function at time ¢ as f¥(x,). Based on the
growing network technique and the structure of the function 7 (x;) in Eq.(4), the structure of
the VPBF network now becomes,

o) = () + w840 (x0) (20)
where w3, , is the weight corresponding to the new (L+1)*" Volterra polynomial basis function
b7 41 (%)

The growing VPBF network is initialised with a small set of Volterra polynomial basis
function units, which are normally obtained using the off-line structure selection so that the
off-line approximation error is within the required accuracy. As observations are received, the
network grows by adding new units. This is called the addition operation. The decision to
add a new unit depends on two conditions. The first is that the following must be satisfied:

]yf - f(xt)l > bmaz (21)

where 6,,., is chosen to represent the desired maximum tolerable accuracy. The above con-
dition implies that the approximation error between the real output y; and the output f (x¢)
of the VPBF network must be significant. The second is that the time period between two
addition operations must not be less than the response time of the network to the addition
operation. This is to limit the growing speed of the number of VPBFs in the network.

4 Recursive Weight Learning of Neural Networks

In the previous section, the structure selection of the VPBF network model was considered
to reach a good approximation accuracy. This section takes into account the parameter
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adaptation laws which ensure that the estimation error converges to the desired range when
the plant characteristics and the system operating point change. Here, it is assumed that
the basis functions @¢(x:), $3(X¢)s ..., 93(x:) are given. The estimated function fi(x:) in the
NARMA model can also be expressed by

fo(xe) = WE 8,4 (22)
where the weight vector W;_; and the basis function vector ®;_; are
Wiy = [wy(t—1) wy(t—1) ... wg(t—1)]F (23)
Bor = [¢5(xe) G5(x) o GE(x)]T (24)
and the inital weight vector is Wy = [w] w§ .. w§ JT. The output y; of the system

modelled using the VPBF network can be written in the form
ye = 07 W + ey (25)

where W* is the optimal estimate of the weight vector W; in the network with L independent
VPBF units and &; is the modelling error. In terms of the approximation ability of neural
networks, the modelling error can be reduced arbitrarily by increasing the number L. Thus,
it is reasonable to assume that the minimal upper bound of the modelling error £(t) is given
by a constant &z, which represents the accuracy of the model and this is defined as
6, = sup |eq (26)
teRt

The estimation problem is then to find a vector W belonging to the set defined by

=(w)={w: iyf " WT@_1| < ép,Vt € 1N+}. (27)

Although many algorithms have been proposed as a solution to the above estimation
problem (see, for example, [7] [10] [30] [37] [38]), these are based on the assumption that
the minimal upper bound &z, of the estimation error is known. However, this assumption is
not realistic in most practical applications. Following the recursive least squares algorithm,
a recursive weight learning algorithm for the VPBF network is developed to remove this
assumption. This algorithm is as follows.

W, = W, — a:fn: P16 (28)
W, = Wiy + o P,®:_1e (29)
Py = Py — BysPio1®:1 @7 Py (30)
€t = Yt — Wt'{iq)H (31)
ap = (1= 8lee) ™)1 + @71 Po1®iq) ™ (32)
= o b &
7o = (leel = 6) (Jeel + (2 les] — 6) @1 Proy®ea) (34)

|Wlla < M

C : ' 35
" {[ 1, Wl > M (35)
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where the lower and upper bounds of 7 are given by

] % afet@?_lPthf_l 2— Ct (36)
| ces Pr®e1 I3

st =14 ase;®7 | PWy_q + ¢ (37)
|| cwes P®ios |3

with ¢; = \/(atet@f_lPtWtq)? + || ares Pe®y_q ||3(M2 — | Wiy ||3), M is the upper bound of
the 2-norm of the weight vector Wy, and § is the desired approximation error. The optimal
design of 7; will be given later.

Next, the properties of the above learning algorithm are analysed using Lyapunov tech-
niques. To ensure the convergence of the algorithm, consider the Lyapunov function:

® Vi = WIPT'W, (38)
where W, = W* — W,. Let
ay = Cl‘fﬂt])f(i’t_let (39)
by = —aFpn Py Pi-1€4 (40)
Then, the weight vector W; in Eq.(28) can be written as
W = Wi+ afBePi®iqes — afim P Pi1€
= Wieidapt by (41)

The above implies that by is used to reduce the effect of a; in the weight vector Wy if ||[Wy]]2 >
M. The Lyapunov function V; in Eq.(38) is now extended to

Vi = (Wior—ae—b)TP7 (Wisy —a — by)
= (Wiy — a))T P (Wiey — ag) + de (42)
where
@ dy = —00F B Y Wiy —as) + 6T P15 (43)

To make the algorithm converge fast, d; should be as negative as possible. Two cases will be
considered below, é > ér and 6 < dr.

Case 1: § > 6y and n, =0

In this case, it is clear that Wy = W, since 7, = 0. This also means [|[W;ll2 £ M for all time.
Tt will be shown later that this is true if M satisfies a certain condition. Since 7y = 0 which
results in d; = 0, Eq.(42) becomes

Vi = (Wioy —a)TP7H(Wiog — @)
= (ﬁftq = O’tﬁth‘I’t—lﬁt)TPt_l(ﬁ/t—l — a3 Py _q16y)
= I/.V}llpt_lli’rt_l = QmﬁtetQ)’fllI;Vt,} + 0;12}'3,:635@3‘_1.[31(]}1_1 (44)
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which uses f§; = 7. Using the matrix inverse theorem [12], the inverse of the matrix P is
obtained by

P = P+ @1 @7 (45)
Since y; = @g_lﬂf* 4+ ey and e = Yy — T;Iftzllét_l,
W;{l@t_l =e; — & (46)
From Egs. (45) and (46), the first term on the right side of Eq.(44) is expressed by
WE PP Wy = WE PEAWics + adfe (WE1e)
= Vi1 + agfe(e? + &2 — 2eie4) (47)
By Eq.(46), the second term on the right side of Eq.(44) is given by
—2eBrer®T  Wi_g = 20 Bces(et — €1) (48)

Substituting Eqs.(47) and (48) into Eq.(44) yields

V;. = I/t—-l + Cl’fﬁt(tf? = (1 == Q’tq)?_lPt@t—l)ef)
= Vi + 0B (€7 — o uc) (49)
using the result
1 - @ P®y = 1- ;@ | (Ppoq - ¥ePo1 @i 1B Py1)®iy
= o' (50)

Since it is assumed that the approximation error ¢; satisfies |¢¢| < §r < §, then from the
above

-
e
A

Vi1 + aifBy (‘5%, = Cl';l')ftef)
< Vio1r + aef3 (52 ~ at'l%ef)

Vi1 — Beve (l€t|3 — 2 e 6% + 53) leg| ™ (51)

I A

For |es| > &, it is not difficult to show that |e;|* — 26%|es| + 6° > les|? (Jes| — 6). Hence

Ve £ Vioa— ﬁt’f:]et'(let‘ - 6)
2
v Beled=97 ph
2 (1 + (btfj[Pt—i@f—l)
which leads to
2
Belledd —8)"  _ (53)

m
t—oo 1 + (b;f_lpt—lq)t—l

8
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It is known from (30) that Amez(Pt) € Amaz(Pio1) < ... € Anaz(Fo). As a result,
[We = Wes |l = afBiei®]_ PP®es

ﬂtAma:r(PD) (letl - 6)2
- 1+ @] P 19: 4

(54)

It is clear from Eq. (52) that V; < V. Thus,
Mmin( B[ We [} < Amaal P o | (55)

singe Minl B ) B Aol P ) 2 ons 3 Al By )i
Clearly, Eq.(53) shows that if 1 + ®]_; P, ®,_ is finite for all time, which is true if the
closed-loop system is stable, the estimation error e; converges to ¢, that is,
lim e; = 6 (56)
t—o0
Also, it can be seen from Eq.(54) that the weights converge as time ¢ approaches infinity. In

addition, Eq. (55) implies that the weights will never drift to infinity over time. Thus, if M
is chosen to satisfy

-1
o > Amaz(F)

W* — Wo |? + | W*||2 57

then || W ||5 is not greater than M for all time. In practice, it is very difficult to determine
the upper bound &g of the modelling error £; and the optimal weight vector W*. Eq.(52)
shows that if § < 6, Wy will drift away because AV; = V; — V4_1 may be positive. Moreover,
if (57) is not satisfied, |W,||z < M,Vt may not hold. These problems will be considered next.

Case 2: § <épornm #0

The analysis of the algorithm for Case 1 shows that if § < ér, W,; may be greater than the
bound M. In addition, in the case where (57) is not satisfied, it can not be simply assumed
that 7, = 0 since T/Vt' may also be greater than the bound M. So, W; = Wtr — s P Py_qe4
will be used for weight adjustment. This leads to

[Wel2 = || Wit + as + be |[3
= || Wiz |l§ + (as + bt,)T(QVVt—l + as + by)
= || Wer |3 + (1 — me)af (2Weey + (1 — ne)as) (58)

To ensure that the weight vector W; does not drift, we require

(1= me)af (2Wiy + (1 - me)ae) < M = | Wi [ (59)
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where the solution to the inequality is given by
mwe[s™, &) (60)

and s~ and st are given by Eqgs.(36) and (37). There are still an infinite number of possibilities
for 7. Hence, the question of what is the optimal solution of 7; arises. Consider Eq.(43).
The first term on the right side of Eq.(43) can be calculated as

TP (Wyer —ay) = 2neaf P7H(Wioa — ay)
= 2 (atﬁzft@g‘qﬁft—l i a?ﬁte?@il‘ﬁ@‘_l)
= 2masfiel — 2 freser — 2mal Bl @l Pdy q (61)

The second term on the right side of Eq.(43) can be computed by
b7 P by = njaiBrel &1 P®ss (62)
Substituting Eqgs.(61) and (62) into Eq.(43) yields
di = gi(ms) — 2mpsfresey (63)

where

91(1s) = 2 Bre? — (2 — m)meal Brel @ Pi®y_y (64)

Now, d; consists of two parts. The first is 2myaB:e46¢. This is the uncertain part because the
modelling error is unknown. The second is g(m;) which is computable. It is also known from
the Lyapunov technique that the more negative d; is the faster is the reduction of the function
V;. Thus, the function g(7;) is used as the performance index for choosing the optimal solution
of n:.

The function g¢(n;) is a concave parabola and has only one minimum. The optimal nf
which minimizes g; and the minimum g¢,(7;) are given by

1

=1l — 65
q (77*) _ ﬁf(ate"t? - a%e?¢$—lﬂét—1)2 (66)
: = =
t afef@?_lPt@t_;
Since |g4| < 81, it is clear from Eq.(63) that
de < gs(n7) + 2|ng | el ee|6L (67)

If 5f €[s™, st], then from Eqs.(42), (49) and (67)

Vi

A

Vie1 + a3 (5% — at_l’rtﬁf) + ge(07) + 204 P nies| b
= Viey 4 aif3s (6%, = O«‘;l’)’tt“f) + atﬁt|77:et|(26L - |1 - Cl’t‘I’?_1Ptq)t—1”ef|) (68)

10
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It is clear from Eq. (68) that if
lez| > max{y\/ay; 60, 2|1 — 0:®T | P®,_4|7 61} (69)

the second and third terms on the right hand side of Eq. (68) will be negative. Using Eqs.(32)
and (34) gives

aryit = (14 (2 - 8led] )T Poo1®1)(1+ 8L Pro1Py1) ™ < 2 (70)
As a result, if the following condition
les| > max{ﬁri[,, 2|1 — a’t@fllPt@t_ll_lﬁL} (71)

is satisfied, then the weights converge to their optimal values since AV; < 0. On the other
hand, if the above condition is not satisfied, it is possible that AV; > 0. This implies that the
weight vector W; may drift away over time. In this case, the weight learning algorithm given
by Eq.(28) avoids divergence of the weight vector because [|W¢|2 will not be greater than M
for n; € [s~, st]. Thus the error |e;| always converges.

If pf ¢ [s7, st] let

1 s~ g(st) > g(s7)

Then

-
Vi

IA

Vie1 + aify (512; & at_l’)'tetz) + gu(mi5) + 204 |n5" e4|6L
= Vier + aufe (6} — o7 neck)
+2Bclmt el (61 — (1 — (1 = 0.59] o @71 Pi®:1) sgn (17)led]) (73)
Similarly, if the following condition is satisfied
|es| > max{v26r, (1—(1- 0.57; ) @7 P;®¢—1)" sgn (n;)ér} (74)

then the weights converge to their optimal values since AV; < 0. However, it is possible that
AV, > 0 if the above condition is not satisfied. This indicates that the weight vector W; may
drift away over time. But, the weigh learning algorithm given by Eq.(28) constrains [|Well2
to be not greater than M. Thus the error |e;| always converges.

In the light of the above analysis, the design of n; may be given by

-~
e

ne = max(min(n, s*),s”) (

The analysis of the algorithm for the weight adaptation laws clearly shows that if the
minimal upper bound 8y, of the approximation error is not known both the weights and the
estimation error are still bounded.
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5 Simulation Study

Two simulated examples will be used' to illustrated the on-line identification. The first is
a system described by an input-output model and the second is a system described by a
state-space model.

Example 1

Consider the nonlinear system described by the input-output model [29]

_ Yio1Yi—2VUi—3Ui—2(Yt—3 — 1)
1+ 35+ 5is

Ye

(76)

The input © was set to be a random sequence between -0.5 and 0.5. Based on the input-
output data, the orthogonal least algorithm was used in off-line structure selection of the
VPBF network. Their order of selection and the corresponding weights are given in Table 1.

On-line structure selection was then applied and the recursive weight learning algorithm
was used. The input was defined as

sin(27t/250) t < 500
Uy = ; : (77)
0.8 sin(27rt/250) + 0.2 sin(27t/25) ¢ > 500

The simulation parameters were M = 1.4, § = 0.02. The growing VPBF network began with
the fist five best VPBFs given in Table 1. The network grew until the number of VPBFs was
20. The simulation results are shown in Figs. 1-4.

— the system output ___ the estimated output

The system output and the estimated output

. n L L : n ' L I
0 100 200 300 400 500 600 700 800 900 1000
time 1

Figure 1: The system output y and estimated output §; using on-line identification (Example
1).
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Table 1
Priority Order ¢ VPBF ¢7 | Weight w?
1 Ug_1 0.9907
2 9 -0.6967
3 Y2 U1 -0.7903
4 Yt—2Yt—3 -0.1437
5 Yi-aUl_p 0.4680
6 Y U3 -0.4705
7 Yt—2Ut—2U_3 0.3687
8 Y33 0.0819
9 Yt—1Yt—2Ut—3 -0.3732
10 Yi—2Ys—3Ut—1 0.0244
11 Y2 oUi—3 -0.0304
12 Yi—1Yi—2 0.0052
13 Ut Ug_pUs_3 0.2794
14 Yeaul o -2.9104
15 yf_3ui1 -0.0191
16 Yi—2 0.0052
17 Yr_3ul_g 0.0177
18 Yp_alUi—1 -0.0046
19 Y7 1Yi-3 -4.2739
20 Yt—1Yt—3Ut—2 7.0854

The estimation error

L L . L L L L L "
100 200 300 400 500 600 700 800 900 1000
time t

Figure 2: The on-line estimation error e; (Example 1).
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o
©

o
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o
o

o
@

The 2-norm of the weight veclor
£ e o
w L w0

o
n

e

=)

L . . L s s s . .
1] 100 200 300 400 500 600 700 800 900 1000
time t

‘ Figure 3: The 2-norm of the weigh vector W; using on-line identification (Example 1).

Y

The estimation error

L f o " . . . L i
0 100 200 300 400 500 600 700 800 900 1000
time {

. Figure 4: The estimation error y; — §; using off-line identification with 20 VPBFs (Example

1)
Example 2

Consider the nonlinear system described by the state-space model

8.6z1(1) 1.523(t)
14+ u2(t) 14 23(t) + z3(1)
1.8z1(2)z2(1)
1+ 23(t)
y(t) = 51 (t)u(t) — zo(1) sin(z4(1)) (80)

The input u was set to be a random sequence between -0.5 and 0.5, as in Example 1. Using

s(t+1) = (78)

zo(t + 1) = 1.44°(2) — (79)

the input-output data, the priority of the VPBFs was obtained using the orthogonal least

squares algorithm. The order of the VPBFs and the corresponding weights were given in
Table 2.

14
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.

The on-line structure selection technique and the recursive weight learning algorithm were

applied with the input given by

u(t) = 0.19 sin(27t/50) + 0.095 sin(27t/20)

The parameters in the simulation were M = 7, § = 0.01. The growing VPBF network started
with the first 15 best VPBFs, and the network stopped growing when the number of the

VPBFs reached 30. The simulation results are depicted in Figs. 5-8.

(81)

Table 2
Priority Order VPBF ¢¢ | Weight w?
1 ul g -4.4882
% Y5 4 -0.0710
3 Yt—1Yt—2Ut—2 0.2592
4 Ut Ui_3 -2.8018
5 Ye_alUi_1 0.5594
6 Yea U1 Ug—2 -0.5614
7 Upq Ug—2 0.5816
8 Y7 1Y—2 0.2685
9 Yoot 4 1.1335
10 YZ_aUy_o -1.1162
11 Ypo1Up—1 Ut—2 0.7620
12 Ye1%Y—2 1.6789
13 Yi-1Yi-3 -0.3676
14 Wy -0.8687
15 Us_g 1.3205
16 Yi_1 -0.2783
17 g U 5 0.1529
18 Yool o -1.0620
19 Yt—3Ut—2UL_3 -0.6005
20 Ye1u?_, -1.0152
21 Yi-1Yh2 0.4841
22 Y2 ui_a -0.7660
23 Ut_pUt_3 0.8791
24 Us_3 0.8206
25 Ugo1Up3 -2.1835
26 Yeorul_y 0.2744
27 w0 g 0.5547
28 U g 0.5798
29 1 0.0642
30 Yy_gt? 5 -0.9806
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0.6

——- the system output ___the estimated output

05

0.4k "

03r

0.2

0.1

The system output and estimated output

L . . L L L L " L
100 200 300 400 500 600 700 800 900 1000
time t

Figure 5: The system output y; and estimated output g; using on-line identification (Example
2).

0.08

0.06

0.04

ki it

The estimation error

" L s . i " . . L
100 200 300 400 500 600 700 BOO 900 1000
time t

Figure 6: The on-line estimation error e; (Example 2).
The results of the above two examples show that in terms of the estimation error the
performance of the proposed on-line identification scheme is much better than an off-line
approach. Although the minimal upper bound of the approximation error is unknown, the

2-norm of the weight vectors is bounded by M and the estimation errors converge to the
required bounds.

6 Conclusions

An on-line nonlinear identification scheme based on VPBF networks together with an or-
thogonal least squares and a growing network algorithms has been presented. The structure
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:

o

The 2-norm of the weight vector
w o

LS}

1

0

. L ' L L s n L L
[} 100 200 300 400 500 600 700 BOO 900 1000

time t
. Figure 7: The 2-norm of the weigh vector W, using on-line identification (Example 2).
1.6
1.4
1.2+
s [
i 0.6
2 L
o4t |
0.2 \\ M
Q
RUGILILIRARIRIRD
ai o0 200 300 400 500 600 700 800 800 1000
time 1
. Figure 8: The estimation error y; — §; using off-line identification with 30 VPBFs (Example

9).

selection of nonlinear polynomials in the VPBF network and parameter estimation of the se-
lected model were discussed. The orthogonal least squares algorithm was used for the off-line
structure selection to find a initial set of VPBF candidate terms which were ranked according
to the reduction in the approximation error. A growing network technique was then applied
for on-line structure selection to obtain an appropriately sized network. An on-line recursive
weight learning algorithm was developed for the parameter estimation and the properties of
this were also analysized using Lyapunov methods. The learning algorithm ensures that the
weights and approximation error converge to required bounds without assuming the approx-
imation error is a white noise or that the upper bound of this is known.

17




Liu

, Kadirkamanathan & Billings

Res

Acknowledgements

The authors gratefully acknowledge the support of the Engineering and Physical Sciences
earch Council (EPSRC) of UK under the contract GR/J46661.

References

[1]

(2]

[7]

(8]

(12]

(13]

(14]

[15]

E. Baum and D. Haussler, “What size net gives valid generalization”, Neural Computation,
Vol.1, No.1, 1989.

S.A. Billings, “Identification of nonlinear systems — a survey,” IEE Proceedings, Part D, Vol. 127,
pp.272-285, 1980.

S. A. Billings and S. Chen, “Neural Networks and System Identification”, In K. Warwick et al.,
(eds.) Neural networks for systems and control, pp.181-205, 1992.

S.A. Billings and W.S.F. Voon, “A prediction-error and stepwise-regression estimation algorithm
for non-linear systems,” International Journal of Control, Vol.44, No.1, pp.803-822, 1986.

S.A. Billings, S. Chen and M.J. Korenberg, “Identification of MIMO nonlinear systems using a
forward-regression orthogonal estimator,” International Journal of Control, Vol .49, pp.2157-2189,
1988.

S.A. Billings, M.J. Korenberg and S. Chen, “Identification of nonlinear output-affine systems
using an orthogonal least squares algorithm,” International Journal of Systems Science, Vol.19,
pp.1559-1568, 1988.

C. Canudas de Wit and J. Carrillo, “A modified EW-RLS algorithm for systems with bounded
disturbances,” Automatica, vol. 26, pp. 599-606, 1990.

S. Chen, S. A. Billings and P. M. Grant, “Nonlinear system identification using neural networks”,
International Journal of Control, Vol.51, No.6, pp.1191-1214, 1990.

S. Chen and J. Wigger, “ A fast orthogonal least squares algorithm for efficient subset model
selection,” IEEE Trans. on Signal Processing, Vol. 43, No. 7, pp. 1713-1715, 1995.

E. Fogel E. and Y. F. Huang, “On the value of information in system identification — bounded
noise case”, Automatica, vol. 18, no. 2, pp. 229-238, 1982.

C. Fung, S.A. Billings and W. Luo, “On line supervised adaptive tracking using radial basis
function neural networks,” Neural Networks, to appear.

G. C. Goodwin and D. Q. Mayne, “ A parameter estimation perspective of continuous time
model reference adaptive control,” Automatica, Vol. 23, No. 1, pp. 57-70, 1987.

H. Haber and H. Unbehauen, “Structure identification of nonlinear dynamic systems — A survey
on input/output approaches,” Automatica, Vol.26, No.4, pp.651-677, 1990.

S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Com-
pany, New York, 1994.

V. Kadirkamanathan, Sequential Learning in Artificial Neural Networks, Ph.D Thesis, University
of Cambridge, UK, 1991.

18




e

On-Line Nonlinear System Identification

[16] V. Kadirkamanathan and G.P. Liu, “Robust identification with neural networks using multiob-
jective criteria,” Preprints of §th IFAC Symposium on adaptive Systems in. Control and Signal
Processing, Budapest, Hungary, pp. 237-242, 1995.

[17] V. Kadirkamanathan and M. Niranjan, “A function estimation approach to sequential learning
with neural networks”, Neural Computation, Vol.5, pp.954-957, 1993,

(18] M. Korenberg, S.A. Billings, Y.P. Liu and P.J. Mcllroy, “Orthogonal parameter estimation algo-
rithm for non-linear stochastic systems,” International Journal of Control, Vol.48, No.1, pp.193-
210, 1988.

[19] J. G. Kuschewski, S. Huiand 5. H. Zak. “Application of feedforward neural networks to dynamical
system identification and control”, IEEE Trans. on Control Systems Technology, Vol.1, No.1,
pp.37-49, 1993.

[20] I1.J. Leontaritis and S.A. Billings, “Input-output parametric models for nonlinear systems, Parts
I and II,” International Journal of Control, Vol.41, No.1, pp.303-344, 1985.

[21] LJ. Leontaritis and S.A. Billings, “Model selection and validation methods for non-linear sys-
tems,” International Journal of Control, Vol.45, No.3, pp.311-341, 1987.

[22] G. P. Liu, V. Kadirkamanathan and S.A. Billings, “Sequential identification of nonlinear systems
by neural networks,” Proceedings of the 3rd European Control Conference, Rome, pp. 2408-2413,
1995.

[23] G. P. Liu, V. Kadirkamanathan and S.A. Billings, “Stable sequential identification of continuous
nonlinear dynamical systems by growing RBF networks,” to appear in the International Journal
of Conirol, 1996.

[24] L. Ljung and T. Glad, Modelling of Dynamic Systems, Information and System Sciences Series,
Prentice Hall, Englewood Cliffs, NJ., 1994.

[25] W. Luo and S.A. Billings, “Adaptive model selection and estimation for nonlinear systems using
a sliding data window,” Signal Processing, vol. 46, pp. 179-202, 1995.

[26] W. Luo and S.A. Billings, “Structure selective updating for nonlinear models and radial basis

”

function neural networks,” submitted for publication.

[27) W. Luo, S.A. Billings and K.M. Tsang, “On line structure detection and parameter estimation
with exponential windowing for nonlinear systems,” submitted for publication.

[28] D.J. C. MacKay, “Bayesian interpolation”, Neural Computation, Vol.4, No.3, pp.415-447, 1992.

[29] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical systems using
neural networks”, IEEE Trans. on Neural Networks, Vol.1, No.1, pp.4-27, 1990.

[30] R. Ortega and R. Lozano-Leal, “Reformulation of the parameter identification problem for sys-
tems with bounded disturbances,” Automatica, vol. 23, no. 2, pp. 247-251, 1987,

[31] M. M. Polycarpou and P. A. Ioannou, “Identification and control of nonlinear systems using
neural network models: design and stability analysis”, Technical Report 91-09-01, Department
of Electrical Engineering-Systems, University of Southern California, USA, 1991.

[32] S. Z. Qin, H. T. Su and T. J. McAvoy, “Comparison of four net learning methods for dynamic
system identification”, IEEE Trans. on Neural Networks, Vol.3, No.1, pp.122-130, 1992.

19




Liu,

Kadirkamanathan & Billings

(33]

(34]

[35]

[36]

[37]

(38]

(39]

[40]

N. Sadegh, “A perceptron network for functional identification and control of nonlinear systemns”,
IEEE Transactions on Neural Networks, Vol.4, No.6, pp.982-988, 1993.

R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct adaptive control”, JEEE Trans.
on Neural Networks, Vol.3, No.6, pp.837-863, 1992.

J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson and
A. Juditsky, “Nonlinear black-box modelling in system identification: a unified overview,” Auto-
matica, Vol.31, No.12, pp.1691-1724, 1995.

P. Smyth, “On stochastic complexity and admissible models for neural network classifiers”, In
R. P.Lippmann, J. Moody and D. S. Touretzky (eds.), Advances in Neural Information Processing
Systems §, Morgan Kaufmann, CA, San Mateo, 1991.

H. Wang, G.P. Liu, C.J. Harris and M. Brown, Advanced Adaptive Control, Pergamon Press
Ltd, Oxford, 1995.

J.F. Whidborne and G.P. Liu, Critical Control Systems: Theory, Design and Applications, Re-
search Studies Press, UK., 1993.

M. J. Willis, G. A. Montague, C. Di. Massimo, M. T. Tham and A. J. Morris, “Artificial neural
networks in process estimation and control”, Automatica, Vol.28, No.6, pp.1181-1187, 1992.

Q. Zhu and S.A. Billings, “ Fast orthogonal identification of nonlinear structure models and radial

n

basis function neural networks,” submitted for publication.

20




