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Abstract

Recursive algorithms are derived to compute the generalised frequency response func-
tion matrix of multi-input multi-output (MIMO) nonlinear systems as an analyvtical map
from both nonlinear differential equation models and NARX (nonlinear autoregressive
with eXogenous inputs) models of the system. The algorithm is computationally com-
pact and exposes the explicit relationship between the model parameters and the el-
ements of the generalised frequency response function matrix and can thus provide

important insights into the behaviour of nonlinear systems

1 Introduction

In the past few years theories have been developed to model and analyse a large class of
nonlinear systems through the introduction of the functional series representations of Volterra
and Wiener. Volterra was the first to formalise the mathematical expressions for an integral
series by means of higher degree kernels and Wiener showed how a related series could be
orthogonalised. Early works on nonlinear system identification using the Volterra and Wiener
kernels have been comprehensively reviewed by Hung and Stark(1977) and Billings(1980).
Following the work of Wiener, a great deal of research has been done on the eficient compu-
tation of the kernels of physical systems (Lee and Schetzen(1965); Sandberg and Stark(1968);
Watnabe and Stark(1975); Marmarelis and Marmarelis(1978); Schetzen(1980); Rough(1981)).
More recent results on kernel based identification have been published by Korenberg et

al(1988a), Korenberg and Hunter(1990), Hung and Stark(1991). Most of these kernel based
200391429
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techniques have been used to model single input single output (SISO) systems. In contrast the
Volterra modelling of multi input multi output(MIMO) systems has received little attention.
Early works on multi input Volterra modelling were briefly introduced in Marmarelis and
Marmarelis(1978) and recently Westwick and Kearney(1992) modelled a multi-input system
using the Wiener theory.

The kernel based identification techniques can be considered as nonparametric methods.
But analysis in the frequency domain has the advantage that the integral equations which
relate the input-output in the time domain become algebraic in the frequen;:y domain. The
frequency domain representation of the sysgem can be obtained by applying the multi dimen-
sional Fourier transform to the Volterra kernels. This yields the so called nonlinear frequency
response functions or generalised frequency response functions (GFRF), Volterra transfer
functions or kernel transforms.

Identification of the Volterra kernels or GFRF directly from input-output data has been
extensively studied by Kim and Powers (1988), Tseng and Linebarger(1991), Tseng and
Powers (1993), Tseng and Powers(1995). An alternative approach suggested by Billings
and co-workers (Billings and Tsang,1989; Peyton Jones and Billings,1989;Billings and Pey-
ton Jones,1990; Zhang et 2l,1995) is to estimate a parametric NARMAX (Leontaritis and
Billings,1985) model and subsequently to derive the frequency resporse functions from this
model using harmonic probing.

Although all these techniques and approaches have been applied to map SISO systems
into the frequency domain, the frequency response functions of MIMO systems has not re-
ceived much attention apart from Chua and Ng(1979) and Marmarelis and Naka(1974) who
introduced the idea of extending the Volterra series to multi input single output(MISO) sys-
tems. Recently Worden et al(1995) adopted the Volterra approach to suppress the nonlinear
harmonics of a two degree freedom mechanical system.

The purpose of the present study is to derive expressions for the generalised frequency
response function matrix (GFRFM) for general MIMO nonlinear systems as an analytical
map from either nonlinear differential equation models or NARX (Nonlinear Auto Regressive
with eXogenous inputs) models of the system. The effects of different types of nonlinear terms,
pure input, pure output and input-output cross product nonlinear terms, on the GFRFM are
shown independently and this provides a great deal of insight into the time and frequency
domain relationships among different terms in the models.

The paper is organised as follows. Section-2 briefly reviews the Volterra modelling of




SISO systems. Section-3-4 introduces the concept of Volterra modelliig for MIMO systems
and defines the generalised kernel transform (GKERT) for MIMO systems. The procedure
for estimating GKERT is discussed in section-5. The general form of nonlinear differential
equation models for MIMO systems is presented in section-6 and a relationship which maps
the parameters of these models directly into the generalised transfer function matrix is derived.
Several examples are included to demonstrate the application of the algorithm. In sections-7

and 8 an algorithm to map the MIMO NARX model into the frequency domain is derived.

2 Volterra Modelling of-SISO Systems

The output y(t) of a single input single output (SISO) analytic system may be expressed as

a Volterra functional polynomial of the input u(t) (Volterra,1930) to give

where the nth order output of the system y{®)(t) is given by

n

)

1=1

1

o (2)

and Hu(7s;0mmns Tn) 1s a real valued function of 7y, ....7,, called the nth order impulse response
or Volterra kernel of the system.
The multi-dimensional Fourier Transform of the nth order impulse response yields the nth

order transfer function or generalised frequency response function (GFRF)

Ha(jw1, -..jus) :fm /_ Ba(7, coony o) AT ) g g (3)

When the output is expressed in terms of the GFRF’s, eqn(2) becomes

- fm .j.foo Ho(jws, .o ojwn) [T U )@@t doy ()

O = Gy

where U(jw;) represents the input spectrum.
Inspection of eqn(3) and (4) shows that the n-th order kernel and the kernel transform
are not necessarily unique because an interchange of arguments in hy(7....7,) may give

different kernels without afecting the input-output relationship. To ensure that the GEREF’s




are unique these are symmetrised to give

H™(jowy, o JUg ) = = Z Hu(jer, )W) (3)

* all permutations of
wi,-wn

2.1 Computation of the Generalised Frequency Response Func-

tions for Single Input Single Output Systems

Computation of the GFRF's directly from input-output data is computationally involved
due to multi dimensional FFT,windowing. and smoothing operations. Most of these prob- .
lems can however be avoided by fitting a parametric model to the input-output data and
then mapping this model into the frequency domain to estimate the Generalised Frequency
Response Functions (Billings and Tsang,1989; Peyton-Jones and Billings,1989; Billings and
Peyton-Jones,1990).

Consider & system where a parametric model is assumed to exist and is represented as
M(t; 8,y,u)=10 (6)

where M( . ) is a functional of the 1nput u, output y and 8 is a set of model parameters .
When the v in eqn(6) is substituted by the Volterra functional representation from eqn(4),

eqn(6) becomes

M 0.H w) =0 (7)

So the 'y’ is now replaced by the GFRF’s H = {H:,Hy,...} in eqn(6). Computation of
H(.) by manipulating eqn(7) for arbitrary inputs often results in solving complicated integral
equations. However the harmonic probing technique (Bedrosian and Rice 1971 ; Billings
and Tsang ,1989) can be used to compute ‘H’ from eqn(7). This involves applying a input

consisting of R complex exponentials defined as
R .
ult) = 3 et (8)

og=1

The spectrum of the Input is




“The output of the system under the harmonic excitation of eqn(9) becomes

y(t) = Z Z Hn(jw':: oo 'jwsn )E,’i(w"'l oot Jt

N ( | N
g Z Z Z Ho(jws,, .. .J'%n)e](uylf...wgn)t (10)
n=1 [ail perm of R freg s wes. ot

taken a ai a time} Ugy ,wop ]

To find the n-th order GFRF H,(.), it is convenient to consider the special case R = n; so
that there is only one non-repetitive combination of frequencies {w;,...w,} among all the
possibilities.

Substituting eqn(10) and (8) into eqn(7) yields the following equation
M{ty6,H,w,) =0 (11)

where w, includes the frequencies {wi,...wr}. To compute H,(.), R is made equal to n.
M (. ) will contain many exponential terms but we are only interested in the term with
non-repetitive frequencies el Fwalt,

The procedure of computing ‘H’ by solving eqn(11) was derived using an eztraction oper-
ator €,[.] by Zhang et al(1995). For a given expression, the operator ,[.] for SISO systems

involves the execution of following steps.

o Substitute the harmonic input of eqn(8) and corresponding Volterra expansion of the

output (eqn(10)) into the given expression
» Express the output y(t) as a function of H and w,
o Extract the coefficient of &(“:*~2% =)t from the resulting expression.

As an example applying €, to eqn(10)will give

Q= Y Hufjer,...jwn) (12)

all permutations of
Wi ,...wp
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3 Volterra Modelling of Multi Input Multi Output
(MIMO) Systems

Consider a MIMO nonlinear system having r-inputs and m-outputs. The output of the Si-th

t

subsystem of a MIMO system possessing nonlinearity up to degree N may be expressed as

) = Yy
= 5 () 4300 + i () -

where y-(n)

i, (t) is the n-th order component of the output yj, (t). Each of these components are

homogeneous of degree-n.

. Let the r-inputs be denoted as ugz. (t),.. . ug (t), Eqn.(13) can be expressed as

Z Z Z Z / ) hgl:ﬁl""ﬁn)(Tl,...Tn)uﬁl(t—71)....u53(t—7n)d71,.. 7.

n=1g:=106>=5 Ba=Fa1 82

(14)
where h{is#:8a)(7 . 7)) is the n-th order Volterra kernel of the jith subsystem. The super-
scripts By, ...0, in the kernel correspond to the inputs ug, (t),...ug, (t) that take part in the
n-dimensional convolution with h{i:®w5ad(z Ta). Note that the output of any other sub-
system (the ji-th say), can be obtained from eqn(14) by replacing j; by j;. Thus it will suffice
to concentrate the subsequent analysis based on the j;-th subsystem of a MIMO system. The
analysis of other subsystems is straight forward.

The interpretation of the notation can be better understood by representing a SISO system

using the MIMO notations. Thus the output of a SISO system can be expressed as

N
nE) = 3y
n=1

= ¥+ 720 + .. yM) (15)

where

5 _ : , |
:/ f hn n_“m“(T},...Tn)Ul(t—TIDI.‘..Lll(t—-Tn)dTl_....dTn (16)

Thus the first order kernel for the SISO system hy(.) in eqn(l) corresponds to hgm}(.) in
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eqn(14) and the second order kernel hy(.) in eqn(l) corresponds to hgl:“)( . ) 1n eqn(14) and
50 on.

The Volterra model of an Ni-th degree nonlinear SISO system is completely characterised
by the Ny kernels hy(71), ha(m1,72),. .., ha (71, ... 7). The total number of kernels required to
model a particular subsystem of an'r-input nonlinear system possessing nonlinearity of degree

N equals Tk&)l) where
r) - (r)
keay = 2_ Nk (17)
=
Nkﬁ"}) represents the number of i-th order kernels of an r-input system and is calculated
recursively using the relation

‘r) (r ‘ r—1) , (
@ i) = Ml o el Nk{),, (18)

{1-1) (i-1)

where ‘\Tkt?) = total number of first order kernels for an r-input system =r. As an example
for a system with r =4 and N) = 3, the total number of kernels for a particular subsystem
Tk%;; equals 34.

The kernels are called self-kernels when all the superscripts £y, . ... .. By in hi:#: ""‘9’-)(7—1, v i)
are equal ; otherwise they are called cross-kernels. Each self-kernel is convolved with one input
while each cross-kernel is convolved with at least two different inputs. Clearly all the kernels
of a SISO system are self kernels. The self-kernels of the MIMO system can be assumed
to be symmetric but the cross-kernels may be either symmetric or asymmetric depending
on the properties of the system (Chen,1995). For example the second order cross-kernel
hg"“ﬁlﬁ’-’)(ﬁ, 7;) may not be equal to h(J ’"25’)(72,7'1). The nonlinear interaction amongst dif-
ferent input paths is reflected in the cross-kernels of the multi-input system.

When the effects of all the possible cross-kernels obtained from the interchange or per-

mutation of the arguments are to be included in the output response, the output of the jith

subsystemn can be expressed as

vis (t Z Z Z Z/ / hi: b ‘rl,..'r) ug, (t — 1) ...ug(t — 7)dm, ... dmy

n=1 ﬁ =1 6’!—1




- 4 Elements of the Generalised Frequency Response

Function Matrix

The GFRF of a SISO system includes all the linear and higher order irequency response
functions which are defined as the multi-dimensional Fourier transforms of the kernels. This
will be referred to as the n-th order self- kernel transform. Similarly the multi-dimensional
Fourier transform of the kernels of a MIMO system constitute the elements of the GFRFM.
In section-2.1 the estimation of n-th order symmetric self-kernel transform of a SISO system
was described using the operator e,[.]. Tt will be shown below that the estimation of the
cross-kernel transform of a MIMO system is not quite so straight forward.

Since the objective is to find an analytic map from the time domain system models into
the frequency domain and to compute the elements of the GFRFM, it is worth beginning
by considering a simple example and naively applying the probing techniques to indicate the
problems involved. :

The output of the j;-th subsystem of a 2-input system which includes only kernels up to

degree-2 from eqn(19) is

b0 = LM et [ St -
_/ / hh:u)(mfz)uz(t—ﬁ)ul(t— 2 )dry, drg
*“/_m f_mhzj"'m(ﬁﬁz)ul(t — m)uz(t — 73)dm, drs
T /_: f_o; hgh:zl)(”'h"’?)uz(t — 1 )us(t — 7)dm,
g fj:o /;O:o hgjl:m)(ﬁ’ﬁ)u2(t — 71 ua(t — 72)dmy, d7 (20)

ja

L]

T

However the dummy variables involved in the cross-kernel integrals may be rearranged

and eqn(20) can be expressed as

le ] h(h 1) Tl ui( o= T]_)d'T]_ + / hg_jl:z)(Tl)UQ(t — Tl)dTl

(_]] :11
2

T
o e
L

’1,7‘3)u1(t == Tl)ul(t - Tg)dTl,dTQ
) + h (12:21 ('7'2, Tl)]ul(t - Tl)llg(t = T:)d’fl, dTg

hg17-2)(‘_:_1!_2)u2(t — Tl)UQ(t = Tg)d:’l_, d'T: (21)
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To compute the self kernel transform H2J1 11)(Jw1,Jwg), set

uy(t) = &t + vt and uz(t) =0 (22)

This input pattern is described by &“:* and &“:* which belong to input one. The output of

the system with this input can from eqn(21) be expressed as

111 . Nt . {j1: § A T T{)2:1 . . (31:11) - . eV
(b)) = Hng.l)(_]U-;l}ej it Hlj 1)(]_:;2)6_} 2t irh(zj 1)(Ju«’1,Ju‘3) i H;J, llj(jwzsjl—v‘l)]el(w" Fwn )t

+terms of repetitious combinations of frequencies (23)
Since the self kernels are symmetric eqn(23) can be written as

iyt i i (31: ) Yo jat ; i (T,
° (t) = HED(en)e 4 B u)et 4 oIHE (e
—terms of repetitious combinations of frequencies (24)
z . i1:12),. . g . .
To compute the cross-kernel transform Hgl )(le,Jwg), the two-tone input is split and
applied at the two input points 1 and 2 according to uy(t) = €' and up(t) = e, Thus &1t

belongs to input point-1 and &2* belongs to input point-2. The output of the system under

this excitation pattern from eqn(19) becomes

Ta(t) = B Gen)e + HP D en)e st + [HE ) o, jun) + HP T fup, juy )7

+terms of repetitious combinations of frequencies (23)
. Comparing eqn(23) with eqn(25), the coefficients of ei(v1+«2)t i eqn(23) has been replaced

by defining the symmetric direct kernel transform such that

2HE M Gy, jws) = [HE Gwy, juws) + HE Gy, jun )]

= ) HP ™M™ Gy, jws) (26)

all permutations of
W1,.-wn

Note that the symmetric version of the self kernel transform is obtained by an averaging
operation over all permutations of frequency arguments of the asymmetric kernel transforms.
From this perspective the symmetric self kernel transform is essentially the cverage of the
asymmetric self kernel transforms.

But for a multi-input system, the cross-kernel transforms do not enjoy the property of
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symmetry. Hence it is not possible to define the symmetric cross kernel transform. Instead
an average cross-kernel transform will be defined which is the equivalent of the symmetric salf
kernel transform. In the present example, the coefEcients of elw=eale i eqn(23) is replaced

:12),. .
by QIHE;S (jwi, jwa) where

BBy, B (Gi21),. .
2MHz,, (e, jws) = HI(juwy, jw,) + HY: Djws, jur)

26\"5
_ H(j1:12) I 97
= ) 2 (Jwn,jws) (27)

all permutations of
{w.5]

Note that when w; is permutated to w,, the corresponding superscripts also change accordingly
that is ng‘:m(jwl,ng) changes to ngil:l)(jwz,jwl). Thus the permutation of the arguments
of the cross kernels are not independent of the superscripts of the kernels, but follow a specific
. rule called [w, 8] permutation which will be explained in detail in section-3. Note that the

average cross-kernel transform is analogous to the symmetric self kernel transform.

4.1 Generalised Kernel Transform of Mult;j Input Multi OQutput

Nonlinear Systems

From the example of section-4 it is straight forward to infer that the procedure of computing

each kernel transform of a subsystem differs from ranother and is calculated independently

of the other. Instead of deriving the expression for each kernel transform it will be logical

to define a generalised kernel and derive the expression for the generalised kernel transform

(GKERT). All the elements of the GFRFM can be shown to be the special case of GKERT.
. The generalised kernel of the j;-th subsystem of the MIMO system is denoted as

(18-, Bavuminc Prgyn o)
e S

7itimes yztimes

CKER = h,, T ()

where

Ng = the number of distinct inputs present in the kernel

7, = number of times 3; occurs in the superscript and

Tag = number of times F,, appears in the kernel

As an example, for the kernel hg““)(.), na=2,m=2,v=15=1and 3. =2

The Generalised Kernel Transform is defined as the multidimensional Fourier transform
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of the generalised kernel and may be denoted as g

It is appropriate to mention here that for a SISO system the symmetric version of the GFRF is
computed since this 1s unique and takes into account the effects of permutating the arguments
of the Volterra kernels on the output. Analogously for a MIMO system it is necessary to

compute the average of the kernel transforms.

5 ¢€,-Operator for MIMO System

The extraction operator €,[.] (Zhang et al,1995) for computing the GKERT differs from the

SISO case as discussed below.

Remark-1: (Splitting n-tone Inputs)

While estimating the generalised cross kernel transform where the number of inputs is more
than one, the n-tone input will no longer be applied at a single input point but is instead

split and applied at various input points. Th{g ‘sﬁplittigg patgern depends on the cross-kernel
B B B o [, B e s nd."")

to be estimated. For example to compute Ha T T ngiime (g sy & oo jwn) the n-tone
inputs 1s split as
ug(t) = et 4L +emt
ug(t) = ntyol, +emn o8,
up, (1) = €T L e

Thus for a given expression the operator €,[.] for a MIMO system involves the execution of

the following steps.
e Split the n-tone input according to eqn(28)
o Express the outputs of the system due to the above input excitation using eqn(19).

e Substitute the inputs and the outputs into the given expression
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o Extract the coefficients of elf~:====jt

Before illustrating the eflects of applying the ea[.] operator to specific expressions,the

concept of [w, ] permutation and average kernel transform is introduced.

Remark-1.1(lw, §] permutation)

Since the cross kernels are not symmetric, permutation of the arguments of the cross-kernel
transforms must be followed by a corresponding change or permutation of the superscripts.
Corresponding in this context has a special meaning which will be explained through an
example because neither the frequency w nor the input points ‘3’ of the cross kernel transform

can be permutated independently.

Example

To clarify the above remarks consider the estimation of the cross-kernel transform
1:61.62.83) ; : .
ng‘ Brba "1"‘(w1,w3,w3). This kernel can be obtained from the generalised kernel transform
with ng =3, =1, =1 and 43 = 1. In order to compute this transform the 3-tone input
1s split among the three inputs such that
ug,(t) = €% ug(t) = & and ug, (1) = (29)
This implies that e™:* belongs to the input point F;, €“** belongs to the input point 3; and
&2t belongs to the input point Fa.

(i1:81.,62,83)

Applying |w, 8] permutation to Hj (w1, wq,ws) yields

Z ngziﬁu,ﬁ:,ﬁs)(wh bt w3) — ngliﬁl .ﬁ:ﬂa)(wl’ wa, ws)

all permutations

[w,B]
+ng::5:.ﬁ?3,ﬁ2)(wl,WB,w2)+ng1:63.33,51)(w21wa’wl)
+ng;:ﬁ;,ﬁ1,ﬁ3}(w2’w1’w3)+H(3j1:ﬁa.ﬁz ..ﬁz)(w&wl)wz) + ngz:ﬁs.ﬁ:,ﬁx)(wa’ w'g,wl) (30)

It is worth emphasising that [w, 8] permutation is crucial in the derivation of the ex-
pressions for the GKERT. Since the n-tone inputs are split among different inputs; before
applying [w, 8] permutation it 1s essential to 1dentify the different frequency components of
the n-tone signal and the corresponding inputs where these belong or are applied. Then [w

k)

B] permutation would imply that when any argument of a kernel transform H{)(.), w; (say)

\
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which belongs to input point 5; is permutated to wy (say), 5; must change to 3, such that
&“x* belongs to the input point .
Average Generalised Kernel Transform

The average generalised kernel transiorm is computed by taking the [w, 3] permutation of the

asymmetric kernels and is defined as

!j::ﬁl!..,lﬁ2‘.....‘ﬁﬂd,...)
S S~ S —

71times yytimes Yagtimes

Hna':g . (jw]J """ an)
‘-_rj‘-....,B'}.,...... Qg s
: (i LA Bra )
voiimes  yplimes Tagtimes . 7
i > Hi ! (Jwiyeenn.. jwn) (31)

* all permutat:ons

[w.5]

Note that the left hand side of eqn(30) can be denoted as 3!Hj] (s ﬁ‘ #as 'E‘J(ul,wg,wg).

Applying €,[.] to y;, gives

(32:2-,..., 09, o Byl )
\—.\,—/\.\,_/ R
~.times 7otimes Tagtimes

€aly;.] = 1! Hna__

Example-1

In order to further illustrate the use of the extraction operator, the first second and third order
GFRFM of a MISO system denoted as GFRFM®), GFRFM(?) and GFRFM®) is considered
below.

Consider a MISO system described by the equation

a1y1 + a2y, = b1u1 bg‘.lz + C1y1 + Cz}’l "f' C3y11.12 (33)
For this system

GFRFM™ = [H{ ”(m B )]
GFRFM® = [H8 ™ Y(jwy jwa), HE ) Gwr, jwn ), BE (g, juwn))
GFRFM® = [H{™ ) (un, jwa, jws ), HY )(leajmdf-‘«a),

999

Hgl:l")(jw‘lajuﬂ'ﬁs jws), Hgl'“')(le,Jwa ]u-s) (34)

o I §




The estimation procedure of a few of the kernel transforms will be illustrate
d before

proceeding to analyse a MIMO system.

Computation of Hgl:l)(jwl)

To compute Hgl:i)(jwl), the 1-tone\input €t is applied at input point-1, and all the other

inputs are made equal to zero i.e.
ur(t) = &' and uy(t) = 0 ' (35)
The output of the system will therefore be expressed as
ya(t) = HIN (juy )t | (36)

Substituting the value of yi(t) and w(t) in eqn(33) and equating the coeflicients of &“:* gives
(37)

Similarly the computation of Hglij)(jwl) will be carried out by applying the probing signal at
input point-2 to give

us(t) = &, and u;(t) =0 (38)
Substituting these in eqn(33) and solving the resulting equation gives

oo b
H(lm) ‘UJ :—2—‘* 39
Vo) = e (39)

Computation of HS"*(juw,, jws)

Note that the number of inputs or input points to this kernel transform are two. So the 2-tone

input el“1* 4 elv2t is split such that
Wy (t) = &* and wy(t) =2 (40)
The output of the system under the present input excitation pattern becomes

:Yl(t_) — Hglﬂ)(jwl)eju:t 4 H(llif)(jw:)ejw:t + [H(gl:lg)(jwl,jwz> - H(zlijl)(jwzlju’.l)}ej(w;+u:)t

+terms of repetitious combinations of frequencies
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HY' ™) + Hy ) st + 2HE n, jwa el =2
+terms of repetitious combinations of frequencies (41)
Substituting y1(t), ui(t) and up(t) in eqn(33) and extracting the coefficients of eilws+w:jt yields

rrp(1:1) . :2) /- o) PO 1)ge  an
QEH(I:”)(.] . Cl;_Hl 1,(Jw1)Hg1 2)(JL&)2) @ Hgl 2)(]%’2)}151 U(lejj

- : : 42
Zavg a1 (jwr + jws) + a; 45)
Computation of Hgmu)(jwl,ng,ng)
The three tone input is split so that
w(t) = &1t + 42t ad uy(t) = &2t (43)
The output of the system under the present input excitation pattern becomes
ni(t) = H e )e = B Gwp)e st 4 HE D) (jug e
| 13 . 5 wy—w 12)0. : j(wo+ws
+2IHE Gy juon )0 1 QIHEID g g Yeller s
+2HE P ey, juog )Tl 4 SHEM oy, ju, juog )il Fuatun):
+terms of repetitious combinations of frequencies (44)
Substituting the values of y1(t), u;(t) and uy(t) in eqn(33) gives
Mg Vwndoniwn) = o Y BI(en) B jwn, jus)
all pe[i;'.:\gltanun
v 3 P Gen)H e ) B ws)
all pe[;rx:ag)lalxon
(45)

6 Nonlinear Differential Equation Models for Multi

Input Multi Output Systems

A wide class of nonlinear systems can be described by nonlinear diffe;ential equations. The

dynamics of ‘j;-th” subsystem of an r-input m-output MIMO nonlinear system can be repre-
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sented by f)
M n m m m T T T
n=1p=0a:=1ars=x Qp=up—y1 5:=1 G =0 ﬁq:_‘:fq_]
g B1,.-B - 1 . 1
Z c;{;i"'ﬂp’ i ST IEY P g ) HD Ve (1) H D g, = D (46)
I, lpsq=0 i=1 i=p+1
where p + g = n and the operator DY is defined as
. dlix(t ,
Dlix(t) = ;‘t( ) (47)

‘L’ is the order of maximum differential. The parameter cggl.--ﬁpnﬁzx--ﬁq(jl t 11, . lptq) 1s associated
with the term []%, Dby, (t) f:pqﬂ D Ug,_, in the j;-th subsystem.

For example the equation

21y1 + y1 + b1y2 + baye L+ cqup + dl&'f‘?h

doy1y2 + day; + dajails + dsyai; = 0 (48)

which may describe the first subsystem of a 2-input 2-output system would be represented in
the above form as ¢jo(1:1) =a; clp(1:0)=1.0 2 (1:1)=1h,

fo(1:0)=by, cf(1:0)=c; ci}(1:00)=4d;, cli(1: 00) = d,,

c35(1:00) =ds, cl3(1:11)=dy, c2(1:01) = ds.

Example-2

Prior to deriving a general expression for the frequency domain mapping of differential equa-
tion models, consider a simple quadratically nonlinear system and map this into the frequency

domain to calculate the linear and second order GFRFM. The equations of the system are

€0 10.20%2 + 1.1y, + 14y, = 1, — 0.1y% — 0.2y1y, — 0.1y3

£ 10.292 1+ 4.06y, + 0.72y; = uy — 0.1y2 — 0.2y, y; — 0.1y2

(49)

The GFRM®) and GFRM(®) which denote the first and second order GFRFM are

GFRFM® = Ny - (50)




‘ Hflrll}(:w LU) H(1:12

o L 2 J@, Jw2 2
GFRFM® = -
2

{2 3 : ;
H2211)(JW1-,J°J‘2) H )

. . (1:22,. 3 .
YGwr,jws) HY Njwr, jws)

Geny jwz) HEP 50, i) )
Each column of the GFRFM corresponds to a particular configuration of the inputs. To
calculate the first column of the GFRFM®), apply uy(t) = €% and uy(t) = 0 to get the

probing expression
yi(t) = HVjwn )&t and y,(t) = HEY(joy )it ' (52)

Substituting these expressions in eqn(49) and equating the coefficients of ef~:t gives

=i

2(w) + 1.1 1.4 1.0

, e . (53)
72 (Jw1)® 4+ 0.2(juy ) + 4.06 0.0

Similarly to compute the second columnn of the transfer function matrix apply us(t) = vt

and u;(t) = 0 to get the probing expression
ya(t) = HP(jr )&t andys(t) = HED(jun )&= (54)

Substituting these expressions in eqn(49) and equating the coeFcients of &1t gives

=,
H{ ) (jw;) (jw1)? +0.2(juwy ) = 1.1 1.4 0.0 (55)
— o

Computation of Second Order GFRFM(?

From the GFRFM(?), the first and third column are the direct kernel transforms and their
calculation is similar to the calculation of the GFRF of a SISO system. To illustrate the proce-
dure, consider the estimation of second column of GFRFM(®) which consists of Hgl:u)(jwl,ng)

and ngju}(jwl,jwz). The two-tone input &1t + &¥“2* is split such that

ui(t) = " and uy(t) = &2 (56)
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The output of the first and second subsystem under the present input excitation pattern

becomes

] . July (i . s t :12) /. . (1: . . A% 3 e g )
Yl(t) = H(ll U(lejEJ et H1l 2)(J’U«'z)eJ 2ty ngl ' )(thJw‘z) 5 Hgl 21)(]’-*1‘2;Jw1),! gllrtunlt

Q!H(l"m)(ju;kjwz)

Zavg

+terms of repetitious combinations of frequencies

ya(t) = HFV(wi)et + HPus)et + [HZ(jwn, jwn) + BE D ju, juy )] lertale

23H£2:12)(1w1 Juwz)

<avg

+terms of repetitious combinations of frequencies (.

(31
3
e

Substituting the values of y;(t), y2(t), ui(t) and us(t) in the system equation and extract-

. ing the coefficients of el(«:*=2)t yields
dir dio QFH(?if,lj)(jwhjwz) 011 ("8)
& = J
doy daz Q.EHéi?)(jwl,ng) 22
where

dy1 = (juy +jws)* + 0.2(jwn +jw2) + 1.1, dip=14

dgy = 0.72 and dgp = (jwi + jwa)® + 0.2(jwy + jwa) + 4.06
)

o= =01 Y HI(Gw) ) H (u,)
all permusation
[w.B]

® -02 Y HE(ewn)H ) (w)
all permutation

{w.5]

=01 3 HPY(wn)H ()

[w.8)

np = =01 Z Hgl:l)(j%)ﬁgl:z)ﬁwz)
all permutation
[w 5]

=02 Y HPV(w)HT (jwn)

P
aii permutation
{w.3]

[ 2%}
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-01 Y HPw)H (jw,) (60)
all permutation
fw ]

6.1 Frequency Domain Mapping of Nonlinear Differential Equa-

tions

Example-2 demonstrates the computational procedure of the Generalised Frequency Response
Function Mazrix of a simple quadratic nonlinear system. When the order of nonlinearity and
dimensions of the system increases, extraction of the elements of the GFRFM using a step
by step procedure becomes tedious. It is therefore necessary to find the general expression
for the elements of n-th order GFRFM denoted as GFRFM®). This will be derived in the
present section.

. Note that the model of eqn(46) consists of various terms which can be divided into three
types : pure inputs, pure outputs and input-output cross-product terms. Although applying
the €, operator (Zhang et al,1993) to the system equation will result in an algebraic matrix
equation whose solution gives the GFRFM, it will be physically more appealing if the contri-
bution of each type of nonlinearity to the GFRFM can be explicitly expressed independent of

* the other nonlinear terms. Effects of individual nonlinear terms on the GFRF of a SISO sys-
tem have been studied by Peyton Jones and Billings(1989), Billings and Peyton Jones(1990),
Zhang et al (1995). A similar type of study will be carried out to determine the contribution
of different types of nonlinearity to the GFRFM. These will be described in the following

remarks.

*» Remark-2 : Pure Input Nonlinear Terms
G1:Brs o Bayeee Brg,-.n)

q1times yotimes Tngtimes

While computing the generalised kernel transform Hy, (Gwiyen.... jwn ), the

effect of applying €, operator to a pure input nonlinear term denoted as [UM] is given by

. . 1 . 1, i ih
€n [UN]] = Z (3(“"1 )11 L (ijl ) M Z (le_'_h ) oL L. (Jw‘li 5, ) T+

all permutations of all permutations of
Hgmeiyy w1+‘71 "”u'rl +7;
Z (]w )11+71+ Fng_4 (jw )l_—. (61)
149, + +7“df1 T n /

all permutations of

]

Yl 4 Tng_y ' ¥

where UM the Ni-th order nonlinear terms of the input consists of
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n;-th order factor of ug, ,

np-th order factor of ug,,

nnd-thﬂorder factor of ug, , such that
M = o o o omn Pl o Ty amd
max(n;) < 7,
max(n;) < 7,

max(nnd) S ,Tnd

The terms that constitute the subclass of pﬁre input nonlinear terms [U™: are

¥ ) ¥+ 5 ; n li,
Hi;:l D™ Ug, (t) Hi2=1—|2-’)'1 D* uﬁ?(t> ¥ Hi:d:1+q«1+...+’rnd_1 D 4 uﬁnd(t)

The coeflicients of these terms are of the form

ﬁl)"'lﬁE:"""ﬁnd"'
—_—— e S —

vitimes  yotimes g times

Coq M s s o da)

As an example consider the calculation of the kernel transforms ng::ﬁ: 'ﬁ""e?)(.). When
this kernel transform is represented in terms of GKERT this gives 1y =2,% =1 andny =2.
The terms that will contribute to this kernel transform are the subset of all the nonlinear input
terms which are of the form D" ug, (t)D%ug, (t)D*ug, (t) having a coefficient ¢35 72 (j1 : L, 1o, 13)

0,3

Remark-3: Pure Output Nonlinear Terms

For a SISO system, a pure output nonlinear term of degree p will contribute to the n-th order
GFRF when p < n. Since the number of subsystems of the SISO system is only one, the p-th
order output nonlinear term consists of output terms of the form [J2; Dy (t).

The p-th order factor of pure output nonlinear terms of a MIMO system denoted as YP,
will contain the terms of the form [JF_, DUy, (t). When all o;,i=1,....p are equal YF is
called a pure inter subsystem nonlinear output term; otherwise it is called an intra-subsystem
nonlinear output term. The coeflicients of these terms are of the form Gy ¢ Lty s - o 0a)

Applying the ¢, operator to YF gives

elY? = Z Hoa® (juwy, .. jwn)  forp<n
all pe:ri-:::‘:]ﬁi::\a of
= f forp>n (62)

where Hge (. ) denotes the contribution of the p-th order nonlinear output terms of the

R .
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form T[], D%y, (t) to the n-th order nonlinearity. This is estimated recursively as -
n-p+1 ( )
i Dy ,...eu o f-'f u---ﬁc; : . . ! . : » p il
Hn‘Fp' p—1 1 Z H B (J"-‘Jl: ...Jw]-) nplp 1 (JL:J,-_H, --an)(J(—V‘l T w0 )]. : (63)

where 3;, corresponds to the input point where €*:* belongs and f,, corresponds to the input

point to which & belongs.

The recursion finishes with p = 1 and H (ju, ....jwa) has the property
Hay(.) = Hipfoe e fond ooy, o) (ot + e + jon) (64)

Remark-4: Input-Output Cross Product Terms

. For a SISO system the p-th order factor of the output in conjunction with the g-th order
factor of the input contribute to the n-th order GFRF provided p+q <n . For a MIMO
system the p-th order factor of the output belongs to the class Y? and the g-th order factor

of the input belongs to the class U? which consists of

n;-th order factor of ug,,

n,-th order factor of ug,,

ne-th order factor of ug,, subject to the following constraints

max(ng,) < Yn,

The general form of the subclass of the cross-product terms that qualify to contribute to the

GKERT are expressed as

p+ny p+oi+n;

P
[YPU? = J]Dyal(t) I] DYug(t) JI Dhugl(t)
=1 i=p+1 1=p+mnj+1
pP+q

I1 Dhug, (t) (63)

i=p+ny+na+..+noa,

The coefﬁaents of these terms are of the form
&1,..0p, fi, . Yo ﬁﬂ.d_
\'-x/'" \—-\,—/

ny times na H!‘ncs:\nd mes

Cpq Ji. ¥ gy --lp-i-q)
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The contribution of each possible (U9} differs from another. To find the contribution of

the general term [U9] the following notations are introduced.

Let QF*, ... Q0 represent the variable of each combination of +; frequencies belonging to

the input up, (t) taken n; at a time:

Similarly let QF, ...QF represent the variables of each combination of ~ frequencies

belonging to the input ug(t) taken n; at a time.

Applying the e operator to the [U? part of the cross-product term which will extract the
O

coefficients of gives

«lUf = D S GR)e . Gap )

all combinations cf Wy ey, all perm. of

3 - s * i L
taken nq at a ume .ﬂl ,..in

Z Z (J Q'{'z )1p+n1+1 o (‘]ngz )lpﬂlﬂg o

all w

45 jually all perm. of
‘ A‘Y".’l 'T:. ".'2 qﬁz -T2
taken no al a time 3% na
sy T8 s, 2 L sy Tngnl
Bdny o Fndni ( d e
E: E: (J“Ql ) “'JQ“d)
ail w, X all perm. of
4‘?‘”‘.;‘1-.. W:"C—' Wa Q-""ii p'md
taxen Ang al 8 iime 1 - -n“_d
all wy ,'_z,?: ail ul_._?:‘ ""u71+'?2 ail u1+_rl+ '-'nd__q ees iy
taken n; at a time taken np at a time =

taken np, at a iime

T, Y. G e

all perm. of
T 41
ﬂl ,..ﬂni

Z (J Q’lrz )lp+n1+1 o (jQ:g )lp+n;+n2

all perm. of

7 T2
912"‘9“:

T (e et (G0

all perm. of
n'rnd ) _n‘?nd

1 fing
E : E : : § (U)
= BN Hn,qc(Qq) (66)
all Wy ey all u1+,'1 ,,,.u,71+,,2 all w1+11 +.. .Tnd_j_ el
taken njy at a time taken np at a time

taken nng at 3 time

where H(Y) (Q,) represents the expression inside {.} of the above equation(66) and

n,qc

Qo = [0F,...08,... Q... Q0] (67)

n;?
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D ya, (t)Dug, (t) (w1 )2 (w2 + jw2 ) T perm. fug) He™ ﬁ’“‘”(Jm jwa)
i (sz)]z(}wl —5—](.03) Zaﬂ perm. [w 2} H . (leﬁjc”’ )
0 —— e rg.‘;f..c.
DMy, (5) D, (5) | (Geos)2 (on + w2)" Tt perm. 0.1 B (jwi,jwa) |

Dbye, (1)DFug, (1)D*ug,(t) | (Tw pesm. (J0n ) (jn ). (jeoa) Hy ™ (o)

3)
D% ya, (£)D2ug, () DB ug, (t) | (jwr )2 (juws)2). (sz)l‘H(a (ﬁ ws)
+ (jwa)?(jws)?) (e )2 HE) ()
D"ya, (t)Dug,(t)D%ug,(t) | zero ; since B; occurs once in the kernel transform
a second order factor of [ug,] will not contribute
to the kernel transform -

Dllyth(t)Dlzyaz(t)Dlzuﬁl(t] (j““l)la Zallr perm. Haz al(J‘*‘"’:J“’JBJ
(JWZ) Zall[p;xirr H$22 =4 (le,JuJB)
Dljyai (t)DbyCM(t)DIauﬁz (t) (J“‘E)l Zall[ P:r]rn. 2 J(JWI)J&-@)

w.e

. Table 1: Contribution of input-output cross product terms to ngl:ﬁ‘ i ’ﬁ:’)(jwl,jwz,ngj

Now applying the extraction operator to [YPU9] gives

&[YPUY = 3 D 2 HERQC(%) >, HZiP (Onsq)

all vy ey MLy oy gy, 8l “lpyy oy perm [w,5]
taken ny at a time taken no at oa :1-.-= taken ang at s '.imz
(68)
where

_ ¥ ’Yn Tng

Dhcns = [tos Wy 5 1 idla Q[Q g ool K05 ® o Kl |
= [wr, w2y . wa] () [2] (69)
. that is Q2,,_, is disjoint from the frequencies [w;, w,, . . .wp)| and is obtained from the intersection

of the two sets given above.
To clarify the notational complexities of the above expressions, the effect of applying the
extraction operator to a certain class of input-output cross product terms while computing

the kernel transform ng’:ﬁl‘ﬁ‘ 'ﬁzj(jwl,ng,ng) are illustrated in the Table-1

6.2 Mapping Nonlinear Differential Equation Models of Multi
Input Multi Output Systems into the Frequency Domain
The final phase of the present study is to map the full differential equation of the system into

the frequency domain. From remarks 2,3 and 4 it is obvious that among all the terms present

in eqn(46), only the linear output terms will produce a term &{~:+-==2)t with HU(.) appearing
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as a coefficient. All the other terms will only produce terms with lower order Hf')(,) i<n,
as the coefficients. Also for a valid input-output map to exist it is essential that there must

be at least one linear output term present in the system model. That linear output term cap
belong to any subsystem. Since applying the e, operator to linear output terms produces
a term with coefficient H{)(.), the linear output terms from eqn(46) are brought to the left

hand side and all other terms are taken to the right hand side. Thus eqn(46) becomes

m L
< 2o | 2 €din s 1)D e, (t)
;=1 11:0
N) m . .

L p
> Coiro By iy, dpg) [T Diyes(t) I] Dhug., (70)
11,<1p+q20 =1 i=p+1
Applying the ¢, operator to eqn(70) gives
613‘ ﬁ?a"' 'i“da"')
‘—-v—’

m
‘71 imes ’12 imes Trnoativyes

- Z Z c]D - ]1)(_]&)1 + T J"’dn)ll nIHnavg h (jwlt """ j"“‘"n)

a;=1 |1;=0
P, ﬁ ﬁm---
\_\,_/
1 times imes~, . times o
Z 0q 0 (il dgea [UP]
1;,1,=0
n m m L
+2 2 2L 2 SRRt huelp)ea [YE]
p=2ao=1 @p=ap—1ly,lp=0

@1-@py Prie. Ba, o Prgi
n—ln—q L nj timesng hmesnnd times PTTQ
35 Y e e 7707
q =

=1p=11;lp44=0

(71)

Note that eqn(71) will have m-number of variables Hf_‘flg)(), a; = 1,...m. Applying the ex-
traction operator to the remaining m — 1 subsystems will finally give ‘m’ number of equations
which can be solved to get all the GKERT corresponding to the particular column.

After deriving the general expression for the kernel transform it is simple to calculate the

GFRFM of any system by using eqn(71). This is illustrated in the next section.
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Computation of Hgl:m(jwl,ng) of Example-1

When the parameters of eqn(33) are represented following the general notation of eqn(46) this

) ar
gives ej4(1:0)=1ap co(l:l) =g coa(l:0) = —by, cZ,(1:0)=—b,, c3p(1:00) = —¢y,
B(1:000) = —c, c122(1: 000) = —

For this kernel transform ) =1,y =2 and m = 1. Putting these values in eqn(71) gives

- [320‘3‘*’ ‘WE) + aIJQIH(.“ )(JL’-’I jer) = ¢ Z Hw(]% jwa)

permutation
[w,2]

» 3 . 1’ 2 .
= a Y Hw)EGw,)
permutation
[w.5)

= o[HGw) B Gws) + B Gw,) B 6o )]
(72)

"'7]
: ;i?
i

It is simple to show that for this example Hgl"m)(jwl,ng) equals H(zl:“)(jwl,ng)

—on o Ve

Computation of H( (_]u..’l jwz, jws) of Example-1

For this kernel transform 8, = 1, 8, = 2, 91 = 1 and v, = 2. Putting these values in the

e

e

general expression of eqn(71) gives

it

1]
i

; : - Ay, & s b e .
— [a2(jwn + jwz + jws) + a4] B!Hg];vl;z'(J%:sz,Jwa) =Q z Hééwasz;Jwa)
permusation

[w.p]

+ez ) HF(wnjwsjws) el YD (wr)’(ws)?JH Gwr)

permutaiion all permutation
l.u‘_B] wy

(73)

T

Dividing the coefficient of Hgiiw)(jwl,ng,jw;g) on the right hand side with the left hand side

of eqn(73) gives required result.
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7 Representation of Multi Input Multi Output Sys-

tems in the Discrete Domain : The MIMO NARX
Model

The output of the ji-th subsystem of an r-input m-output system when represented by a

discrete Nonlinear Autoregressive with eXogenous input (NARX) model may be expressed as

N! m

yi.(k) =>" i i

n=1p=0a;=1a2=c

T T

¥ 2 gl 0
161=15:=81  Bq=E£q-1

K _ . p P+q
Z C;é"'ap'pi'“ﬁq(h : kl, ..kp_;q) H ya‘(k — 1{1) H uﬁiﬁp(k - k:) (?4)
i=1

ki, kptq=1 i=p=+1

Note that the NARX model is the subset of the NARMAX (Norlinear Autoregressive Moving
Average with eXogenous inputs) model without the noise or moving average terms. As an

example consider a 2-input 2-output system

yi(k) = 0.5y1(k—1) +ui(k —2) + 0.7ya(k — 1)+ 0.1yz(k = Dw (k ~ 1)

P e
~1
(631

S

This would be represented- in the general form with the following parameters :
ergll + 1) = 0.5,655(1 £ 1) =0.7, ¢, (1 : 2) = 1.0, oL s 00) = 010008 2] =08, ekelD: 1) =03
(21 =1.0,e2(2:12) = 0.2,

Computation of the GFRFM of the system from the NARX model can be done follow-

3

ing a similar procedure adopted for differential equation models. The contribution of pure
input,output and cross-product terms to the generalised kernel transforms can be derived
analogously. Before deriving the expressions it will be convenient to begin with the mapping

of eqn(75) into the frequency domain.

Computation of H{""(jw,)

The elements of the first and the second order GFRFM of the svstem denoted as GFRFM()
and GFRFM(® are the same as shown in eqns(50) and (51).
To calculate the first column of GFRFMW®), apply u;(k) = ¢ and us(k) = 0 to get the




probing expression -

vi(k) = Hgl:l‘)(jwﬁej”” and yo(k) = Hgg:]j(jwl)é“":‘ (76)

4

Substitute these expressions in eqn(75) and equate coefficients of & to give

. . s _1 .
H(ll'l)(jwl) 1 —0.5e™  —(.7e™« g =i (7
; = _ _ 7
H*(Gawn) —0.3e7 1 — (.9e™i% 0.0 )
Similarly putting us(k) = &* and u;(k) =0, the second coltmn of the linear GFRM can

then be expressed as

-1

HY(jwr) | | 1= 0.5e7  —0.7e7 0.0 -
HE ) (e ~0.3¢7 1 —0.9e % el
Computation of HY ™ (jw, . juws)

Note that the number of inputs or input points of this kernel transform are two. So the 2-tone

input &1t + &“2* is split such that
uy (k) = & and uy(k) = & (79)

Following a similar procedure as in Example-2, the expression for the cross-kernel transform

becomes
. . -1 . n.9 .
AHE D jwr, jw2) 1 — 0.5e-iwitwn) () 7e-ilwats) 0.1 HP D (ju, Jeivs
2MHE juw, juwo) —0.3e7Hwite) 1 _ 0 gemi2wrtwn) 0.2 HEY (o, Jemizes

8 Frequency Domain Mapping of Nonlinear Discrete

Time Systems

The model of eqn(74) can be divided into pure input,pure output and-input-output cross
product terms. The contribution of each of these terms can be found by applying the e,

operator. These are given in the following remarks.

(80)




Remark-5 : Pure Input Nonhnear Terms

While computing the generalised kernel transform Hy

jwlr '''''' jwn), the

effect of applying the €, operator to a2 pure input nonlinear term denoted as (U] is given by

N —Jluw. k, = . 4w, k -3 . Fo
€., [DNI} . : e il 15 -+ 4 71) E e Jl’dl‘i“ﬁlk:"‘?l?m‘d'fi""‘l?k"l‘f"?l‘)
all permutations of all permutations of
Wy e T

Z e_j(ulﬂ"'}’l'!"--"l’r.d_l kl*'rﬂr ----- +'1nd_~_f"'+!"'"kﬂ) (81)

all permutations of

“1471 4 ¥ng_q own

The above expression is true for N) = n else ¢, {UN’] =0 for N; # n.
Compare eqn(81) with eqn(61); roughly the difference is that the terms of the form (jeoy )t
have been replaced by terms of the form e™“*. Eqn(81) may be called the discrete equivalent

of eqn(61).

Remark-6: Pure Output Nonlinear Terms

The p-th order factor of pure output nonlinear terms will be of the form [TF_; v, (k — k;) and

will be denoted as YP. Applying the €. operator to YF gives

e[v?) = > Hoer(juy, .. jwa) forp <
all permutations ofwy,...wn
= [ forp>n (82)

where HZe=%:( . ) denotes the contribution of p-th order nonlinear output terms of the

form []f_; ya;(k — ki) to the n-th order nonlinearity. This is estimated recursively as

n—p+1

Hgges-ioea() = 30 BP0 P o, un) B (s, - Jun)e it -talke (83)

-1,p—-1
=1

where f3,, corresponds to the input point where & belongs and so on.

The recursion finishes with p = 1 and Hi4 (juwn, -...jwn) has the property

H;i‘ll = Hgallf‘la-_ ‘Hrﬁci)(jﬁb’l, ”.jwn)e—j(u;-i-.,..fun)kl . (84)




Remark-7 : Input-Output Cross Product Terms

For a MIMO system the p-th order factor of the cutput belongs to the class YP and the g-th

order factor of the input belongs to class U% which consists of

n;-th order factor of ug,,
no-th order factor of ug,,

Tn,-th order factor of ug, , subject to the following constraints

The general form of the subclass of the cross-product terms that qualify to contribute to

the GKERT i1s expressed as

P P 1y p+ni+ng
[YPUY] = [lyalk-k) I] walk—k) J] wuslk-k)
1=1 i=p-+1 i=p+n;+1
Pe
H u,gnd(k - 1{,) (85)
1=p--1:1«_+n2~.,.+nnd_1

The coefficients of these terms are of the form
aytp, P10 B2y gy
S e

ny timesng time:nnd times

Cpq (i1 : ke, . kpag)
Applying the ¢, operator to the [U9] part of the cross product term, gives

sl 7
r =0, kpr1+...+0 1k +n
quUQ] o E § eJ(; P+ ny £p 1)
all combinations of w; ,wo all perm. of
: 1 Togm
taken ny at a time nl ="Qn1
iy 12
E § e—J(nlzkp-&nl+1+-v-+ﬂn3kp+n1+n3)
all w - all perm. of
1+’Tl T f!'ﬂ'z el Q'TZ
taken no at a time e (b ]
. Ing Tag
E E e~ “kpgayt g+t 00,  ke)
all w e, all perm. of
1+7y -i-...':lnd_l a Q’T“d and
taken npy at  a time 1 v ¥ang
all w, ail w. e i all w, .
1T iy e o I+7, + Tng_1' “n
taken ny at a vime taken na at a time

taken nn, at a time
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Z eI kpai+ o+ Q0 kpray )
ail perm. of
.’z;z 7 ’!:‘
=07k, pi T )
Z e = PhaySuadng g+l TeeTedig, kg )
all perm. aof
a4 gltd
ang
= (Lj / . 5
- Z Z Z ’ I_Inqcx\p ) {86)
‘ all w, Wy ) all w, 14y oo goys all Sy g, g o —
AL, W T faken g WY 2%ime taken npy 8t 3 dime
(U
where Hllx,q)d(\Qq) represents the expression inside {.} of the above equation(86) and
— fOm i Tng g1
Qq—:LQl,...Qni,...Ql I o (87)

Now applying the extraction operator to [YPU9] gives

€n [YPUQ} = Z E v Z n th QCU Z H:ch;: (QB—Q)

ail Yoy all wy wa + ail "’3'?": TR perm [,ﬂﬂ_]
aeen Ry ok s Hime taken np at a time taken nn, at :ﬁ.-—c
(88)
where
Q = [w,w [0 o 1 O o N SR
n—-q - Ly ¥ s wn; o’ ceeding |
= [w,wa,...wy) m [Qq] (89)

that is 2,_, is disjoint from the frequencies {w;, ws, . . .w,] and is obtained from the intersection

of the two sets given above.
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8.1 Mapping the NARX Model into the Frequency Domain

Following identical arguments to the differential equation mepping, the expression for the
frequency domain equivalent of eqn(74) will be given as

4

K A : .“
{1 3 i ket

]{1:1

(12581 e v B wiilBn A
\VJ\_,/_/ \_V_/

1 o
71 times ygtimes # ngtimes

D!Hnavg (jwla ----- jwnj

Girifuse » glanes selngs 1)
m K ;| . 3 —j(w--‘- 'I‘W—)k‘--‘ ‘?fﬁl‘nes 'yztl""es P"'ndhmes . i
— > | Do coljn ¢ kyJenite el ) gl (jwi, jwn)

By B B

K mes
_ Z C;'nn-ﬁe T2 n e Tng s—ies(Jl : kl, ..kn)ﬁn ['Un}
ks kn=1
m m K
LY Y (i K, e [YP]
p=2 =1

ap=ap—1 k; ky=1
12,
B2,

Brgy e

+ Z Z Z Cpq ST :(Jl : kla “kp+q)€n [YpUq}

q*l P= 1 kw ka‘q—l

Q1,..20, By

(30)

Example

After getting the general expression rederive the expression for Hgl:m}(jwl ,jwz) and H

. For these kernel transforms 31 =1, Ao =1,7, =1 7, = 1,04 = 2, and n = 2. Substituting

these values in eqn(90) gives

(1 — 0567t 2B Dy, ) — (0,767 + )2 HE D oy s )

-‘avg
— 0.1e_j“3Hg" )(°w Je i
(1 — 0.9t IHE ) uy fesy) — (0.3 2HE Gy )

avg ﬂ-"S

= O.Qe“w"ngl)(]wl)e_““’: (91)

Solution of this equation gives an identical result to eqn(80).

2 (jwr, jws)
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9- Conclusions

Analytical expressions for the generalised frequency response function matrix for multi-inpus
multi-output nonlinear systems have been derived for both continuous time nonlinear differ-
ential equation models and polyno‘mial NARX models. The expression provides a great deal
of insight into the relationship befween the time and frequency domain representations of
nonlinear MIMO systems and can be used to to study the sensitivity of the frequency domain

effects due to parameter variations in the models.
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