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Abstract

This paper proposes the use of a novel type of passive vibration control sys-

tem to reduce vibrations in civil engineering structures subject to base excitation.

The new system is based on the inerter, a device that was initially developed for

high-performance suspensions in Formula 1 racing cars. The principal advantage

of the inerter is that a high level of vibration isolation can be achieved with low

amounts of added mass. This feature makes it an attractive potential alternative to

traditional tuned mass dampers (TMD). In this paper, the inerter system is modeled

inside a multi-storey building and is located on braces between adjacent storeys.

Numerical results show that an excellent level of vibration reduction is achieved,

potentially offering improvement over TMDs. The inerter-based system is com-

pared to a TMD system by using a range of base excitation inputs, including an

earthquake signal, to demonstrate how the performance could potentially be im-

proved by using an inerter instead of a TMD.

1 Introduction

Mitigating unwanted vibration in structures is an important part of the design process,

particularly for structures which may be subject to seismic excitation. In this paper

we propose the use of a novel type of passive vibration suppression control system to

reduce vibrations in civil engineering structures based on the inerter. The inerter was

introduced in the early 2000s by Smith [1] using the force-current analogy between me-

chanical and electrical networks. The inerter represents the equivalent of the capacitor

and has the property that the force generated is proportional to the relative acceleration

between its nodes. Its constant of proportionality is called inertance and is measured in

kilograms.

∗Affiliation from July 2013: Department of Mechanical Engineering, University of Sheffield, S3 1JD.
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Although it was initially used in Formula 1 racing car suspension systems, under the

name of J-damper [2], the inerter’s application in the field of vibration isolation is much

wider today. There are several types of inerters that have already been proposed: the

rack and pinion inerter [1], the ball and screw inerter [2] and the hydraulic inerter [3,4].

Experimental testing includes work on car suspensions systems [5, 6], while the opti-

misation of the inerter-based suspension systems is studied in [7]. The optimal perfor-

mance of the inerter-based vibration isolation systems is discussed in [8–10]. Vehicle

suspensions systems employing inerters are discussed in [11], where a mechatronic

network strut suspension system is proposed. Inerter-based train suspension systems

are studied in [12], while motorcycle steering compensator applications are proposed

in [13].

In general, passive vibration control approaches are preferred for civil engineering

applications as they avoid the associated stability and robustness issues of active con-

trol [14,15]. Traditional passive control devices include base isolation systems [16–19],

TMDs [20, 21] and viscous dampers [22–24]. Background information on these sys-

tems can be found in [25–27]. The idea of using inerters in base isolation systems

for buildings has been recently proposed by [28, 29]. Ikago et al. [30] proposed the

use of an inerter-like ball-screw mechanism to be employed in a viscous mass damper

(VMD) and a tuned viscous mass damper (TVMD) system. The VMD consists of

the inerter-like mass element mounted in parallel with a viscous damper, while the

TVMD consists of a VMD mounted in series with an additional spring element. The

authors studied the seismic performance of a single-degree-of-freedom (SDOF) struc-

ture where the efficiency of a TVMD is assessed in comparison to that of a viscous

damper and a VMD. The ball-screw device designed by the authors was capable of

generating an apparent mass of 350 kg using a flywheel weighing only 2 kg. Recently,

TVMD systems have been installed in a steel structure built in Japan [31]. The control

system consists of viscous dampers located between the lower floors and TVMDs lo-

cated at upper storeys. In [32], the authors present the modal response characteristics of

a multiple-degree-of-freedom system incorporated with TVMDs. Inerter-like devices

have also been used in ineritial mass dampers, also known as inertial dampers. Their

performance in earthquake response reduction is studied in [33].

In this paper we present a novel control system based on the inerter for suppressing

vibrations of civil engineering structures. Given the similarity between an inerter and a

mass element, we propose an inerter-based system with a configuration similar to that

of a TMD, which we term a tuned-inerter-damper (TID). Accordingly, the inerter is

installed in series with spring and damper elements, following the traditional layout of

a TMD. However, as the inerter is a two-port device (since it generates a force based

on relative acceleration), the TID is connected between storeys as opposed to a TMD

which acts on a single storey. TMDs were discussed by Den Hartog in [34] (under

the name of dynamic vibration absorbers) with tuning strategies proposed by him and

others [35–39]. Based on Den Hartog’s guidelines for optimal tuning of TMDs, in this

paper we have developed an analogous tuning mehod for a TID.

The TMD performance is limited by the amount of mass that can be added to the

original structure. Generally, this does not exceed 10% of the mass of the targeted

vibration mode. For inerter devices, gearing allows the effective mass to be far greater

than the actual mass of the device. This is commonly achieved using a rack and pinion,

2



however inertial hydraulic devices, with a helical tube providing “gearing”, have also

been patented [40]. Via this gearing, larger inertance-to-mass ratios can potentially

be obtained for TID systems than for TMD ones without an excessive weight penalty

and as a result overcoming a major limitation of the TMD. We will show that the

performance of inerter-based control systems indicates that they have the potential to

be a viable alternative to traditional TMDs.

In Section 2 we introduce a model for the proposed TID vibration supression de-

vice and for the building. We also compare the TMD and TID transfer functions. Then

in Section 3 we explain how the inerter can be tuned, by considering a SDOF system,

which is analogous to the tuning laws developed by Den Hartog. In Section 4 the tuning

of a multi-degree-of-freedom (MDOF) system is considered. This includes considera-

tion of a TID system alternatively placed at the bottom and top level of a three-storey

building in order to find the configuration offering the best vibration suppression. We

finally study the seismic performance of the optimally tuned TMD and TID systems

for multi-storey structures. Conclusions are drawn in Section 5.

2 Theoretical model

Analogies between mechanical and electrical systems are long established. For exam-

ple, Firestone [41] discussed the force-current analogy, based on a series of equiva-

lences between elements such as the spring-inductor and damper-resistor equivalence.

However, the equivalence between mass elements and capacitors was not complete,

because of the fact that one of the mass element’s terminals must always be the me-

chanical ground. The inerter overcomes this limitation and has the property that the

force generated is proportional to the relative acceleration between its nodes. Its con-

stant of proportionality is called inertance and is measured in kilograms [1]. The force

generated by an inerter is

F = b(ẍi − ẍj) (1)

where b is the inertance and ẍi − ẍj represents the relative acceleration between the

inerter’s nodes.

Smith [1] establishes a series of practical conditions that must be fulfilled for the

inerter to display satisfactory performance. Most important, the device must have lim-

ited mass, regardless of the amount of inertance required and should function in any

spatial orientation and motion.

Several types of inerters have been proposed and patented. The most common

mechanism consists of a rack, pinions, flywheels and gears. Their number and size is

established as a function of the inertance requirements. If we consider a simple device

having one rack, a gear of radius rg and a flywheel with J moment of inertia, the force

can be expressed as

F =
J

r2g
(ẍi − ẍj) (2)

Therefore, the corresponding inertance is b =
J

r2g
.
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In addition to the relative rather than absolute acceleration dependence, a key fea-

ture of the inerter when compared to a mass is the fact that the inertance can be ad-

justed through gearing, without significantly increasing the inerter’s physical mass.

Due to this feature, we propose that a TID represents a viable, lower-mass alternative

to TMDs — this is assessed by considering a multi-storey building subject to ground

excitation.

2.1 Multi-storey building model

The building model is represented by an n-storey structure, reduced to a n-DOF lumped

mass system as shown in Figure 1(a). Two control systems are proposed, a classical

TMD and a new type of vibration suppression system formed of an inerter, a spring

and a damper — the TID. The control systems are modelled between adjacent storeys

and they are shown in Figures 1(b) and 1(c) respectively.

In order to write the equations of motion for the n-DOF structure, the storeys are

divided in three categories:

(i) the bottom storey, connected to the ground, i = 1;

(ii) the ith storey, i ∈ [2 : n− 1];

(iii) the top storey, i = n.

The equations of motion for the system in Figure 1 are written in absolute coordi-

nates as



































(m1s
2 + k0,1 + k1,2)X1 = k1,2X2 + k0,1R+ F1,0 − F1,2

...

(mis
2 + ki−1,i + ki,i+1)Xi = ki−1,iXi−1 + ki,i+1Xi+1 + Fi,i−1 − Fi,i+1

...

(mns
2 + kn−1,n)Xn = kn−1,nXn−1 + Fn,n−1

(3)

where mi and ki−1,i, i ∈ [1 : n] represent the mass concentrated on the ith storey

and the structural stiffness between storeys i− 1 and i, respectively; Xi represents the

Laplace transform of the ith storey displacement; Fi,i−1 represents the force exerted

by the a control device located between storeys i − 1 and i on the ith mass and Fi,i+1

represents the force exerted by the a control device located between storeys i and i+1
on the ith mass - see Figure 1. Forces generated by the control devices act at the storey

levels, between the floors where they are located. The following sections are dedicated

to the study of these forces for both types of control systems and to the computation

of structural displacements, using a unified method, regardless of whether the TMD or

the TID is employed.
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Figure 1: (a) Structural System; (b) traditional tuned mass damper system; (c) tuned

inerter damper system.

2.2 Traditional tuned mass damper vibration suppression system

We will first study the behaviour of classical TMD systems, and write the generalised

expressions of the control forces generated. For the TMD system acting on the ith

floor, the control forces can be written in the Laplace domain as

Fi,i+1 = 0 (4a)

Fi+1,i = (kd + cds)(Y −Xi+1) (4b)

where kd and cd are the stiffness and damping of the TMD respectively, Xi+1 is the

Laplace transform of the displacement of mi+1 and Y represents the Laplace transform

of the TMD mass displacement. Note that we include Fi,i+1 as it is useful when

comparing with the TID device and writing the generalised device equations.

The equation of motion for the y-DOF is given by

Y =
cds+ kd

mds2 + cds+ kd
Xi+1 (5)

where md is the TMD mass. Substituting Equation 5 in Equation 4b it follows that

Fi,i+1 = 0 (6a)

Fi+1,i = − mds
2(cds+ kd)

mds2 + cds+ kd
Xi+1 (6b)
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Equations 6a and 6b give the expressions of the control forces obtained when placing

a TMD between storeys i and i+ 1, namely Fi,i+1 and Fi+1,i acting on mi and mi+1

respectively.

2.3 TID vibration suppression system

If an inerter-based system is mounted at the ith storey level, the control forces can be

written in the Laplace domain as

Fi,i+1 = bds
2(Xi − Y ) (7a)

Fi+1,i = (kd + cds)(Y −Xi+1) (7b)

where bd represents the inertance and Xi represents the Laplace transform of the dis-

placement of mass mi . The other quantities were defined earlier. Note that now, due

to the need for an anchor, the inerter forces are exerted on both the upper and lower

storey. The equation of motion for the y-DOF is given by

Y =
bds

2Xi + (cds+ kd)Xi+1

bds2 + cds+ kd
(8)

Substituting Equation 8 into Equation 7a it follows that

Fi,i+1 =
bds

2(cds+ kd)

bds2 + cds+ kd
(Xi −Xi+1) (9a)

Fi+1,i = Fi,i+1 (9b)

Equations 9a and 9b give the expressions of the control forces obtained when placing

an inerter-based control system between storeys i and i+ 1, namely Fi,i+1 and Fi+1,i

acting on mi and mi+1 respectively. Both forces are non-zero.

2.4 Generalised system

The control forces can be written in a general form, regardless the device used.

Fi,i+1 = li,i+1Tddi+1(Xi −Xi+1)
Fi+1,i = li,i+1Td(di+1Xi −Xi+1)

(10)

where Td =
m̂ds

2(cds+ kd)

m̂ds2 + cds+ kd
, m̂d = md or m̂d = bd for the TMD and TID respec-

tively. Note that for i = 0, X0 = R. In addition, li,i+1 and di+1 are switches that

allow us to generalise the device and indicate the location and type of device used

respectively. Specifically,

{

li,i+1 = 1 , if there is a control device situated between storeys i and i+ 1

li,i+1 = 0 , otherwise

(11)
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and

{

di+1 = 1 , if the control system is represented by an inerter between storeys i and i+ 1

di+1 = 0 , if the control system is a TMD between storeys i and i+ 1

(12)

Now, we can combine the device(s) by using Equations 10 to eliminate the control

forces Fi,i+1 from Equation 3. Therefore, we obtain a system of n coupled equations

with n unknowns, which are the displacements on each DOF (Equation 13).























































X1 =
(k1,2 + l1,2Tdd2)X2 + (k0,1 + l0,1Tdd1)R

m1s2 + k0,1 + k1,2 + l0,1Td + l1,2Tdd2
...

Xi =
(ki−1,i + li−1,iTddi)Xi−1 + (ki,i+1 + li,i+1Tddi+1)Xi+1

mis2 + 2ki−1,i + li−1,iTd + li,i+1Tddi+1

...

Xn =
kn−1,n + ln−1,nTddn

mns2 + kn−1,n + ln−1,nTd

Xn−1

(13)

Note that the displacement of the nth storey depends on the displacement of the storey

below only, while the displacement of a middle storey depends on those of the storey

bellow and of the storey above. Therefore, if we substitute the expression of Xn from

the (n − 1)th equation into the nth equation, Xn−1 will become a function of Xn−2

only. Successively, following the same procedure, any Xi displacement will depend

on Xi−1 only, for i = 2...n. For the bottom storey, we obtain X1 as a function of

R, the ground displacement. After X1 is computed, all the other displacements are

determined.

In order to account for structural damping as well, Equation 13 may be updated by

replacing ki,i+1 with ki,i+1 + ci,i+1s, where ci,i+1 represents the structural damping

between storeys i and i+ 1.

3 Tuning of the tuned inerter damper system

First we will consider a SDOF system, subjected to sinusoidal ground displacement

r(t) = sin(ωt). The uncontrolled system is shown in Figure 2(a). The TMD controlled

structure is formed combining the systems in Figure 2(a) and 2(b), while the TID

controlled structure is formed combining the systems in Figure 2(a) and 2(c).

kd
m
cd

r=x

(a)

m

k

x

F0,1

F1,0
d

F1,0

y
kd

b

cd

d

F1,0

y

(b) (c)

F   =0 0,1 F   0,1

0,1

1

0

1

Figure 2: (a) Structural system 1DOF; (b) TMD system; (c) TID system.
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The most important aspect in the control system design is the appropriate choice

of parameters for all the devices considered. In the case of the TMD systems, optimal

tuning rules were established by Den Hartog [34] for a single DOF system, for both un-

damped and damped vibration absorbers. Den Hartog tuning rules adapted to constant

acceleration amplitude base-excited structures (according to [25]) are given below

md = µmm1; kd =
µm

(1 + µm)2
k0,1; ζ =

√

3µm

8(1 + µm)
; cd = 2ζ

√

kd
md

md; (14)

where md, kd and cd are the TMD mass, stiffness and damping respectively, and ζ is

the TMD damping coefficient. µm is the TMD mass ratio, and it is typically chosen in

the range 1%− 10%.

Many applications of the inerter have been studied. However, these refer mainly to

vibration isolation. Therefore, there are no generally accepted tuning rules suitable for

vibration suppression. Smith [1] gives tuning guidelines for inerters used as vibration

isolators, specifically in vehicle suspension systems. Such vibration isolation tuning

rules do not lead to satisfactory tuning for vibration suppression applications.

Given the similarity between the TMDs and the TIDs, we propose new vibration

suppression system tuning rules based on those established for mass-based systems.

Den Hartog [34] shows that for an undamped structure, regardless of the choice of

TMD stiffness and damping parameters, all displacement response curves in the fre-

quency response diagram pass through two fixed points, P and Q. Moreover, the fixed

points location is influenced by stiffness only and is invariant to damping. The frequen-

cies where these points occur are determined analytically, solving a quadratic equation

in frequency squared, based on the transfer function between the structural and ground

displacements. The stiffness, kd, is then selected such that the amplitude of response

of points P and Q is the same, resulting in the kd expression in Equation 14. Finally,

damping, cd, is selected such that, through one of these points, the gradient of the

displacement response curve is zero — this leads to the damping expression in Equa-

tion 14.

Following a similar procedure, we firstly show that in the case of TIDs, a third fixed

point exists, which we denote as V. Considering the SDOF TID controlled structure,

formed by combining the systems in Figure 2(a) and (c), and using Equation 13, the

transfer function X −R can be written in the frequency domain as

X

R
(jω) =

k0,1 + Td(jω)

−m1ω2 + k0,1 + Td(jω)
(15)

where Td(jω) =
−mdω

2(cdjω + kd)

−mdω2 + cdjω + kd
and j =

√
−1. In order to evaluate the re-

sponse amplitude, the real and imaginary terms are regrouped and Equation 15 is ex-

pressed in the form

X

R
(jω) =

A+Bj

C +Dj
, hence

∣

∣

∣

∣

∣

(

X

R

)2
∣

∣

∣

∣

∣

=
A2 +B2

C2 +D2
(16)
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where A = k0,1kd − k0,1bdω
2 − bdω

2kd, B = cdω(k0,1 − bdω
2), C = (k0,1 −

m1ω
2)(kd − bdω

2) − kdbdω
2, and D = cdω(k0,1 −m1ω

2 − bdω
2). Replacing bd =

µbm1 and kd = αµbk0,1 and regrouping the terms in function of cd we obtain

∣

∣

∣

∣

∣

(

X

R

)2
∣

∣

∣

∣

∣

=
(αµbk

2
0,1 − µbω

2k0,1m1 − µ2
bαω

2k0,1m1)
2 + c2dω

2(k0,1 − µbω
2m1)

2

[(k0,1 −m1ω2)(αµbk0,1 − µbm1ω2)− αµ2
bω

2k0,1m1]2 + c2dω
2(k0,1 − ω2m1 − µbω2m1)2

(17)

where α is a scalar coefficient and µb = bd/m1 represents the inertance-to-structural

mass ratio. Note that µb will be referred to as the inertance-to-mass ratio. Reformulat-

ing,

X

R
=

√

E + Fc2d
G+Hc2d

(18)

where E = (k0,1kd − k0,1bdω
2 − bdkdω

2)2, F = ω2(k0,1 − bdω
2)2, G = ((k0,1 −

m1ω
2)(kd − bdω

2)− kdbdω
2)2 and H = ω2(k0,1 −m1ω

2 − bdω
2)2.

As our objective is to find the coordinates of fixed points, independent of device

damping, cd, as in Den Hartog’s derivation [34], the following condition must be en-

forced
E

G
=

F

H
(19)

Solving Equation 19 leads to the following cubic equation in ω2

µbm
3
1ω

6−2(1+µb+µbα+µ2
bα)m

2
1k0,1ω

4+2(1+α+2µbα)m1k0,1ω
2−2α = 0 (20)

Solutions to Equation 20, giving the frequencies at which the fixed points are lo-

cated, can be computed — note that for TMDs, the equivalent equivalent equation

is a quadratic in ω2 leading to two damping-invariant points. Solving Equation 20

numerically shows that the first two points are located at low frequencies, situated in

the vicinity of the fundamental frequency of the uncontrolled structure and the third

point is situated at higher frequencies, where the response has low amplitude. Given

the point locations, even though we have three fixed points, the ordinate of the highest

frequency fixed point can never exceed those of the two low frequency fixed points.

Based on Den Hartog’s TMD tuning guidelines, we therefore propose the following

TID tuning strategy.

STEP 1 Specify the desired inertance-to-mass ratio, µb;

STEP 2 Iterate stiffness, kd, such that the lower frequency points, P and Q, have equal

ordinates. The initial kd value is based on the TMD tuning rules given in Equa-

tion 14;

STEP 3 Find the location of the three fixed points that are independent of damping: P,

Q and V. This is done by solving Equation 20;

STEP 4 Choose damping, cd, such that the displacement response has a zero gradient

in one of the two low-frequency points, P and Q.
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We now present a numerical example. The structure is defined by the following

parameters

m1 = 1 kNs2/m; k0,1 = 5000 kN/m; (21)

such that ωn = 11.25 Hz. Using the mass ratio µm = 0.1, the TMD system parameters

used in this application are

kd = 413 kN/m; ζ = 0.18; cd = 2.37 kNs/m; (22)

where kd, ζ and cd are selected using Equation 14.

The TID system is tuned according to the method explained, following the steps

above. Firstly, we chose the inertance-to-mass ratio, µb = 0.1, keeping it equal to the

TMD mass ratio. Secondly, the stiffness, kd, is selected such that the lower frequency

points, P and Q, have equal ordinates. The TMD tuning rule for kd given in Equation

14 was used as an initial guess. Therefore, starting from, kd = 413 kN/m, we iter-

ated STEP 2 until we found the value at which points P and Q have equal ordinates,

kd = 434 kN/m. Then, the coordinates of the fixed points are determined numerically

from Equation 20: ωP = 9.53 Hz, ωQ = 11.67 Hz and ωV = 52.83 Hz. Finally, we

calculate the structure frequency response for several damping values shown in Fig-

ure 3, from which cd = 2.5 kNs/m is selected as the optimal damping value.

9.53 11.67 52.83
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Figure 3: Choice of optimal damping for the TID system for µb = 0.1.

Therefore, the numerical values employed are

µb = 0.1; kd = 434 kN/m; cd = 2.5 kNs/m; (23)

Figure 4 shows the frequency response of the SDOF uncontrolled system, together

with that of the TMD and TID controlled systems. It can be seen that the two systems

display very similar behaviour near resonance. At high frequencies, the TID system

response is very slightly larger than that of the TMD and uncontrolled systems, but

the overall response amplitude is small. Each zoom-in represents a comparison of

displacement time histories of the TMD and TID systems for µm = µb = 0.1.
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Figure 4: Systems performance comparison for µm = µb = 0.1.

However, as detailed in Section 2, the inertance-to-structural mass ratio, µb, can

be set to high values via gearing, as opposed to increased added mass which results

in an improved response. Figure 5 , shows the steady state frequency response of the

structure for µb = [0.1; 0.25; 0.5] and µm = 0.1. As seen, the displacements decrease

as µb increases. Given the performance of the TID controlled system, we can conclude

that this represents a viable alternative to TMD devices for 1DOF structures.
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Figure 5: Maximum absolute displacement for µb = [0.1; 0.25; 0.5] and µm = 0.1;

for µb = 0.25, kd = 896 kN/m and cd = 8.5 kNs/m, while for µb = 0.5, kd =
1333 kN/m and cd = 20 kNs/m.

The next section is dedicated to the study of a multiple-degrees-of-freedom struc-

ture.
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4 MDOF system

We now consider an n-DOF structure subjected to sinusoidal ground displacement,

r(t) = sin(ωt). The structure is shown in Figure 1 and described by

M =











m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...

0 0 . . . mn











, K =

















k0,1 + k1,2 −k1,2 0 . . . 0
−k1,2 k1,2 + k2,3 −k2,3 . . . 0

0 −k2,3 k2,3 + k3,4 . . .
...

...
...

...
. . . −kn−1,n

0 0 . . . −kn−1,n kn−1,n

















(24)

In this application, the structural damping is considered equal to zero since its value is

typically small compared to the control device damping. Moreover, this choice keeps

the structural system similar to the one proposed by Den Hartog.

4.1 Modal analysis — A discussion on TID optimal location

It is well known that TMD systems work more efficiently when located near the top

of the structure. This is because the largest displacements generally occur at the top

of the structure. We now consider whether the same is true for the TID systems when

targeting the first mode of vibration. For this, we analyse the modal response of the

controlled structures. The equation of motion for the n-DOF controlled structure, in

matrix form, in the Laplace domain is

Ms2Z + KZ = −M















1
1
...

1
1















s2R+















F1,0 − F1,2

F2,1 − F2,3

...

Fn−1,n−2 − Fn−1,n

Fn,n−1















(25)

where Z = X − R represents the vector of relative storey displacements. Although,

L(r̈) = s2L(r) − sr(0) − ṙ(0), and for sinusoidal input ṙ(0) = 1, for this derivation

we considered L(r̈) = s2L(r) = s2R.

Using the transformation Z = ΦQ, where Φ represents the eigenvectors matrix,

and pre-multiplying both sides by ΦT , we obtain

MMMs2Q+KKKQ = −ΦTM















1
1
...

1
1















s2R+ΦT















F1,0 − F1,2

F2,1 − F2,3

...

Fn−1,n−2 − Fn−1,n

Fn,n−1















(26)

where MMM = ΦT MΦ and KKK = ΦT KΦ represent the modal mass and stiffness matrices

respectively.
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Using the generalised formulation for the device forces from Equations 10 and

performing the transformation from absolute to relative coordinates, the forces vector

on the right hand side can be written as















F1,0 − F1,2

F2,1 − F2,3

...

Fn−1,n−2 − Fn−1,n

Fn,n−1















= Td















l0,1(d1 − 1)
l1,2(d2 − 1)

...

ln−2,n−1(dn−1 − 1)
ln−1,n(dn − 1)















R+ . . .

. . .+ Td















−l0,1 − l1,2d2 l1,2d2 0 . . . 0
l1,2d2 −l1,2 − l2,3d3 l2,3d3 . . . 0
0 l2,3d3 −l2,3 − l3,4d4 . . . 0
...

...
...

. . .
...

0 0 . . . ln−1,ndn −ln−1,ndn





























Z1

Z2

...

Zn−1

Zn















(27)

Note that in the case when TID control systems are used, di+1 = 1 and therefore

the control forces are independent of the ground displacement, R, as the first term on

the right hand side of Equation 27 becomes null.

Now, Equation 27 is considered for each of the four controlled structures and the

results are substituted into Equation 26. Then, assuming that only the contribution

of the first vibration mode is significant, we obtain the following transfer functions

between the modal displacements of the first vibration mode and ground displacement,

for each controlled structure.

(i) TMD system located at bottom storey level;

Q1

R
=

−
n
∑

i=1

(miΦi,1)s
2 − Φ1,1Td

mm1s2 + km1 + TdΦ2
1,1

(28)

(ii) TMD system located at top storey level;

Q1

R
=

−
n
∑

i=1

(miΦi,1)s
2 − Φn,1Td

mm1s2 + km1 + TdΦ2
n,1

(29)

(iii) TID system located at bottom storey level;

Q1

R
=

−
n
∑

i=1

(miΦi,1)s
2

mm1s2 + km1 + TdΦ2
1,1

(30)

(iv) TID system located at top storey level;

Q1

R
=

−
n
∑

i=1

(miΦi,1)s
2

mm1s2 + km1 + Td(Φn−1,1 − Φn,1)2
(31)
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(v) Damper system located at bottom storey level - This results in a transfer fuction

identical with the one in Equations 30.This is because both systems are located

at bottom storey level. The difference consists in the control device transfer

function, which for a TID is Td =
b̂ds

2(cds+ kd)

b̂ds2 + cds+ kd
, while for a viscous damper

it is Td = cds, where cd represents damping.

where mmi, i = 1 . . . n represent the modal masses and km1 is the modal stiffness

of the first vibration mode, Φi,1 represent the components of the first mode shape,

Φ1 = [Φ1,1,Φ2,1, . . . ,Φn,1], and Q1 represents the Laplace transform of the displace-

ment of the first vibration mode. Taking into account the fact that |Φ1,1| < |Φ2,1| <
. . . < |Φn,1| and analysing the modal displacement-to-ground displacement transfer

functions given in Equations 28-31, provided there is no significant modal interaction,

it can be seen that:

(i) The fact that the top TMD is more efficient than the bottom one is verified by

Equations 28 and 29, since the Φ2
n,1 term located at the latter’s denominator is

much larger than Φ2
1,1, present in the former equation. Therefore, the modal

displacement will be smaller if the TMD is located at the top of the structure;

(ii) Comparing denominators on the right hand side of Equations 29 and 31, we no-

tice that the latter is smaller as it contains a relative term, namely (Φn−1,1 −
Φn,1)

2, while the former is the largest component of the eigenvector, Φ2
n,1.

Therefore, the system performance is impaired if the same control systems char-

acteristics, contained in Td, are kept. In order to have identical response on the

first mode of vibration we need to scale the TID system according to the ratio

Φ2
n,1/(Φn−1,1 − Φn,1)

2. This has been verified numerically and is shown in the

numerical example;

(iii) Looking at Equations 30 and 31 it is seen that numerators are identical, while the

latter denominator is much lower due to the presence of the relative term. This

indicates that the response will be improved if the TID is placed at the bottom

storey of the structure. Similarly to (ii), the ratioΦ2
1,1/(Φn−1,1−Φn,1)

2 indicates

that the TID placed at the top of the structure must be over-designed with respect

to the TID placed at bottom level in order to obtain identical performance. This

has been verified numerically and is shown in the numerical example;

(iv) Analysing Equations 28-31 and the remarks above we can conclude that the TID

displays a TMD-like behaviour in the vicinity of the first fundamental frequency,

due to the similarity between the transfer functions of the two devices. At higher

frequencies, we note that Td → cd regardless the type of control system em-

ployed (TID, TMD or damper). Therefore, Equation 30 will lead to the same

results for both TID and damper systems if the structure is excited in the vicinity

of superior resonant frequencies, conferring the TID a damper-like behaviour.

This means that the TID combines the advantages of both TMD and damper

systems.
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4.2 Traditional tuned mass damper & tuned inerter damper sys-

tem tuning

The TMD system is tuned according to Den Hartog’s guidelines, given in Equation 14,

regardless of the device location. These have been adapted to multiple DOF structures,

to target the first mode of vibration.

md = µmmeff ; kd = ω2
1

µm

(1 + µm)2
md; ζ =

√

3µm

8(1 + µm)
; cd = 2ζ

√

kd
md

md;

(32)

where ω1 represents the first fundamental frequency. Please note that the TMD mass

is computed as a fraction of meff , the effective modal mass participating in the first

mode.

The TID system is tuned following the procedure described in 3 and will be detailed

in a numerical example in the following subsection.

4.3 Numerical application

All results derived previously, in section 4, are exemplified in a 3-DOF system shown in

Figure 6, where m1 = m2 = m3 = 1 kNs2/m and k0,1 = k1,2 = k2,3 = 1500 kN/m.

The numerical values were selected for convenience, while retaining realistic natural

frequencies and noting that the parameters scale linearly. As seen in Figure 6, device

configurations are considered by modelling each control system (6(b)-6(e)) inside the

uncontrolled structure shown in Figure 6(a). Note that only one control system is used

at a time.
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Figure 6: (a) Structural system 3DOF; (b) TMD located at top storey level; (c) TID

located at top storey level; (d) TMD located at bottom storey level; (e) TID located at

bottom storey level.

The components of the first mode shape, Φ1 = [Φ1,1,Φ2,1,Φ3,1] are Φ1,1 =
−0.543, Φ2,1 = −0.979 and Φ3,1 = −1.22. We will first study the optimal lo-

cation of the TID by analysing Equations 28 - 31 as described in (ii)-(iii). In this

case (Φ2,1 − Φ3,1)
2 = 0.058, roughly 25 times smaller than Φ2

3,1 = 1.39. In order
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to have identical response for top TID and TMD on the first mode of vibration, we

need to enforce µb ≈ 25µm, with the same scaling applied to the TID system’s stiff-

ness and damping. This is shown in Figure 7(a). Note that the response curves are

not identical since the extra numerator term for the TMD, see Equation 29, has not

been taken into consideration. Then, looking at Equations 30 and 31, we notice that

Φ2
1,1/(Φ2,1−Φ3,1)

2 ≈ 5 which indicates that in order to obtain identical performance,

the TID placed at the top of the structures has to be designed to a capacity that is 5
times larger than that of a TID placed at bottom level. This is shown in Figure 7(b).
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Figure 7: Displacement comparison: (a) TMD top: md, kd, cd and TID top: 25md,

25kd, 25cd and (b) TID bottom: bd, kd, cd and TID top: 5bd, 5kd, 5cd.

Following the remarks above, that have been verified in Figure 7, we conclude that,

in contrast to TMDs, placing a TID at bottom storey level is more efficient that placing

it at the top. This is a clear advantage of the TID over the TMD as the weight of the

device does not need to be supported by the whole structure.

We have analysed the displacement response of all four control systems. The results

in Figures 7(a) and 7(b), suggest that in order to obtain similar performance to a TMD

located at the top of the structure, a bottom located TID must have roughly 5 times

the capacity of the TMD. The inertance-to-mass ratio, µb, can have higher values than

the TMD mass ratio, µm. This is achievable via gearing. The following numerical

parameters are proposed for the control systems elements, based on the tuning rules

discussed in Section 3. The viscous damper located at bottom storey level was tuned

such that it displays similar displacement response with the TID and TMD systems in

the vicinity of the first fundamental frequency.

System µb/µm kd(kN/m) cd (kNs/m)

TMD bottom/top 0.036 27.6 0.38

TID bottom 0.182 138.6 2.5

TID top 0.182 158.5 1.5

Damper bottom - - 22.5

Table 1: Control systems tuning parameters.
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The TID and TMD interter-to-mass and mass ratios are computed with respect to

the effective mass participating in the first vibration mode. Therefore, the TMD mass

ratio is µm = 3.6%, while the TID inertance-to-mass ration is µb = 18.2% of the mass

participating in the first mode of vibration. Similar and much higher mass ratios have

been used before in TMDs [42] and are much easier to achieve with an inerter due to

its gearing. There are several options in choosing the modal mass. Another approach

is shown in [43].
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kd = 138.6 kN/m and optimal damping is cd = 2.5 kNs/m.
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Figure 8 shows the frequency response in terms of maximum absolute steady-state

displacement on the upper DOF for the controlled structure when a TID system is
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placed at bottom storey level. The first two fixed points, P and Q, are shown in the

zoom-in done in the vicinity of the first fundamental frequency of the uncontrolled

system. We highlight the points by plotting a range of damping values including the

optimal one found using the tuning rules. The other two zoom-ins allow us to observe

the structural response in the vicinity of the second and third natural frequencies. The

curve that has a horizontal tangent through one of the two fixed points is that obtained

when cd = 2.5 kNs/m. If damping is further increased, the response is amplified.

Similarly, the case when the TID is placed at the top of the structure is shown in Figure

9.

4.4 Performance assessment of TID systems

Figure 10 shows the frequency response of all four TMD and TID control systems, em-

ploying the optimal parameters presented in Table 1. The best performance is achieved

when the TID is placed at lower level, while the TMD in the same location offers the

poorest results. If a TMD is placed at top storey level, the response obtained is similar

to that of the TID placed at the bottom storey level. The response obtained by placing

a TID at upper story level is also satisfactory. Also note that the TID systems do not

create resonant peaks in the vicinity of the second and third fundamental frequencies,

hence the TID is capable of suppressing the response of all three modes, and not only

of the one initially targeted, as in the case of TMDs. The inerter or mass-related dis-

placement, y (see Figure 6), has also been evaluated over the same frequency range

for the best performing systems, TID located at bottom storey level and TMD located

at top storey level. The two systems have similar displacements in the vicinity of the

first fundamental frequency, 2.74Hz. However, in contrast to the TMD, the TID de-

sign results in small y-displacement in the vicinity of the second and third fundamental

frequencies, 7.7Hz and 11.1Hz respectively.

For the best performing systems, referred to as TMD top and TID bottom, we
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calculated the level of the maximum absolute forces in the spring (Fcd) and the damper

(Fkd) and the overall control force (F ) for the case when the systems is forced in

the vicinity of the first fundamental frequency. These are given in Table 2. For a better

assessment of the TID performance, we have included the control force in an equivalent

viscous damper mounted at bottom storey level. Its characteristics are given in 1.

System Fkd/r(kN/m) Fcd/r(kN/m) F/r (kN/m) stroke/r (-)

TMD top 378 84.4 334 8.99

TID bottom 1513.7 473 1581.6 10.7

Damper bottom - 1500.5 1500.5 25.54

Table 2: Maximum efforts in TMD, TID and damper system elements and overall

control forces.

From Table 2 it can be seen that the spring force is approximately 5.4 times larger

for the TID, which is consistent with the ratio between the stiffness of the two control

systems. The force in the dampers is 3.3 larger in the case of the TID, while the ratio

between their actual damping is 2.4. The overall maximum absolute control force

generated by the TID is 4.5 times larger than that generated by the TMD. The control

force produced by the damper system is similar to that of the TID system. Please note

that if the system is excited at higher frequencies, the damper control force becomes

very large in comparison to those of the TID and TMD systems. The interstorey drifts

and floor accelerations have also been computed. All three control systems displayed

similar performance near the first fundamental frequency. In the vicinity of the second

and third fundamental frequency, the TMD system is ineffective, leading to a response

similar to that of the uncontrolled structure. The TID and damper systems ensure a

good level of vibration suppression, the latter being the most efficient. However, this is

done at the expense of a much higher control force (up to 5 times larger than the TID

control force).

The 3 DOF structure has also been subjected to earthquake base excitation. We

have chosen a ground acceleration recording from the Tohoku earthquake that took

place in Japan on the 11th of March, 2011 which is represented in Figure 11(a).

For this section, the structural damping is no longer kept null, but set to a low damp-

ing coefficient of 2%. All other structural parameters are left unchanged, the control

systems being tuned optimally (Table 1). Figure 11(b) shows the displacement time

history on the upper DOF. Three zoom-in plots are included in the regions where the

displacement response is amplified. The results obtained in case of sinusoidal ground

excitation are confirmed in case of earthquake excitation. The displacement response

obtained with the bottom placed TID is similar to that obtained using a TMD at the top

of the structure.

Figure 12(a) shows the single sided Fourier spectrum of the ground acceleration

time history. Figure 12(b) shows the single sided Fourier spectra of the displacement

response of the uncontrolled structure and the TMD—top location—and TID–bottom

location—controlled structures. The highest amplitudes are attained at low frequencies

and therefore only the 0 − 8 Hz frequency range is shown. The first natural frequency

of the structure is ω1 = 2.74 Hz, tuned to match the high amplitude frequency region
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Figure 11: (a)Ground acceleration time-history and (b)Relative displacement time his-

tory with 2% structural damping.

of the the chosen ground motion. Therefore, the structure is sensitive to the earthquake

chosen. The Fourier spectra show the same performance hierarchy.
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Figure 12: Single sided Fourier spectra: (a) of the ground acceleration and (b) of the

displacement response.

Since the TID systems behaviour when subjected to earthquake load is satisfactory

and very similar to that of TMD systems, we suggest that this new type of control

system represents a viable alternative to the traditional TMDs.
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4.5 Discussion on TID design for high-rise buildings

In the case of high-rise buildings, the control forces necessary for suppressing un-

wanted vibrations become larger. We will consider this through an analysis of a 6-DOF

and a 10-DOF structure, defined according to Section 4 and employing the same nu-

merical values for mi and ki, i = 1 . . . n. We will only refer to the best performing

systems, the TMD top and TID bottom. Inspecting Equations 29 and 30, we notice that

the poles of the two transfer functions are the same provided that the control device

transfer fuction, Td for the TID is scaled by φ2
n,1/φ

2
1,1.

n 1 3 6 10

φ2
n,1/φ

2
1,1 1 5.04 17.2 44.7

Table 3: φ2
n,1/φ

2
1,1 ratio for n = 1, 3, 6, 10

The ratios φ2
n,1/φ

2
1,1 are given in Table 3. This ratio therefore provides an approxi-

mate effective inertance-to-mass ratio between the devices — see Section 4. This might

appear unfavourable for the TID, but we recall the fact that existing inerter devices built

ttain an inertance-to-physical mass ratio of approximately 200 [44] - well above that

required here. Therefore, TIDs located at bottom storey level remain a feasible alter-

native to TMDs.

5 Conclusions

The paper analyses the possibility of using a TID control system as an alternative to

TMDs. The inerter, that has been previously used in vibration isolation applications,

is now employed in vibration suppression. First, a generalised framework for compu-

tation of the response of TMD and/or TID controlled structures has been developed

for n DOF systems. Then, a SDOF structure subjected to sinusoidal base displace-

ment is studied with the intention of deriving a series of tuning guidelines, building on

Den Hartog’s strategy for TMD systems tuning. It is shown that the TMD and TID

systems performance is almost identical when they are tuned at the same mass ratio.

However, the inertertance-to-mass ratio can be increased without significantly chang-

ing the device physical mass, as inerters are geared. Once this is done, the displacement

response is improved. Considering MDOF structures, several TID control system in-

stallation possibilities were discussed. The best structural response was obtained with

the inerter installed at bottom storey level, connected to the ground. This is beneficial

since the control system does not need to be supported by the whole structure anymore.

For a better assessment of its performance, the TID was also compared with an equiv-

alent viscous damper located at bottom storey level. The three DOF structure is also

subjected to seismic excitation and proves to have similar efficiency to that of TMDs.

The small mass and overall size of the device, turns it into an attractive alternative to

passive TMDs and damper systems.
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