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 5 

Abstract 6 

A one-dimensional (1D) discontinuous Galerkin morphodynamic model has been devised with 7 

application to simulate of dam-break flows over erodible beds with suspended sediment transport. The 8 

morphodynamic equations adopt the shallow water equations (SWE) considering the interaction of 9 

sediment transport and bed changes on the flow. A local second-order Runge-Kutta discontinuous 10 

Galerkin (RKDG2) model has been reformulated to numerically solve the morphodynamic equations in a 11 

fully-coupled manner and with a non-capacity sediment model. The model’s implementation is 12 

thoroughly detailed with focus on the discretization of the complex source terms, the treatment of wetting 13 

and drying, and other stabilizing issues pertaining to high solution gradients and the transient character of 14 

the topography. The model has been favorably applied to replicate experimental dam-break flow over 15 

erodible sediment beds. 16 

 17 
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Introduction 21 

Modelling shallow water flows over mobile topographies is useful to study hydraulic engineering 22 

problems involving dam break, river, canal and coastal hydrodynamics. For turbulent flows over erodible 23 

sediment beds, such as the first instants of a dam-break wave, the sediment concentration is so high and 24 

the bed topography changes rapidly that their effects on the flow dynamics cannot be ignored, and thus 25 

the entire morphodynamic process needs to be incorporated in the simulation (Forman et al. 2007, El Kadi 26 

Abederrezak and Paquier 2009, Pasquale et al. 2011, Ali et al. 2012, Cao et al. 2012). 27 

A mathematical morphodynamics model is commonly achieved by joining the Exner equation, 28 

taken with a model for sediment transport, to the depth-averaged shallow water equations (SWE). 29 

Numerical approaches for solving the resulting set of equations can be coupled or decoupled, and with 30 

capacity or non-capacity sediment transport relationship (Cao et al. 2002, Wu et al. 2004, Wu (2007), El 31 

Kadi Abderrezak and Paquier 2011, Cao et al. 2012). Here, the fully-coupled model philosophy of Cao et 32 

al. (2004), with non-capacity sediment, is considered within the focus of formulating a new hydro-33 

morphodynamic model based on the Discontinuous Galerkin (DG) method. 34 

In recent years, the class of finite volume Godunov-type methods solving the SWE (Toro and 35 

García-Navarro 2007) has been extended to solve the fully-coupled morphodynamic equations. Cao et al. 36 

(2004) used the HLLC Riemann solver providing reasonable level of modelling for fluvial processes over 37 

erodible beds. A more comprehensive model was later devised by Wu and Wang (2007) in which a 38 

correction factor was introduced to the sediment model. More recently, efforts have been made to extend 39 

second-order hydrodynamic models to resolve the fully-coupled morphodynamic equations (Xia et al. 40 

2010, Li and Duffy 2011, Li et al. 2013). Despite this progress, the discretizations issues particular to ad-41 

hoc treatment of complex source terms, wetting and drying, and high-order slopes, relative to context of 42 

morphological modelling, seems to be somewhat overlooked. In this context, Benkhaldoun et al. (2012) 43 

studied slope-limiting issues suggesting the further need to limit the slope components involved in the 44 

bed-evolution to maintain stability. Li et al. (2013) concluded that the accuracy of second-order hydro-45 
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morphological models is likely to be compromised if no special treatment to the irregular topography is 46 

further considered. Certainly, the reliability of a fully-coupled morphodynamic numerical model is further 47 

dependent on its further ability to handle wet/dry fronts along with the complex source terms. These are 48 

desirable features to possess within the design of a second-order accurate hydro-morphodynamic 49 

numerical model, which is the purpose of this work on the subject of an extension to a well-established 50 

RKDG2 (second-order Runge-Kutta [RK] DG) hydrodynamic solver (Kesserwani and Liang 2012b). 51 

The DG method conceptually extends the local finite volume method to arbitrary order of 52 

accuracy, is locally conservative and highly suited for coarse mesh simulations (Cockburn and Shu 2001, 53 

Kesserwani 2013). The DG has become quite developed for modelling hydrodynamics supported by the 54 

latest advances in computational hydraulics such as accurate integration of irregular topographies, 55 

localized Total Variation Diminishing (TVD) slope liming, and polynomial wet/dry front tracking (Buyna 56 

et al. 2010, Xing et al. 2010, Kesserwani and Liang 2012a; Lai and Khan 2012). As to the hydro-57 

morphodynamic modelling, applications of the DG method are quite few and only considered bed-load 58 

sediment transport, wet domains and smooth flow simulations (Tassi et al. 2008; Mirabito et al. 2011). To 59 

the best of the writers’ knowledge, the DG method has not yet been: (i) formulated for solving the fully-60 

coupled morphodynamic equations with non-capacity suspended sediment model, and (ii) applied to solve 61 

dam-break flows over movable sediment beds. 62 

This paper newly explores issues (i) and (ii) within an RKDG2 solver. The technical formulation 63 

of the RKDG2 hydro-morphodynamic model is presented including all key discretization details relevant 64 

to topography and sediment source terms, treatment of wetting and drying, and stabilization of the 65 

morphodynamic numerical solution. The model’s performance is tested and discussed for two 66 

experimental dam-break flows scenarios involving bed-erosion and sediment-transport. Finally, results 67 

are summarized and conclusions are drawn. 68 

 69 

Hydro-morphodynamic model 70 
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The 1D SWE coupled with the Exner equation including a sediment transport model may be cast in the 71 

following conservative form (Cao et al. 2004, Li and Duffy 2011): 72 ߲߲ݐ܃ ൅ ߲۴ሺ܃ሻ߲ݔ ൌ  (1) ܁

܃ ൌ ൮ ߔߖ݄ݑ݄݄ ൲  and ۴ሺ܃ሻ ൌ ൮ ଶݑ݄ݑ݄ ൅ ௚ଶ ݄ଶ݄ߖݑ݄ߖݑ ൲ (2) 

t = time (s), x = space coordinate (m),.U, F(U) and S are, respectively, vectors containing the conserved 73 

variables, the fluxes and the source terms, in which h = water depth (m), u = flow velocity (m/s), g= 74 

gravitational acceleration (m/s2), Ȍ = flux-averaged volumetric sediment concentration (m3/m3) and ĭ is a 75 

factor representing the bed evolution that may be expressed in terms of bed porosity p and the bed 76 

elevation z (m): 77 ߔ ൌ ሺͳ െ ݖሻ݌ ൅ ሺ݄ߖሻ       (3) 78 

Assuming that there is no precipitation and infiltration, the suspended load is dominant over the bed load, 79 

and constant roughness, the vector of source terms may be decomposed as sum of topography source 80 

term, friction source term, the suspended-load sediment concentration variation and the sediment 81 

exchange, which are respectively denoted by S0, Sf, Sc and Se, i.e. 82 ܁ ൌ ૙܁ ൅ ܎܁ ൅ ܋܁ ൅  83 (4)       ܍܁

with, 84 

૙܁ ൌ ൮ Ͳ݄݃ݏ଴ͲͲ ൲, ܎܁ ൌ ൮ Ͳെܥ௙ȁݑȁݑͲͲ ൲, ܋܁ ൌ ۈۉ
ۇ Ͳെ ሺఘೞିఘೢሻ௚௛మଶఘ డఅడ௫ͲͲ ۋی

ۊ
, and ܍܁ ൌ ۈۉ

ۇ ாି஽ଵି௣െ ሺఘ೥ିఘሻሺாି஽ሻ௨ఘሺଵି௣ሻܧ െ Ͳܦ ۋی
ۊ

 (5) 85 

In which, s0 =െ߲ݖȀ߲ݔ = bed slope, ܥ௙ ൌ ݃݊௠ଶȀ݄ଵȀଷ = friction factor (with ݊ ௠ = Manning coefficient); 86 ݌ 

= bed sediment porosity, ȡw = density of water, ȡs = density of sediment, and ȡ and ȡz are water-sediment 87 

mixture density and saturated bed density, respectively, which are related as: 88 ߩ ൌ ௪ሺͳߩ െ ሻߖ ൅ ௭ߩ    and ߖ ௦ߩ ൌ ݌௪ߩ ൅ ௦ሺͳߩ െ  ሻ    (6) 89݌



5 

Within Se, E and D represent sediment entertainment and deposition fluxes, which can be obtained by 90 

different empirical formulas (Fagherazzi and Sun 2003, Cao et al. 2004, El Kadi Abederrezak and Paquier 91 

2011, Li and Duffy 2011, Cao et al. 2012). Herein, the following expression for E and D are selected (Li 92 

and Duffy 2011): 93 ܧ ൌ ߠሺߙ െ ܦ ȁ andݑ௖ሻ݄ȁߠ ൌ  94 (7)    ߱ߖߚ

Where, Į = given calibration constant, șc = critical shields factor for starting of sediment particles 95 

movement, and ߠ is evaluated as  ߠ ൌ כݑ where ݀ݏ݃ /ଶכݑ ൌ ටܥ௙ݑଶ = friction velocity, ݀  = sediment 96 

particle diameter and ݏ ൌ ௪ߩ௦Ȁߩ െ ͳ is the submerged specific gravity; ߚ ൌ     ሾʹ ǡ ሺͳ െ  ሿ, ߱  = 97ߖሻȀ݌

velocity of the sediment particles, which is given by ߱ ൌ ඥሺͳ͵ǤͻͷߥȀ݀ሻଶ ൅ ͳǤͲͻ݃݀ݏ െ ͳ͵ǤͻͷߥȀ݀ with Ȟ 98 

= kinematic viscosity of water. 99 

 100 

Discontinuous Galerkin method 101 

The conceptual underpinning of local DG method for solving the hyperbolic conservation laws is mainly 102 

attributed to Cockburn and Shu (2001). Here, the technical focus is mainly devoted to the extension of a 103 

valid RKDG2 scheme solving the SWE to further solve the hydro-morphodynamic system (1). 104 

 105 

RKDG2 formulation 106 

A 1D computational domain [xmin, xmax] is subdivided into N uniform cells Ii = [xi-1/2; xi+1/2], each centred 107 

at xi= (xi+1/2 + xi-1/2)/2 of length ǻx = xi+1/2 -xi-1/2. The RKDG2 framework seeks a local linear approximate 108 

solution Uh that is spanned by two local coefficients ܃௜଴ሺݐሻ and ܃୧ଵሺݐሻ and can be expanded as: 109 ܐ܃ሺݔǡ ሻȁூ೔ݐ ൌ ሻݐ௜଴ሺ܃ ൅ ሻݐ௜ଵሺ܃  ሺ௫ି௫೔ሻο௫Ȁଶ       ሺݔ׊ א  ௜ሻ    (8) 110ܫ

The initial coefficients are polynomial projections to the initial condition ܃଴ሺݔሻ ൌ ǡݔሺ܃ Ͳሻ and may be 111 

written as (Kesserwani et al. 2010): 112 ܃௜଴ሺͲሻ ൌ ׬ ݔሻ݀ݔ଴ሺ܃ ൎ௫೔శభȀమ௫೔షభȀమ ଵଶ ௜ାଵȀଶ൯ݔ଴൫܃ൣ ൅  ௜ିଵȀଶ൯൧   (9) 113ݔ଴൫܃
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௜ଵሺͲሻ܃ ൌ ׬ ሻݔ଴ሺ܃ ቀ௫ି௫೔ο௫ ቁ݀ݔ ൎ௫೔శభȀమ௫೔షభȀమ భమൣ܃଴൫ݔ௜ାଵȀଶ൯ െ  ௜ିଵȀଶ൯൧   (10) 114ݔ଴൫܃

The semi-discrete DG transformation to the conservative form (1) produces two sets of independent 115 

ODEs for the spatial update of the local coefficients 116 

ௗௗ௧ ቆ܃௜଴ሺݐሻ ͲͲ ሻቇݐ௜ଵሺ܃ ൌ ቆۺ௜଴ ͲͲ  ௜ଵቇ     (11) 117ۺ

௜଴ۺ ௜ଵ are local space operators obtained by the DG discretization (Kesserwani and Liang 2011): 118ۺ ௜଴ andۺ ൌ െ ଵο௫ ൣ۴෨௜ାଵȀଶ െ ۴෨௜ିଵȀଶ൧ ൅  ௜଴ሻ        (12) 119܃ȁூ೔ሺ܁

௜ଵۺ ൌ െ ଷο௫ ൜۴෨௜ାభమ ൅ ۴෨௜ିభమ െ ۴ȁூ೔ ቀࢁ௜଴ ൅ ෡೔భξଷቁࢁ െ ۴ȁூ೔ ቀࢁ௜଴ െ ෡೔భξଷቁࢁ െ ξଷο௫଺ ቂ܁ȁூ೔ ቀࢁ௜଴ ൅ ෡೔భξଷቁࢁ െ ȁூ೔܁ ቀࢁ௜଴ െ  ෡೔భξଷቁቃቅ (13) 120ࢁ

 contains all the source terms in (4) excluding Sf. The “hat” symbol over a slope coefficient refers to the 121 ܁

controlled slope coefficient due to the local slope-limiting process. The inter-cells fluxes, e.g. ۴෨௜ାଵȀଶ at 122 

interface xi+1/2 shared by neighbouring cells Ii and Ii+1, are obtained by solving the local Riemann problem, 123 

defined by the solution’s at interface xi+1/2: 124 ܃௜ାଵȀଶି ൌ ௜ାଵȀଶିݔሺܐ܃ ǡ ሻหூ೔ݐ ൌ ௜଴܃ ൅  ෡௜ଵ      (14) 125܃

௜ାଵȀଶା܃ ൌ ௜ାଵȀଶାݔሺܐ܃ ǡ ሻหூ೔శభݐ ൌ ௜ାଵ଴܃ െ ෡௜ାଵଵ܃      (15) 126 

The numerical flux ۴෨௜ାଵȀଶ ൌ ۴෨൫܃௜ାଵȀଶି ǡ ௜ାଵȀଶା܃ ൯ is evaluated based on the HLL Riemann solver (Toro et 127 

al. 1994). Finally, the two local coefficients are lifted to the next time level via the two-stage explicit RK 128 

time method: 129 ൫܃௜଴ǡଵ൯௡ାଵȀଶ ൌ ൫܃௜଴ǡଵ൯௡ ൅ οݐ൫ۺ௜଴ǡଵ൯௡     (16) 130 

ሺ܃௜଴ǡଵሻ௡ାଵ ൌ భమ ቂሺ܃௜଴ǡଵሻ௡ ൅ ሺ܃௜଴ǡଵሻ௡ାଵȀଶ ൅ οݐ൫ۺ௜଴ǡଵ൯௡ାଵȀଶቃ   (17) 131 

Theoretically, the RKDG2 time step is restricted by the Courant-Friedrichs-Lewy (CFL) condition, with a 132 

Courant number smaller than 0.333 (Cockburn and Shu 2001). However our convergence study, 133 

considering both aspects of mesh-size and slope-limiting, shows that the RKDG2 morphodynamic 134 

numerical model requires a more restrictive time step – Courant number equal to 0.1 – to avoid numerical 135 
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instability that may occur in resolution of the mobile topography. This restriction has also been reported 136 

for finite volume hydro-morphodynamic models (Li and Duffy 2011, Benkhaldoun et al. 2012). 137 

 138 

Discretization of the source terms 139 

 Friction source term (Sf): to avoid possible numerical instability near dry zones with high roughness, the 140 

friction source term is commonly discretised by a splitting implicit approach prior to time stage and step, 141 

i.e. not included explicitly within the space operators ۺ௜଴ and ۺ௜ଵ; see Kesserwani and Liang 2012a for 142 

technical details. 143 

 Sediment exchange source term (Se): is discretized explicitly and via direct local calculation of E and D 144 

evaluated using the local coefficients relative to the approximate variables ݄௛, ሺ݄ݑሻ௛, ߖ௛ and Eq. (7). 145 

 Sediment concentration variations source term (Sc): is discretized explicitly but requires specific 146 

mathematical and numerical treatment to cope with the gradient of the sediment concentration. That is, 147 

the second term of the vector Sc is first rewritten as: 148 

െ ሺఘೞିఘೢሻ௚௛మଶఘ డఅడ௫ ൌ െ ሺఘೞିఘೢሻ௚ଶఘ ݄ଶ ቆడቀ೓೽೓ ቁడ௫ ቇ ൌ െ ሺఘೞିఘೢሻ௚ଶఘ ቂ݄ డሺ௛అሻడ௫ െ ߖ݄ డ௛డ௫ቃ  (18) 149 

and is then locally discretized as: 150 ቂെ ሺఘೞିఘೢሻ௚௛మଶఘ డఅడ௫ቃூ೔ ൎ െ ሺఘೞିఘೢሻ௚ଶఘ ቂ݄௛ డሺ௛అሻ೓డ௫ െ ሺ݄ߖሻ௛ డ௛೓డ௫ ቃ   (19) 151 

With 152 

ቂడሺ௛అሻ೓డ௫ ቃூ೔ ൌ డడ௫ ቂሺ݄ߖሻ௜଴ ൅ ቀ௫ି௫೔ο௫Ȁଶቁ ሺ݄ߖሻ௜ଵቃ ൌ  ሺ௛అሻ೔భο௫Ȁଶ     (20) 153 

ቂడ௛೓డ௫ ቃூ೔ ൌ డడ௫ ቂ݄௜଴ ൅ ቀ௫ି௫೔ο௫Ȁଶቁ݄௜ଵቃ ൌ  ௛೔భο௫Ȁଶ      (21) 154 

 Topography source term (S0): is locally discretized in a well-balanced manner (Kesserwani et al. 2010) 155 

by: 156 ݖ௛ሺݔǡ ሻȁூ೔ݐ ൌ  ௜଴ሺݐሻ ൅ ሻݐ௜ଵሺݖ  ሺ௫ି௫೔ሻο௫Ȁଶ       ሺݔ׊ א  ௜ሻ     (22) 157ܫ
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With  ௜଴ሺݐሻ and ݖ௜ଵሺݐሻ are topography-associated coefficients, which may be initially produced following 158 

similar (scalar) relationships as in (9) and (10). With this, the bed slope term, ݏ଴, is locally discretized as: 159 ሾݏ଴ሿூ೔ ൌ ቂെ డ௭೓ሺ௫ǡ௧ሻడ௫ ቃூ೔ ൌ െ డడ௫ ቂݖ௜଴ሺݐሻ ൅ ቀ௫ି௫೔ο௫Ȁଶቁ ሻቃݐ௜ଵሺݖ ൌ െ ௭೔భሺ௧ሻο௫Ȁଶ   (23) 160 

 161 

Wetting and drying condition 162 

Prior to evaluation the operators ۺ௜଴ and ۺ௜ଵ, the local coefficients, ܃௜଴ሺݐሻ and ܃௜ଵሺݐሻ, are revisited to ensure 163 

the positivity of the water depth in the calculation of the inter-cells fluxes, the local fluxes and the source 164 

terms. The action of the wetting and drying for the current hydro-morphodynamic model is summarized 165 

in steps below: 166 

1. Reconstruct the free-surface elevation, Ș = h + z, limits at interface xi+1/2 using relationships (14) and 167 

௜ାଵȀଶିߟ :(15) ൌ ൫݄௜଴ ൅ ௜଴൯ݖ ൅ ሺ݄పଵ ൅ పଵ෣ݖ ሻ and ߟ௜ାଵȀଶା ൌ ൫݄௜ାଵ଴ ൅ ௜ାଵ଴ݖ ൯ െ ሺ݄పାଵଵ ൅ పାଵଵ෣ݖ ሻ. 168 

2. Evaluate the limits of the discharge components in Uh at interface xi+1/2: ሺ݄ݑሻ௜ାଵȀଶି ൌ ሺ݄ݑሻ௜଴ ൅ ሺ݄ݑሻ෣ ௜ଵ, 169 ሺ݄ߖሻ௜ାଵȀଶି ൌ ሺ݄ߖሻ௜଴ ൅ ሺ݄ߖሻ෣ ௜ଵ, ሺ݄ݑሻ௜ାଵȀଶା ൌ ሺ݄ݑሻ௜ାଵ଴ െ ሺ݄ݑሻ෣ ௜ାଵଵ , ሺ݄ߖሻ௜ାଵȀଶା ൌ ሺ݄ߖሻ௜ାଵ଴ െ ሺ݄ߖሻ෣ ௜ାଵଵ . 170 

3. Evaluate the limits of the topography z at interface xi+1/2: ݖ௜ାଵȀଶି ൌ ௜଴ݖ ൅ ௜ାଵȀଶାݖ  ,௜ଵݖ ൌ ௜ାଵ଴ݖ െ ௜ାଵଵݖ ; 171 

accordingly estimate the limits of ߔ using Eq. (3): ߔ௜ାଵȀଶ௄ ൌ ሺͳ െ ௜ାଵȀଶ௄ݖሻ݌ ൅ ሺ݄ߖሻ௜ାଵȀଶ௄ ܭ) , ൌ ൅ǡെ). 172 

4. Calculate the limits of the velocity and sediment concentration variables at interface xi+1/2: ݑ௜ାଵȀଶ௄ ൌ173 ሺ݄ݑሻ௜ାଵȀଶ௄ Ȁ݄௜ାଵȀଶ௄  and ߖ௜ାଵȀଶ௄ ൌ ሺ݄ߖሻ௜ାଵȀଶ௄ Ȁ݄௜ାଵȀଶ  ௄ with ݄௜ାଵȀଶ௄ ൌ ௜ାଵȀଶ௄ߟ െ ௜ାଵȀଶ௄ݖ ܭ)  ൌ ൅ǡെ). 174 

5. Now apply the topography discretization, at interface xi+1/2, along with wetting and drying: 175 

a. Re-define numerically the topography limits: ݖ௜ାଵȀଶ௄ǡכ ൌ ௜ାଵȀଶ௄ߟ െ ݄௜ାଵȀଶ௄ ܭ)  ൌ ൅ǡെ). 176 

b. Set a single z-value  ݖ௜ାଵȀଶേǡכ  defined by the maximum:  ݖ௜ାଵȀଶേǡכ ൌ     ሺݖ௜ାଵȀଶିǡכ ǡ כ௜ାଵȀଶାǡݖ ሻ.  177 

c. Preserve the positivity of the water depth:  ݄௜ାଵȀଶ௄ǡכ ൌ     ሺͲǡ ௜ାଵȀଶ௄ߟ െ כ௜ାଵȀଶേǡݖ ሻ (ܭ ൌ ൅ǡെ). 178 

d. Find the flow and sediment discharges incorporating the original velocities and sediment 179 

concentration, i.e. ሺ݄ݑሻ௜ାଵȀଶ௄ǡכ ൌ  ݄௜ାଵȀଶ௄ǡכ ௜ାଵȀଶ௄ݑ  and ሺ݄ߖሻ௜ାଵȀଶ௄ǡכ ൌ  ݄௜ାଵȀଶ௄ǡכ ௜ାଵȀଶ௄ߖ , and the free-180 
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surface elevation, i.e. ߟ௜ାଵȀଶ௄Ǥכ ൌ ݄௜ାଵȀଶ௄ǡכ ൅ כ௜ାଵȀଶേǡݖ , associated with the positivity-preserving 181 

water depth and the single value of the topography. 182 

e. Ensure that step 5-c does not cancel the actual water level at a wet/dry front (Liang 2010): 183 

i. Calculate ߟ߂௜ାଵȀଶ ൌ    ൣͲǡെ൫ߟ௜ାଵȀଶି െ כ௜ାଵȀଶേǡݖ ൯൧ (during step 5-c).  184 

ii. Adjust ߟ௜ାଵȀଶ௄ǡכ ՚ כ௜ାଵȀଶ௄ǡߟ െ ȟߟ௜ାଵȀଶ and ݖ௜ାଵȀଶേǡכ ՚ כ௜ାଵȀଶേǡݖ െ ܭ) ௜ାଵȀଶߟ߂ ൌ ൅ǡെ). 185 

6. Calculate the flux ۴෨௜ାଵȀଶ at interface xi+1/2 using ܃௜ାଵȀଶ௄  incorporating the depth-positivity-variables 186 ݄௜ାଵȀଶ௄ǡכ ൌ כ௜ାଵȀଶ௄ǡߟ െ כ௜ାଵȀଶേǡݖ , ݄ ௜ାଵȀଶ௄ǡכ ௜ାଵȀଶ௄ݑ and ݄ ௜ାଵȀଶ௄ǡכ ௜ାଵȀଶ௄ߖ ܭ)  ൌ ൅ǡെ). 187 

7. Repeat steps 1-6 to evaluate the flux ۴෨௜ିଵȀଶat interface xi-1/2. 188 

8. Redefine the local coefficients of the main variables to comply with the action of wetting and drying, 189 

i.e. ݖҧ௜଴ ൌ ሺݖ௜ାଵȀଶേǡכ ൅ כ௜ିଵȀଶേǡݖ ሻȀʹ, ݖҧ௜ଵ ൌ ሺݖ௜ାଵȀଶേǡכ െ כ௜ିଵȀଶേǡݖ ሻȀʹ; ത݄௜଴ǡଵ ൌ ҧ௜଴ǡଵߟ െ ҧ௜଴ߟ ҧ௜଴ǡଵ withݖ ൌ ሺߟ௜ାଵȀଶିǡכ ൅190 ߟ௜ିଵȀଶାǡכ ሻȀʹ and ߟҧ௜ଵ ൌ ሺߟ௜ାଵȀଶିǡכ െ כ௜ିଵȀଶାǡߟ ሻȀʹ;ሺ݄ݑതതതതሻ௜଴ ൌ ሾሺ݄ݑሻ௜ାଵȀଶିǡכ ൅ ሺ݄ݑሻ௜ିଵȀଶାǡכ ሿȀʹ and ሺ݄ݑതതതതሻ௜ଵ ൌ191 ሾሺ݄ݑሻ௜ାଵȀଶିǡכ െ ሺ݄ݑሻ௜ିଵȀଶାǡכ ሿȀʹ;ሺ݄ߖതതതതሻ௜଴ ൌ ሾሺ݄ߖሻ௜ାଵȀଶିǡכ ൅ ሺ݄ߖሻ௜ିଵȀଶାǡכ ሿȀʹ and ሺ݄ߖതതതതሻ௜ଵ ൌ ሾሺ݄ߖሻ௜ାଵȀଶିǡכ െ192 ሺ݄ߖሻ௜ିଵȀଶାǡכ ሿȀʹ; then use them to evaluate the local fluxes and source terms within the local space 193 

operators (12) and (13). 194 

 195 

Local slopes control 196 

To avoid spurious oscillations that would probably occur around discontinuous local solutions, the TVD 197 

minmod limiter is applied to control the variation of the local slope coefficient ܃௜ଵ (Toro 2001). Within 198 

DG methods, the slope limiter needs to be localized to those troubled-slope components. Herein, the same 199 

local slope-limiting strategy used within the RKDG2 hydrodynamic model has been applied to the 200 

variables of the morphodynamic model, namely in a component-wise manner and after normalization. 201 

Slope-limiting is deactivated around cells involving a wet/dry front to avoid unnecessary instabilities 202 

(Kesserwani and Liang 2012b). After the slope monitoring process, a local slope coefficient is denoted by 203 ܃෡௜ଵ regardless of whether it has been limited or not. 204 
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 205 

Transient topography update 206 

While completing wetting and drying along with source terms discretization, the local topography-207 

associated coefficients are extracted explicitly after each time step and inner time stage: 208 

 At t = n, coefficients ൫ݖ௜଴൯௡ and ൫ݖ௜ଵ൯௡ are either initially available, i.e. when n = 0, or reset, i.e. 209 ൫ݖ௛ȁூ೔൯௡ ൌ ൫ݖ௛ȁூ೔൯௡ାଵ
. These coefficients are used in the topography discretization with wetting and 210 

drying to calculate the space operators ൫ۺ௜଴ǡଵ൯௡, and thereby move the local solution to the intermediate 211 

stage n + ½, via Eq. (16). 212 

 At t = n + ½, ൫ۺ௜଴ǡଵ൯௡ାଵȀଶ
 is evaluated using new topography coefficients, i.e. ൫ݖ௜଴൯௡ାଵȀଶ

 and 213 

൫ݖ௜ଵ൯௡ାଵȀଶ
, which are obtained from the intermediate solution variables by means of Eq. (3): 214 

൫ݖ௛ȁூ೔൯௡ାଵȀଶ ൌ ቂః೓ȁ಺೔ିሺ௛అሻ೓ȁ಺೔ଵି௣ ቃ௡ାଵȀଶ
     (24) 215 

 After the second RK stage, the two coefficients spanning zh(x,t) are updated again, using Eq. (3), 216 

according to the solution’s variables at the next time level t = n + 1: 217 

൫ݖ௛ȁூ೔൯௡ାଵ ൌ ቂః೓ȁ಺೔ିሺ௛అሻ೓ȁ಺೔ଵି௣ ቃ௡ାଵ
     (25) 218 

 219 

Model testing 220 

The RKDG2 scheme solving the hydrodynamic equations with fixed beds has been well tested for 221 

benchmark tests involving irregular topographies, high friction effects, water jumps and wetting and 222 

drying (Kesserwani and Liang 2010, 2011, 2012a,b). The purpose here is to retest these abilities for the 223 

new RKDG2 hydro-morphodynamic solver, and, meanwhile, illustrate its performance in modelling dam-224 

break waves over erodible beds with sediment transport. The present model is validated for two small-225 

scale experimental tests characterized by an initially flat sediment beds. 226 
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The current RKDG2 model is applied to reproduce the dam-break experiments carried out in 227 

Taipei and Louvain (Capart and Young 1998, Fraccarollo and Capart 2002), respectively. Both 228 

experiments were conducted in horizontal prismatic flumes of rectangular cross-sections, but primarily 229 

differ in the sediment materials used. The flume in the Taipei experiment was 1.2 m long, 0.2 m wide and 230 

0.7 m high. It was initially covered by a 5-6 cm thick layer of light artificial pearls, of a diameter of 6.1 231 

mm, specific gravity of 1.048 and settling velocity of 0.076 m/s. In the Louvain experiment, the flume 232 

was 2.5 m long, 0.1 m wide and 0.35 m high. Cylindrical PVC pellets having a diameter of 3.2 mm, 233 

height of 2.8 mm (an equivalent spherical diameter of 3.5 mm), specific gravity of 1.54, and settling 234 

velocity of 0.18 m/s constituted an initial sediment layer of 5-6 cm thick over the fixed bottom. In both 235 

experiments, a dam was located in the middle of the flume separating an upstream static flow region of 10 236 

cm deep from the dry downstream part. At t = 0 s, the dam was lifted rapidly to create the dam-break flow 237 

over the flat beds. In both of the tests, the flow (hu) and sediment discharges (݄ߖ), and the bed evolution 238 

parameter (ߔ) are initialized to zero, while the water level is assumed to be initially discontinuous: 239 

݄ሺݔǡ Ͳሻ ൌ ൜ͲǤͳ     ሺݔ ൏ Ͳሻ Ͳ         ሺݔ ൒ Ͳሻ      (26) 240 

The bed porosity is set to 0.28 and 0.3 for the Taipei test and the Louvain test, respectively, while a 241 

Manning roughness ݊௠ ൌ ͲǤͲʹͷ  Ȁ ଵȀଷ and a water density of ߩ௪ ൌ ͳ  Ȁ  ଷ are used for both (Li and 242 

Duffy 2011). According to the critical shields curve, in Cao et al. (2006), the parameter ߠ௖ is estimated to 243 

be (roughly) less than 0.076 for grained sediments with a diameter range between 3.5 mm and 6.1 mm. 244 

However, past literature point out the use of higher values for ߠ௖ for these tests. For example, Li and 245 

Duffy (2011) and Li et al. (2013) directly used a higher ߠ௖ (= 0.15 for the Louvain case) obtained by 246 

calibration, whereas Wu and Wang (2007) introduced a correction factor, that (indirectly) amends ߠ௖. In 247 

this work, parameters ߙ and ߠ௖ were calibrated; two sets of parameters {ߠ ,ߙ௖} are selected and explored 248 

for each test, which are {2.5, 0.05} and {2.2, 0.12} for the Taipei test, and {4, 0.05} and {2.5, 0.05} for 249 

the Louvain test. Pseudo-analytical free-surface and bed elevations maybe derived based on a number of 250 

assumptions (Fraccarollo and Capart 2002). The domains were divided into 100 cells and the simulation 251 
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time is 0.6 s and 1.2 s for the Taipei and the Louvain tests, respectively, which were non-dimensionalized 252 

according to ݐ଴ ൌ ඥ݃Ȁ݄଴ ൎ ͲǤͳͲͳ (݄଴ ൌ ͲǤͳ). Transmissive boundary conditions are configured during 253 

the simulations, for completeness, although the flow does not reach boundaries. Fig. 1 compares the 254 

predicted free-surface and bed evolutions, at three successive output times, with the pseudo-analytical 255 

profiles and the measurements for the Taipei (Fig. 1 - left panel) and Louvain (Fig. 1 - right panel) tests. 256 

For the Taipei test, the numerical model is seen to underestimate the erosion upstream of the 257 

scour hole which is, however, overestimated by the pseudo-analytical bed solution, as compared to the 258 

measurement. The hydraulic jump, aligned with the bed erosion, is successfully predicted by the RKDG2 259 

model. Despite being a bit faster than the experimental jump profile, the RKDG2 model’s localization to 260 

the jump matches the results of alternative finite volume models published in literature (Wu and Wang 261 

2007, Li and Duffy 2011, Li et al. 2013). The disagreements amongst the pseudo-analytical, numerical 262 

and experimental profiles are expected and their causes have been reported previously (Capart and Young 263 

1998; Fraccarollo and Capart 2002, Li and Duffy 2011, Li et al. 2013). Relating to the sediment 264 

parameters {ߠ ,ߙ௖}, as reflects Fig. 1 (left panel) the choice {2.5, 0.05}, incorporating ߠ௖ ൏ ͲǤͲ͹͸, 265 

appears to be more appropriate for this test. 266 

 For the Louvain test, the depth and bed profiles simulated by the RKDG2 model are displayed at 267 

the right panel in Fig. 1 revealing a more satisfactory agreement between the computed, pseudo-analytical 268 

and measured results than for the Taipei test. In this test, at t = 10t0, the RKDG2 model provides a better 269 

prediction to the hydraulic jump relating to the measurements, and is able to locate well the position of 270 

the wave front and the erosion magnitude albeit showing a clear underestimation to the latter for the 271 

choice {2.5, 0.05} to the initial sediment parameters. In contrast, the RKDG2 predictions relative to the 272 

choice {4.0, 0.05} appear to capture both the analytical and experimental erosion extent with greater 273 

qualitative-accuracy; thus the second choice seems to be more appropriate for the Louvain test. 274 

Expectedly, the analytical solution excludes the hydraulic jump and tends to excessively overestimates the 275 

wave front at t = 10t0 (Wu and Wang 2007, Li and Duffy 2011, Li et al. 2013). 276 
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Fig. 2 illustrates the sediment concentration profiles reproduced by the numerical model at 277 

different output times for the Taipei (left panel) and Louvain (right panel) tests, respective to the sediment 278 

parameters {2.5, 0.05} and {4.0, 0.05}. From these qualitative results, it appears that the present RKDG2 279 

model is capable to represent high sediment concentrations with no sign of instability around steep 280 

sediment gradient under relatively strong (initial) erosive conditions. The RKDG2 sediment predictions 281 

relative to the other selected choices of parameters {ߠ ,ߙ௖} are quite similar to the predictions available in 282 

Fig. 2 and are, therefore, not illustrated further. The present RKDG2 predictions to the sediment 283 

concentration profiles match closely those predicted by alternative finite volume formulations reported in 284 

literature (Wu and Wang 2007, Li and Duffy 2011, Li et al. 2013) demonstrating the capability of the 285 

extended RKDG2 numerical model to deliver highly accurate and stable prediction to sediment 286 

concentration peaks along with the occurrence of wet/dry front, bed erosion and shock development. 287 

 288 

Conclusions 289 

This work addressed 1D modelling of dam-break flow over movable sediment beds particular to the 290 

framework of a second-order Runge-Kutta Discontinuous Galerkin method (RKDG2). The RKDG2 291 

method was reformulated to solve the fully-coupled set of hydro-morphodynamic equations and including 292 

the interaction between sediment concentration and bed change on the flow. The extended RKDG2 model 293 

was reinforced with all necessary technical ingredients for handling steep solution gradients, wetting and 294 

drying, and complex source terms. The new RKDG2 morphodynamic formulation was applied to 295 

replicate experimental water-surface and bed-evolution data corresponding to two dam-break scenarios in 296 

which the wave breaks over an initially flat and dry sediment bed. 297 

 Numerical evidences demonstrate that the RKDG2 fully-coupled morphodynamic model is able 298 

to concurrently predict the changes occurring in the water flow, the bed-evolution and the concentration 299 

of suspended sediments with reasonable precision comparing to either the available experiments and/or 300 

alternative simulation published in literature. Our testing suggest that the present RKDG2 301 
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morphodynamic formulation is valid for simulation of complex shallow flow processes including water 302 

jumps, wetting and drying, irregular bed evolution and suspension of sediments. Nevertheless, its 303 

applicability seems to be highly dependent on appropriate selection and/or calibration to the sediment 304 

parameters for a specific configuration. Two-dimensional extension to the RKDG2 morphodynamic 305 

model is feasible and this work constitutes the gateway for it. 306 

  307 
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List of figure legends 308 

 309 

Fig. 1 water and bed surface RKDG2 predictions compared with the experimental and pseudo-analytical 310 

solutions at three successive output times. Left panel: Taipei test results at time 3t0, 4t0 and 5t0 311 

(respectively from top to end); Right panel: Louvain test results at time 5t0, 7t0 and 10t0 (respectively 312 

from top to end). 313 

 314 

Fig. 2 sediment concentration predicted by the RKDG2 model for the Taipei (left panel) and Louvain 315 

(right panel) tests. 316 

  317 
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Notations 318 

 = ܋܁  ௙ = friction coefficientܥ   ૙ = Topography source term vector܁  ଴ = bed slopeݏ  source terms = ܁  submerged specific gravity of sediment = ݏ    
sediment concentration variation source 
term vector  

േ܃  computational time step = ݐ଴ܑǡଵ = coefficients defining a local linear solution  ο܃  computational cell length in x-direction = ݔ૚  οࢁ ෡૚ = limited slope-coefficient for܃ ௜଴ǡଵ = local topography coefficientsݖ  ࢁ local approximate solution for = ܐ܃  bed elevation = ݖ   conserved variables = ܃  space coordinate = ݔ  frictional velocity ۴෨ = numerical flux = כݑ   flow velocity  ۴ = flux = ݑ   friction source term vector = ܎܁ ଴ =  Normalized time periodݐ  sediment exchange source term vector  = ܍܁  time = ݐ 
  shields factor = ߠ   ௙ = friction coefficientܥ free-surface elevation = ߟ   ଴ǡଵ =  Local space operatorۺ  at left and right hand of interface  Į = calibration constantࢎࢁ = 

d = sediment particle diameter   șc = critical shields factor  

D = sediment deposition flux   ߥ = kinematic viscosity of water  

E = sediment entertainment flux   ȡ = water-sediment mixture density  ݃ = gravitational acceleration   ȡs = sediment density    ݄ = water depth   ȡw = water density   ݅ = Cell counter  ȡz = saturated bed density   

I = Local cell  ߔ = bed evolution parameter  ۺ଴ǡଵ =  Local space operator   ߖ = volumetric sediment concentration  ݉ = exponent in sediment deposition   ߱ = setting velocity of sediment particles  

n = time level      ݊௠ = Manning coefficient      ݌ = bed sediment porosity      

  319 
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