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Fully-coupled discontinuous Galerkin modelling of dam-break flows

over movable bed with sediment transport

Georges KesserwdniAlireza Shamkhalchigand Mahboobeh Jomeh Zadeh

Abstract

A one-dimensional (1D) discontinuous Galerkin morphodynamic model has been devited wi
application to simulatof dam-break flows over erodible beds with suspended sediment transport. The
morphodynamic equations adopt the shallow water equations (SWE) considering theiantesfict
sediment transport and bed changes on the flow. A local second-order Rungelikotiatinuous
Galerkin (RKDG2) model has been reformatito numerically solve the morphodynamic equations in a
fully-coupled manner and with a neapacity sediment model. The model’s implementation is
thoroughly detailed with focus on the discretization of the complex souiros, tdhe treatment of wetting

and drying, and other stabilizing issues pertaining to high solution gradiedtthe transient character of

the topography. The model has been favorably applied to replicate experimental dantelweakef

erodible sediment beds.

Key-words. Dam-break flows; Discontinuous Galerkin; erodible beds; sediment transponplex

source terms; wetting and drying; model testing.
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I ntroduction

Modelling shallow water flows over mobile topographies is useful to study hydraulioeengg
problems involving dam break, river, canal and coastal hydrodynamics. For tuftaenover erodible
sediment beds, such as the first instants of a dam-break wave, the sedinoentration is so high and

the bed topography changes rapidly that their effects on the flow dynamics bangabred, and thus

the entire morphodynamic process needs to be incorporated in the simulation (Forman et al. 2007, El Kadi
Abederrezak and Paquier 2009, Pasquale et al. 2011, Ali et al. 2012, Cao et)al. 2012

A mathematical morphodynamics model is commonly achieved by joining the Exner equation,
taken with a model for sediment transport, to the depth-averaged shallow wateoreqSWVE).
Numerical approaches for solving the resulting set of equations can be coupled or deemagpieid
capacity or non-capacity sediment transport relationship (Cao et al.\200&, al. 2004, Wu (2007), El
Kadi Abderrezak and Paquier 2011, Cao et al. 2012). Here, the fully-coupled model philokGployet
al. (2004), with non-capacity sediment, is considered within the focusrmiuf@ting a new hydro-
morphodynamic model based on the Discontinuous Galerkin (DG) method.

In recent years, the class of finite volume Godutype methods solving the SWE (Toro and
Garcia-Navarro 20Q7as been extended to solve the fully-coupled morphodynamic equations. Cao et al.
(2004) used the HLLC Riemann solver providing reasonable level of modelling f@al fmocesses over
erodible beds. A more comprehensive model was later devised by Wu and Wang (2007) in which a
correction factor was introduced to the sediment model. More recentlstsdfve been made to extend
second-order hydrodynamic models to resdhe fully-coupled morphodynamic equations (Xia et al.
2010, Li and Duffy 2011, Li et al. 2013). Despite this progress, the discretizastsoes particular tad
hoc treatment of complex source terms, wetting and drying, and high-order sloptige tel context of
morphological modelling, seems to be somewhat overlooked. In this context, Benkhaldoy&G:t24l.
studied slope-limiting issues suggesting the further need to limgltipe components involved in the

bed-evolution to maintain stability. Li et al. (2013) concluded that the accofasgrond-order hydro-
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morphological models is likely to be compromised if no special treatment iodhalar topography is
further considered. Certainly, the reliability of a fully-coupled morphodynamic numerical modehes fu
dependent on its further ability to handle wet/dry fronts along Wighcomplex source terms. These are
desirable features to possess within the design of a second-order accuratendmpdhmdynamic
numerical model, which is the purpose of this work on the subject of an extensiovelieeatablished
RKDG2 (second-order Runge-Kutta [RK] DG) hydrodynamic solver (Kesserwani and RD12b).

The DG method conceptually extends the local finite volume method to arbitdey of
accuracy, is locally conservative and highly suited for coarse mesh samaléfiockburn and Shu 2001,
Kesserwani 2013). The DG has become quite developed for modelling hydrodynamics supptréed by
latest advances in computational hydraulics such as accurate integration ofairr@egpographies,
localized Total Variation Diminishing (TVD) slope liming, and polynomial/dst front tracking (Buyna
et al. 2010, Xing et al. 2010, Kesserwani and Liang 2012a; Lai and Khan 2012).the hydro-
morphodynamic modelling, applications of the DG method are quite few and only condiddrkxhd
sediment transport, wet domains and smooth flow simulations (Tassi et al. 2008tdviitaddi 2011). To
the best of the writers’ knowledge, the DG method has not yet been: (i) formulated for solving the fully-
coupled morphodynamic equations with non-capacity suspended sediment model, and (ii) applied to solve
dam-break flows over movable sediment beds.

This paper newly explores issues (i) and (ii) witaimlRKDG2 solver. The technical formulation
of the RKDG2 hydro-morphodynamic model is presented including all key disdmtizigtails relevant
to topography and sediment source terms, treatment of wetting and drying, and stebitizahe
morphodynamic numerical solutiorilhe model’s performance is tested and discussed for two
experimental dam-break flows scenarios involving bed-erosion and sediment-transpost, Fésalts

are summarized and conclusions are drawn.

Hydr o-mor phodynamic model
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The 1D SWE coupled with the Exner equation includirggdiment transport model may be cast in the

following conservative form (Cao et al. 2004, Li and Duffy 2011):

U  9F(U)
_ = 1
Tt =S (1)

h hu

hu hu? + 2 p2

= = 2
U W andF(U) g (2)

P hu¥

t = time (s), X = space coordinate (td),F(U) andS are, respectively, vectors containing the conserved
variables, the fluxes and the source terms, in which h = water depth (m), u = flowyvéios), ¢
gravitational acceleration (mjs ¥ = flux-averaged volumetric sediment concentratiofirt}) and® is a
factor representing the bed evolution that may be expressed in terms of beaty goraxed the bed
elevation z (m):

®=1-p)z+ (h¥) 3
Assuming that there is no precipitation and infiltratithe, suspended load is dominant over the bed load,
and constant roughness, the vector of source terms may be decomposed as sum of togmgEphy
term, friction source term, the suspended-load sediment concentration variation and ientsedi
exchange, which are respectively denote®h)ys, S andsS,, i.e.

S=Sy+S¢+S.+Se (4)
with,

0 E-D
0 0 (oo [ )
—Crlulu _ (ps=pwlgh” 0% (pz—p)(E-D)u

o JS=| o ]Se=| " andSe = ~ 0 | )
E—-D
o U
0
In which, $=—0z/dx = bed slope(; = gn,,,%/h'/? = friction factor (withn,, = Manning coefficient)p
= bed sediment porosity,, = density of waterps = density of sediment, andandp, are water-sediment
mixture density and saturated bed density, respectively, which are related as:

p=puw(1—-¥)+p;¥and p, =pyp+ps(1—p) (6)
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Within S, E andD represent sediment entertainment and deposition fluxes, which can be obtained by
different empirical formulas (Fagherazzi and Sun 2003, Cao et al. 2004, El Kadi Abederrezak and Paquier
2011, Li and Duffy 2011, Cao et al. 2012). Herein, the following expression for E and Dested¢€Li
and Duffy 2011):

E =a(6 —0,)h|ul andD = ¥ w (7

Where, a = given calibration constant]. = critical shields factor for starting of sediment particles
movement, and is evaluated a¥ = u,?/ gsd whereu, = ’Cfuz = friction velocity, d = sediment

particle diameter and = p;/p,, — 1 is the submerged specific gravit§;= min[2, (1 —p)/¥], w =

velocity of the sediment particles, which is givendoy= \/(13.95v/d)2 + 1.09gsd — 13.95v/d with v

= kinematic viscosity of water.

Discontinuous Galerkin method

The conceptual underpinning of local DG method for solving the hyperbolic consenet® is mainly
attributed to Cockburn and Shu (2001). Here, the technical focus is mainly devote@xtetiston of

valid RKDG2 scheme solving the SWE to further solve the hydro-morphodynamic system (1).

RKDG2 formulation
A 1D computational domain [, Xmad IS subdivided intdN uniform cells | = [X.12; %+1/2], €ach centred
at %= (X+12 + %.1/2)/2 of lengthAX = X112 -%.12. The RKDG2 framework seeks a local linear approximate
solutionUy, that is spanned by two local coefficiett®(t) andU; (t) and can be expanded as:

Un(x Dl = U@ + VIO 52 (vxel) ®)
The initial coefficients are polynomial projectiotssthe initial conditionU,(x) = U(x,0) and may be

written as (Kesserwani et al. 2010):

Uu?(0) = f,:cil://zz Up(x)dx = % [Uo(xi+1/2) + Uo(xi—1/2)] 9)
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Uil(O) = f;l.l://zz Up(x) (XA_;Q) dx = %[UO(XHI/Z) - Uo(xi—1/2)] (10)

The semi-discrete DG transformation to the conservative form (1) produces tavof Sadependent

ODEs for the spatial update of the local coefficients

a (UP@®) 0\ (L o0
("7 wo)= (o o) -

L? andL! are local space operators obtained by the DG discretization (Kesserwani and Liang 2011):
L = _i [Fi+1/2 - Fi—1/2] + S|1i(U?) (12)
= P (07 + )= (08 ~) - 25[s, (01 + ) -1, (00~ ) 09
S contains all the source terms in (4) excludidlrhe “hat’ symbol over a slope coefficient refers to the
controlled slope coefficient due to the local slope-limiting process. The inlerfloges e.g.Fiﬂ/z at
interface %1, shared by neighbouring cellsahd |.;, are obtained by solving the local Riemann problem,

defined bythe solution’s at interface Xi.1/:

Uiy = Uh(xi_+1/2't)|1i = U? + ﬁi1 (14)

U17F+1/2 = Uh(xit-l/z't)hm = U?+1 - ﬁil+1 (15)
The numerical fluxF;,,/, = F(Uz,4/2, U4 ,,) is evaluated based on the HLL Riemann solver (Toro et

al. 1994. Finally, the two local coefficients are lifted to the next time lenelthe two-stage explicit RK

time method:
(U™ = (P + 2 (1h)" (16)

(U?'l)nH — %[(U?,l)n + (U?,l)n+1/2 + At(L(l;J) 17)

n+1/2]
Theoretically, the RKDG2 time step is restricted by the Courant-Friedrichs{@&hy) condition, with a
Courant number smaller than 0.333 (Cockburn and Shu 2001). However our convergence study,

considering both aspects of mesh-size and slope-limiting, shows that the RKDG2 morphodynam

numerical model requires a more restrictive time st@ourant number equal to G:-1to avoid numerical



136  instability that may occur in resolution of the mobile topography. Thisigésh has also been reported
137  for finite volume hydro-morphodynamic models (Li and Duffy 2011, Benkhaldoun et al. 2012).

138

139  Discretization of the source terms

140e Friction source termS): to avoid possible numerical instability near dry zones with high roughthess
141  friction source term is commonly discretised by a splitting implicit approach faritime stage and step
142  i.e. not included explicitly within the space operatbfsandL}; see Kesserwani and Liang 2012a for
143 technical details.

144 Sediment exchange source ter®):(is discretized explicitly and via direct local calculation of E Bnd
145  evaluated using the local coefficients relative to the approximate varighlésu),, ¥, and Eq. (7).

146e Sediment concentration variations source tei®y): (is discretized explicitly but requires specific
147  mathematical and numerical treatment to cope with the gradient of the sedoneantration. That is,

148 the second term of the vect8yris first rewritten as:

149 _(ps=pw)gh? 0¥ _ _ (ps=Pw)d p 2 () _ _ (ps=pw)g [h OM¥) _ p oy 21 (18)
2p dx 2p dx 2p ox ox
150 and is then locally discretized as:
_ (ps—pw)gh® Y] . (ps—pw)g o(h¥)p Ohp
151 [ 2p ax],l = 2p [hh ox (hlp)h ax] (19)
152 With
a(h¥)n] _ 8 0, (*¥=xi 1] _ ()}
153 [ ax ],i ox [(hqj)i + (Ax/z) (hqj)i] T Ax/2 (20)
ohn]  _ 9 [po . (*¥=%i\p1] = _hi
154 [6x ]Ii T ox [hi + (Ax/Z) hi] - Ax/2 (21)

155¢ Topography source terngy: is locally discretized in a well-balanced manner (Kesserwani et al. 2010)

156  by:

157 2w Ol =2 (O +2 (052 (vxel) (22)
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With z(t) andz} (t) are topography-associated coefficients, which may be initially produced fiogjowi

similar (scalar) relationships as in (9) and (10). With this, the bed slopestgiis|ocally discretizeds

[sols, = [—%}H =——|22®+(52)#4w®]=- O (23)

Ax/2 Ax/2

Wetting and drying condition

Prior to evaluation the operatdi$ andL}, the local coefficientd)? (t) andU} (¢), are revisited to ensure

the positivity of the water depth in the calculation of the inter-celief, the local fluxes and the source

terms. The action of the wetting and drying for the current hydro-morphodynamic imadehmarized

in steps below:

1. Reconstruct the free-surface elevatigm; h + z, limits at interface %, using relationships (14) and
(19):Miy1)2 = (h + ZO) + (h1 +z}) a-ndT7z+1/2 (h?+1 + Zi0+1) - (h11+1/+\zzl+1)-

2. Evaluate the limits of the discharge componémtsy, at interface ¥ (hw)iyq/, = (hw)? + (hu)?},

(h¥)ij1y2 = (h#)} + (Tl_\llu)%’ (hu)?+1/2 = (hw)fy, — (hu)l+1! (hw);r+1/2 (h¥)P41 — (TI_\W)%H-
3. Evaluate the limits of the topography z at interfage,Xz;, 1/, = z{ + 2}, 211/, = 2041 — 214,
accordingly estimate the limits @f using Eq. (3)¢cl>l+1/2 1- p)z{il/z + (h?’)ﬁl/z, (K=+,-).
4. Calculate the limits of the velocity and sediment concentration variablatedace X, u{il/z =
(hu)z+1/2/hz+1/2 andlPz+1/2 (hlp)l+1/2/hl+1/2 with th+1/2 = U{iq/z - 25—1/2 K =+-).
5. Now apply the topography discretization, at interfaggxalong with wetting and drying:
a. Re-define numerically the topography Iimibr{f;*l/z = ThK+1/z - hLK+1/z (K=+,-).
b. Setasingle z-value;; , defined by the maximume;; , = max(z;}] . 271 2).
c. Preserve the positivity of the water deptiﬁl/2 = max(0, Th+1/z zl+1/2) (K =+,-).

d. Find the flow and sediment discharges incorporating the original veloaitiéssediment

concentration, |e(hu)l+1/2 hl+1/2ul+1/2 and (h'll’)lﬂ/2 = hfﬂr*l/z i+1/2» and the free-
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surface elevation, i.epfy; , = = hi, 2t z /2, associated with the positivity-preserving
water depth and the single value of the topography.
e. Ensure that step 5-c does not cancel the actual water level at a wet/dry front (Liang 2010):

i. Calculatedn;,,, = max[0,—(ni;1/2 — 2} ,)] (during step 5-c).

. . J* ¥ 4, =+,
i. AdjustniKH/2 « 77iK+1/2 —Aniyayp @NAZY 5 < 2370 0 — ANigaye (K =+, ).

6. Calculate the fluxF;, /2 at interface X usingUK ; /2 Incorporating the depth-positivity-variables

hz+1/2 = 771+1/2 z+1/2’ hl+1/2ul+1/2andhl+1/2 iv1/2 (K =+,-).

7. Repeat steps 1-6 to evaluate the fux J2at interface x,.

8. Redefine the local coefficients of the main variables to comply wélattion of wetting and drying,
ie z) = (Zl_+1/2 +Z 1/2)/2 zj = (Zz+1/2 Zii—'*1/2)/2; Elql = ﬁ?1 Z_io'1 with 777 = (77i—-ﬁ>k1/2 +
ni%y)/2 and 7= (i, — 100/ 2 ()] = (), + ()2 ,1/2 and - (hw)i =
(A, — (MW )/ 2(RP)] = [(R) iy + (R 50/2 and  (RP)E = [(h¥)i)s ), —

()i ,21/2; then use them to evaluate the local fluxes and source terms within thegace

operators (12) and (13).

Local slopes control

To avoid spurious oscillations that would probably occur around discontinuous ladarsnlthe TVD

minmod limiter is applied to control the variation of the local slope caefiid! (Toro 2001). Within

DG methods, the slope limiter needs to be localized to those troubled-slope components. Herein, the sam
local slope-limiting strategy used within the RKDG2 hydrodynamic model has applied to the
variables of the morphodynamic model, namely in a component-wise manner and after atomaliz
Slope-limiting is deactivated around cells involving a wet/dry front to avoid unnecessary litisgbi
(Kesserwani and Liang 2012b). After the slope monitoring process, a local slopei@uef denoted by

U} regardless of whether it has been limited or not.



205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

Transient topography update
While completing wetting and drying along with source terms discretization,ott®® lopography-

associated coefficients are extracted explicitly after each time step and inner time stage:
_ . 0 n 1 n . i el . . _ .
o Att = n, coefficients(z{)" and(z!)" are either initially available, i.e. when n = 0, or reset, i.e.
(zh|,l.)n = (zh|,i)n+1. These coefficients are used in the topography discretization with wetting an

dryingto calculate the space operat@t.%'l)n, and thereby move the local solution to the intermediate

stage n + Y3, via Eq. (16).

n+1/2

e Att=n + %, (L‘i"l)nﬂ/ ? is evaluated using new topography coefficients, (i) and

(z})nH/ 2, which are obtained from the intermediate solution variables by means of Eq. (3):

n+1/2

®nlr.— (Rl
(zali)"* = [P (24)

e After the second RK stage, the two coefficients spannifgt)zare updated again, using Eq. (3),
according to the solution’s variables at the next time level t =n + 1:

_ n+1
(Zh|1i)n+1 — [M} (25)

1-p

Model testing

The RKDG2 scheme solving the hydrodynamic equations with fixed beds has been well tested for
benchmark tests involving irregular topographies, high friction effects,ratgs and wetting and
drying (Kesserwani and Liang 2010, 2011, 2012a,b). The purpose henetisstahese abilities for the

new RKDG2 hydro-morphodynamic solver, and, meanwhile, illustrate its performance idingodain-

break waves over erodible beds with sediment transport. The present modelateddor two small-

scale experimental tests characterized by an initially flat sediment beds.

10
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The current RKDG2 model is applied to reproduce the dam-break experiments carriad out i
Taipei and Louvain (Capart and Young 1998, Fraccarollo and Capart 2002), respe@iwit
experiments were conducted in horizontal prismatic flumes of rectangularseaigms, but primarily
differ in the sediment materials used. The flume in the Taipei experiment was 1.2 m langyidl€ and
0.7 m high. It was initially covered by a 5-6 cm thick layer of lighifieial pearls, of a diameter of 6.1
mm, specific gravity of 1.048 and settling velocity of 0.076 m/s. In the Louvain experitnerftume
was 2.5 m long, 0.1 m wide and 0.35 m high. Cylindrical PVC pellets having a diam&er moim,
height of 2.8 mm (an equivalent spherical diameter of 3.5 mm), specific gravitp4f and settling
velocity of 0.18 m/s constituted an initial sediment layer of 5-6 cm thick theefixed bottom. In both
experiments, a dam was located in the middle of the flume separating an upstream static flow region of 10
cm deep from the dry downstream part. Att = 0 s, the dam was lifted rapidly to create the danowreak fl
over the flat beds. In both of the tests, the flow (hu) and sediment discff@eand the bed evolution
parameter®) are initialized to zero, while the water level is assumed to be initially disconsinuou

h(x,0) = {81 ((’; ;%)) (26)

The bed porosity is set to 0.28 and 0.3 for the Taipei test and the Louvain test,velypedhile a
Manning roughness,, = 0.025 s/m'/3 and a water density @f, = 1 g/cm® are used for both (Li and
Duffy 2011). According to the critical shields curve, in Cao et al. (2006), thenpteed,. is estimated to
be (roughly) less than 0.076 for grained sediments with a diameter range betwsen &l 6.1 mm.
However, past literature point out the use of higher valueg fdor these tests. For example, Li and
Duffy (2011) and Li et al. (2013) directly used a higBgr(= 0.15 for the Louvain case) obtained by
calibration, whereas Wu and Wang (2007) introduced a correction factor, thegdfiyliamend®,.. In
this work, parameterg andé,. were calibrated; two sets of parameters{d,.} are selected and explored
for each test, which are {2.5, 0.05} and {2.2, 0.12} for the Taipei test, and {4, 0.05} and{P5} for
the Louvain test. Pseudo-analytical free-surface and bed elevations mayled daged on a number of

assumptions (Fraccarollo and Capart 2002). The domains were divided into $0fndethe simulation

11
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time is 0.6 s and 1.2 s for the Taipei and the Louvain tests, respectivelly, wdrie non-dimensionalized

accordingto t, = \/M ~ 0.101 (hy = 0.1). Transmissive boundary conditions are configured during
the simulations, for completeness, although the flow does not reach boundaries. Fighatesatine
predicted free-surface and bed evolutions, at three successive output timakewieudo-analytical
profiles and the measurements for the Taipei (Fig. 1 - left panel) and Louvain (Fig. 1 - rightgssel) t
For the Taipei test, the numerical model is seen to underestimate the erosionrupéttea
scour hole which is, however, overestimated by the pseudo-analytical bed solution, as comjered to
measurement. The hydraulic jump, aligned with the bed erosion, is successfdibtaat by the RKDG2
model. Despite being a bit faster théaa experimental jump profile, the RKDG2 model’s localization to
the jump matches the results of alternative finite volume models publishedratuie (Wu and Wang
2007, Li and Duffy 2011, Li et al. 2013). The disagreements amongst the pseudizanaymerical
and experimental profiles are expected and their causes have been reported previouslgn{€Cajoaing
1998; Fraccarollo and Capart 2002, Li and Duffy 2011, Li et al. 2013). Relating to dimese
parameters ¢, 6.}, as reflects Fig. 1 (left panel) the choice {2.5, 0.05}, incorporatipg< 0.076,
appears to be more appropriate for this test.

For the Louvain test, the depth and bed profiles simulated by the RKDG2 model are diaplayed
the right panel in Fig. 1 revealing a more satisfactory agreement between the copgrudd;analytical
and measured results than for the Taipei test. In this test, at §, thEORKDG2 model provides a better
prediction to the hydraulic jump relating to the measurements, and is ableteoaihathe position of
the wave front and the erosion magnitude albeit showing a clear underestitoatien latter for the
choice {2.5, 0.05} to the initial sediment parameters. In contrast, the RKDG2 poedicélative to the
choice {4.0, 0.05} appear to capture both the analytical and experimental erosion extegteater
qualitative-accuracy; thus the second choice seems to be more appropriate fayuvhen test.
Expectedly, the analytical solution excludes the hydraulic jump and tends to excessively overdbémates

wave front at t = 1Q(Wu and Wang 2007, Li and Duffy 2011, Li et al. 2013).
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277 Fig. 2 illustrates the sediment concentration profiles reproduced by the numerical ahodel
278  different output times for the Taipei (left panel) and Louvain (right panel) tests, iesgedhe sediment
279  parameters {2.5, 0.05} and {4.0, 0.05}. From these qualitative results, it appears theasiiet RKDG2
280 model is capable to represent high sediment concentrations with no sign oflitpsssbiund steep
281  sediment gradient under relatively strong (initial) erosive conditions. TheG@2Ks&diment predictions
282  relative to the other selected choices of parameter8 4 are quite similar to the predictions available in
283  Fig. 2 and are, therefore, not illustrated furth€he present RKDG2 predictions to the sediment
284  concentration profiles match closely those predicted by alternative folitene formulations reported in
285 literature (Wu and Wang 2007, Li and Duffy 2011, Li et al. 2013) demonstrating thellitamtthe
286 extended RKDG2 numerical model to deliver highly accurate and stable prediction toersedi
287  concentration peaks along with the occurrence of wet/dry front, bed erosion and shock development.

288
289 Conclusions

290 This work addressed 1D modelling of dam-break flow over movable sediment bedalgratb the

291  framework of a second-order Runge-Kutta Discontinuous Galerkin method (RKDG2)RRD&?2

292  method was reformulated to solve the fully-coupled set of hydro-morphodynamic equationslafidg

293  the interaction between sediment concentration and bed change on the flow. The extended RKDG2 model
294  was reinforced with all necessary technical ingredients for handling stdetion gradients, wetting and

295 drying, and complex source terms. The new RKDG2 morphodynamic formulation was applied to
296 replicate experimental water-surface and bed-evolution data corresponding to twced&radanarios in

297  which the wave breaks over an initially flat and dry sediment bed.

298 Numerical evidences demonstrate that the RKDG2 fully-coupled morphodynamic model is able
299  to concurrently predict the changes occurring in the water flow, the bed-evolutidheaooncentration

300 of suspended sediments with reasonable precision comparing to either the avelableents and/or

301 alternative simulation published in literature. Our testing suggest that the prBs@DG2

13



302

303

304

305

306

307

morphodynamic formulation is valid for simulation of complex shallow flow presesxluding water
jumps, wetting and drying, irregular bed evolution and suspension of sediments. Newertiteles
applicability seems to be highly dependent on appropriate selection and/or calitvatie sediment
parameters for a specific configuration. Two-dimensional extension to the RKB@phodynamic

model is feasible and this work constitutes the gateway for it.
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Notations

S

> @ m O o

o~

L0,1
m

n
Nim

p

=source terms

=Topography source term vector

_sediment concentration variation source
term vector

= sediment exchange source term vector
=friction source term vector

=flux

=numerical flux

=conserved variables

=local approximate solution fdf

=limited slope-coefficient fot/!

'+ =coefficients defining a local linear solutiol

=Uat left and right hand of interface
= Local space operator

=friction coefficient

=sediment particle diameter
=sediment deposition flux
=sediment entertainment flux
=gravitational acceleration
=water depth

=Cell counter

=Local cell

= Local space operator
=exponent in sediment deposition
=time level

=Manning coefficient

=bed sediment porosity

s =submerged specific gravity of sediment
sy =bed slope

Cr =friction coefficient

t =time

to = Normalized time period

u =flow velocity

u, =frictional velocity

x =space coordinate

z =bed elevation
z{"=local topography coefficients
Ax=computational cell length in x-direction
At =computational time step

a =calibration constant

n =free-surface elevation

6 =shields factor

0. =critical shields factor

v =kinematic viscosity of water

p =water-sediment mixture density

ps =sediment density

pw =water density

p, =saturated bed density

@ =bed evolution parameter

¥ =volumetric sediment concentration

w =setting velocity of sediment particles
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