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" Abstract

This paper presents an investigation into the performance evaluation of high-performance
processors in real-time applications. The performance evolution of the processors in
relation to task size, compiler efficiency for numerical computation and code optimisation
are investigated. A quantitative measure of performance evaluation of processors is
introduced. An adaptive filtering algorithm and a beam simulation algorithm are
considered. These are implemented on several high-performance processors incorporating
transputers and digital signal processing devices. A comparative performance evaluation of
the architectures is made, demonstrating the critical issues encountered with fast

processing techniques in real-time signal processing and control.

Key words: Digital signal processing, performance evaluation, real-time signal

processing and control.
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1 INTRODUCTION

A real-time system can be regarded as one that has to respond to externally-generated
stimuli within a finite and specified period. Despite the vastly increased computing power
which is now available there can still be limitations in computing capability of digital
processors in real-time control applications for two reasons: (a) sample times have become
shorter as greater performance demands are imposed on the system, (b) algorithms are
becoming more complex as the development of control theory leads to an understanding of
methods for optimising system performance. To satisfy these high performance demands,
microprocessor technology has developed at a rapid pace in recent years. This is based on
(i) processing speed, (ii) processing ability, (iii) communication ability, and (iv) control
ability.

Digital signal processing (DSP) devices are designed in hardware to perform
concurrent add and multiply instructions and execute irregular algorithms efficiently,
typically finite-impulse response (FIR) and infinite-impulse response (IIR) filter algorithms.
Vector processors are designed to efficiently process regular algorithms involving matrix
manipulations. However, many demanding complex signal processing and control
algorithms can not be satisfactorily realised with conventional computing methods.
Alternative strategies where high-performance computing methods are employed, could
provide suitable solutions in such applications (Tokhi and Hossain, 1996). Not much work
has been reported on such methods in real-time signal processing and control applications
(Leitch and Tokhi, 1986; Tokhi, 1992; Tokhi and Hossain, 1995; Tokhi et al., 1995).

For microprocessors with widely different architectures, performance measurements
such as MIPS (million instructions per second), MOPS (million operations per second) and
MFLOPS (million floating-point operations per second) are meaningless. Of more
importance is to rate the performance of a processor on the type of program likely to be
encountered in a particular application (Tokhi and Hossain, 1995). The different
microprocessors and their different clock rates, memory cycle times etc. all confuse the
issue of attempting to rate the processors. In particular, there is an inherent difficulty in

selecting microprocessors in real-time signal processing and control applications. The ideal
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performance of a microprocessor demands a perfect match between processor capability
and program behaviour. Processor capability can be enhanced with better hardware
technology, innovative architectural features and efficient resource management. From the
hardware point of view, current performance varies according to whether the processor
possesses a pipeline facility, is micrbcodc!hardwired operated, has an internal cache or
internal RAM, has a built-in math co-processor, floating point unit etc. Program behaviour,
on the other hand, is difficult to predict due to its heavy dependence on application and
run-time conditions. Other factors affecting program behaviour include algorithm design,
data structure, language efficiency, programmer skill and compiler technology (Anderson,
1991; Hwang, 1995). The work reported in this paper attempts to investigate such issues
within the framework of real-time applications.

An investigation into the computing capabilities of several high-performance
processors and their suitability in real-time applications is presented in this paper. Three
computing domains, namely the Texas Instruments TMS320C40 (C40) DSP device, an
Intel 801860 (i8605 vector processor, and an Inmos T805 (T8) transputer are studied. The
algorithms chosen to highlight the main characteristics of these processors are the least
mean square (LMS) based adaptive filtering algorithm and finite difference (FD) simulation
of a flexible beam in transverse vibration. Previous investigations have established a
comparative performance evaluation of these processors in implementing the above
algorithms on the basis of fixed task sizes. Not much work, however, is known of the
performance evolution of such processors in relation to task size in real-time applications
(Tokhi et al., 1996). Moreover, similar studies involving code optimisation and compiler

efficiency have not been reported. This work aims at addressing these points.

2 ALGORITHMS

The performance of a processor is largely affected by the computing requirements of an
application. This in turn is determined by the degree of regularity of the algorithm.
Regularity is used to describe the degree of uniformity in the execution thread of the

computation. An algorithm consisting of varying loops and conditional jumps, for instance,
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is considered to be highly irregular. Many algorithms can be expressed by matrix
computations. This leads to the so called regular iterative (RI) type of algorithms due to
their very regular structure. In implementing an RI type algorithm, a vector processor will,
principally, be expected to perform better. Moreover, if a large amount of data is to be
handled for computation in these type of algorithms, the performance will further be
enhanced if the processor has more internal data cache, instruction cache and/or a built-in
math co-processor.

The algorithms considered in this investigation consist of the FD simulation of a
flexible beam structure and an LMS adaptive filter algorithm. These are briefly described
below.

2.1 Beam simulation
Consider a cantilever beam system with a force U(x,r) applied at a distance x from its
fixed (clamped) end at time ¢. This will result in a deflection y(x,f) of the beam from its

stationery position at the point where the force has been applied. In this manner, the

governing dynamic equation of the beam is given by

3‘y(x,t) 3%y(x,t) 1
2

_1 1
ol i~ e e

where, L is a beam constant and m is the mass of the beam. Discretising the beam in time

and length using central FD methods, a discrete approximation to Equation (1) can be

obtained as (Tokhi and Hossain, 1994)

2
%, =¥, -2y, + &)y @)
m

where, A’ = [(Az‘)2 [(Ax)* ]}.Lz with Ar and Ax representing the step sizes in time and along

the beam respectively, S is a pentadiagonal matrix (the so called stiffness matrix of the
beam), ¥, (i =k+1kk-1) is an nx1 matrix representing the deflection of end of

sections (grid-points) 1 to n of the beam at time step i (beam divided into n-—1
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sections). Equation (2) is the required relation for the simulation algorithm that can be

implemented on a digital processor easily.

2.2 The LMS adaptive filter

The LMS algorithm is one of the most successful adaptive algorithms developed by
Windrow and his co-workers (Widrow et al., 1975). It is based on the steepest descent

method where the weight vector is updated according to

Wou= W, - 2eknxk (3)

where W, and X, are the weight and the input signal vectors at time step k respectively,

T is a constant controlling the stability and rate of convergence and e, is the error given
by

& =y — WX, (4)

where, y, is the current contaminated signal sample. Equations (3) and (4) constitute the
LMS adaptive filter algorithm.
Note in the above that the beam simulation algorithm can be considered as an RI

algorithm whereas the LMS adaptive filter constitutes an irregular algorithm.

3 HARDWARE

The architectures considered include an i860 vector processor, a C40 DSP device and a T8
transputer. These are described below.

The i860 is a high-performance 64-bit vector processor with 40 MHz clock speed, a
peak integer performance of 40 MIPS, 8 Kbytes data cache and 4 Kbytes instruction cache
and is capable of 80 MFLOPS. It is the Intel's first superscalar RISC processor possessing
separate integer, floating-point, graphics, adder, multiplier and memory management units.
The i860 executes 82 instructions, including 42 RISC integer, 24 floating-point, 10
graphics, and 6 assembler pseudo operations in one clock cycle. All external or internal

address buses are 32-bit wide and the external data path or internal data bus is 64-bits wide.
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However, the internal RISC integer ALU is only 32 bits wide. The instruction cache
transfers 64 bits per clock cycle, equivalent to 320 Mbytes/sec at 40 MHz. In contrast, the
data cache transfers 128 bits per clock cycle. There are two floating-point units, namely,
the multiplier and the adder units, which can be used separately or simultaneously under the
co-ordination of the floating point control unit. Special dual-operation floating-point
instructions such as add-and-multiply and subtract-and-multiply use both the multiplier and
adder units in parallel. Furthermore, both the integer and the floating-point control units
can execute concurrently (Hwang, 1993). ‘»

The C40 is a high-performance Texas Instruments 32-bit DSP processor with 40 MHz
clock speed, 8 Kbytes on-chip RAM, 512 bytes on-chip instructions cache and is capable
of 275 MOPS and 40 MFLOPS. This DSP processor possesses six parallel high speed
communication links for inter-processor communication with 20 Mbytes/sec asynchronous
transfer rate at each port and eleven operations/cycle throughput. In contrast, it possesses
two identical external data and address buses supporting shared memory systems and high
data rate, single—dyclc transfers. It has separate internal program, data, and DMA co-
processor buses for support of massive concurrent I/O of program and data throughput,
thereby maximising sustained CPU performance (Brown, 1991; Texas Instruments, 1991a).

The T8 is a general purpose medium-grained 32-bit Inmos processor with 25 MHz
clock speed, yielding up to 20 MIPS performance, 4 Kbytes on-chip RAM and is capable of
4.3 MFLOPS. The T8 is a RISC processor possessing an on-board 64-bit floating-point
unit and four serial communication links. The links operate at a speed of 20 Mbits/sec
achieving data rates of up to 1.7 Mbytes/sec unidirectionally or 2.3 Mbytes/sec bi-
directionally. Most importantly, the links allow a single transputer to be used as a node
among any number of similar devices to form a powerful parallel processing system. The
transputer thus provides an important bridge between single chip, real-time control and
general purpose real-time computer control systems, and, in effect, removes the current
distinction between the two (Irwin and Fleming, 1992; Transtech Parallel Systems Ltd.,

1991).
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4 SOFTWARE

Software support is needed for the development of efficient programs in high level
languages. The ideal performance of a computer system demands a perfect match between
machine capability and program behaviour. Program performance is the turnaround time,
which includes disk and memory access, input and output activities, compilation time,
operating system overhead and CPU time. To shorten the turnaround time, one can reduce
all these time factors (Hwang, 1993). Minimising the run-time memory management within
the program and selecting an efficient compilér, for a specific computation demand, could
enhance the performance. Compilers have a significant impact on the performance of the
system. This is not to say that any particular high-level language dominates another. Most
languages have advantages in certain computational domains.

Compilers have a significant impact on the performance of the system. This means that
some high-level languages have advantages in certain computational domains and some
have advantages in other domains. The compiler itself is critical to the performance of the
system as the efﬁciency of the mechanism for taking a high-level description of the
application and transforming it into a hardware dependent implementation differs from
compiler to compiler. Identifying the foremost compiler for the application in hand is,
therefore, especially challenging due to the unpredictable run-time behaviour of the
program and memory management capabilities using different compilers. In signal
processing and control applications it is important to select a suitable programming
language that can support highly numerical computation for real-time implementation. The
investigation here involves performance evaluation issues of some commonly used
compilers with the computing platforms considered.

The algorithms are coded in high-level languages as appropriate for the hardware used,
with the code structure kept as similar as possible for a given application. The compilers
used consist of the Inmos ANSI C (for T8), Portland Group ANSI C (for i860) 3L Parallel
C (for C40 and T8) and Occam (for T8). For the implementations involving the T8, as will
be noted later, the ANSI C compiler is used in investigations involving performance

evaluations of the hardware architectures in implementing the algorithms whereas the 3L
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Parallel C and Occam are used in investigations involving the performance evaluation of the
compilers.

Performance is also related to code optimisation facility of the compiler, which may be
machine dependent. The goal of program optimisation is, in general, to maximise the speed
of code execution. This involves sevéral factors such as minimisation of code length and
memory accesses, exploitation of parallelism, elimination of dead code, in-line function
expansion, loop unrolling and maximum utilisation of registers. The optimisation techniques
include vectorisation using pipelined hardware and parallelisation using multiprocessors
simultaneously (Hwang, 1993). The i860 and the C40 processors with their respective

compilers are considered in investigating their optimisation facility.

5 PERFORMANCE METRICS

A commonly used measure of performance of a processor in an application is speedup. This
is defined as the ratio of execution time of the processor in implementing the application
algorithm relative t6 a reference time or execution time of a reference processor (Tokhi and
Hossain, 1995). The speedup thus defined provides a relative performance measure of a
processor for fixed load (task size) and thus can be referred to as fixed-load speedup. This
can also be used to obtain a comparative performance measure of a processor in an
application with fixed task sizes under different processing conditions, for example, with
and without code optimisation. However, this performance metric does not provide a
measure of performance of the processor over a wide range of computational demands of
the application.

It has been observed previously and demonstrated later in this investigation that the
performance of a processor, as execution time, in implementing an application algorithm
generally evolves linearly with the task size (Tokhi et al., 1996). With some processors,
however, anomalies in the form of change of gradient (slope) of execution time to task size
are observed. These are mainly due to run-time memory management conditions of the

processor where up to a certain task size the processor may find the available cache
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sufficient, but beyond this it may require to access lower level memory. Despite this the
variation in the slope is relatively small and the execution time to task size relationship can
be considered as linear. This means that a quantitative measure of performance of a
processor in an application can adcciuately be given by the average ratio of task size to
execution time or the average speed. Alternatively, the performance of the processor can be
measured as the average ratio of execution time per unit task size, or the average
(execution time) gradient. In this manner, a generalised performance measure of a

processor relative to another in an application can be obtained.
Let the average speeds with two processors p, and p, in an application be denoted by

V, and V, respecti\}ely. The generalised (execution time) speedup S, of p, relative to p,

in implementing the application algorithm can thus be defined as

Alternatively, if the corresponding average gradients with p, and p, for the application are

given by G, and G, respectively, S, can be expressed as

The concept of generalised speedup described above can also be utilised to obtain a
comparative performance evaluation of a processor for an application under various
processing conditions.

The concept of speed, assumed to be constant for a processor in an application, has
previously been utilised to derive an expression for the generalised speedup as the ratio of
parallel speed (of a parallel architecture) over sequential speed (of a single processor) (Sun
and Gustafson, 1991; Sun and Rover, 1994). The generalised speedup introduced above,
however, reflects on the relative performance of two uni-processor architectures in an

application and of the same processor under two different processing conditions.
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6 IMPLEMENTATIONS AND RESULTS

In the following investigations involving the beam simulation algorithm an aluminium type

cantilever beam of length [ =0.635 m , mass m =0.037 kg and p =1.351 was considered.

6.1 Compiler efficiency

In this section results of investigations of the performance evaluation of several compilers
are presented and discussed. The compilers involved are the 3L Parallel C version 2.1,
Inmos ANSI C and Occam. All these confpilers can be utilised with the computing
platforms considered in this investigation. It has previously been reported that, although
Occam is more hardware oriented and a straight-forward programming language for
parallel processing, it may not be as suitable as the Parallel C or ANSI C compilers for
numerical computations (Bader and Gehrke, 1991). To obtain a comparative performance
evaluation of these compilers, the flexible beam simulation algorithm was coded, for 19
equal-length beam sections, into the three programming languages and run on a T8. Figure
1 shows the exec;ution times in implementing the simulation algorithm, over 20000
iterations, using the three compilers. It is noted that the performances with Parallel C and
ANSI C are nearly at a similar level and at about 1.5 times faster than the Occam. This was
further investigated with a linear algebraic equation. Table 1 shows the performances with
integer and floating point operations with and without array. It is noted that better
performance is achieved, throughout, with the ANSI C compiler than the Occam, except in
a situation where the computation involved is floating type data processing with declaring

array. As compared to ANSI C, better performance is achieved with Parallel C for both

integer and floating type computation with array. Better performance is achieved with
Occam compiler for floating type computation as compared to Parallel C. It is also noted
that for the amount of double data handling 1.9 times more execution time was required
with Occam. In contrast, 1.87 times more execution time was required with each ANSI C
and Parallel C. This implies that for large amounts of data handling, run-time memory
management problem can be solved with Parallel C and ANSI C more efficiently than with

the Occam compiler.
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Time (sec)

Parallel C

ANSIC

Figure 1: Performance of the compilers in implementing the simulation algorithm
on the T8.

Table 1: Comparison of compilers for different type of data processing.

Equationused: z = (x+i*y—x*i)/(x*x+y*y); i=0,12,..,20000;
The same equation is repeated twice for 40000 declaring another variable z,, i.e.
z=(x+i*y-x*i)/(x*x+y*y); i=0,12,...,20000

Values used: Integer x=35, y=25, Floating: x=55.02562, y=25.13455.

Floating type data processing Integer type data processing
Compiler With array Without array With array Without array
20000/40000 20000/40000 20000/40000 20000/40000
3L Parallel C | 0.1327/0.2488 | 0.1263/0.2333 | 0.1327/0.2488 | 0.1263/0.2333
ANSIC 0.1328/0.2444 | 0.0227/0.0227 | 0.1328/0.2444 | 0.0226/0.0226
Occam 0.1078 /0.2052 | 0.1078/0.2044 | 0.1960/0.3825 | 0.1905/0.3698

6.2 Code optimisation

Code optimisation facility of compilers for hardware is another important component
affecting the real-time performance of a processor. Almost always optimisation facilities
enhance the real-time performance of a processor. The i860 and the C40 have many
optimisation features (Portland Group Inc., 1991; Texas Instruments, 1991a,b). The
TMS320 floating-point DSP optimising C compiler is the TMS320 version of the 3L

Parallel C compiler (Texas Instruments, 1991c). It has many options, constituting three

10
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levels of optimisation, which aid the successful optimisation of C source code files on the
C40. The Portland Group (PG) C compiler is an optimising compiler for the i860 (Portland
Group Inc., 1991). It incorporates four levels of optimisation.

To measure the performance attainable from the compiler optimisers, so as to fully
utilise the available features, experiments were conducted to compile and run the LMS and
the beam simulation algorithms on the i860 and the C40. To study the effect of the PG
optimising compiler, the LMS algorithm was compiled with the number of weights set at 5
and 1 =0.04 . The algorithm was implemented on the i860 with four levels of optimisation
and the execution time of the processor in implementing the algorithm over 1000 iterations
was recorded. Similarly, the beam simulation algorithm was compiled and implemented on
the i860 with 5 beam segments and Az = 0.055 ms . The execution time of the processor in
implementing the algorithm over 20000 iterations was recorded with each of the four levels
of optimisation. Figure 2 shows the execution times achieved in implementing the LMS and
the beam simulation algorithms, where level 0 corresponds to no optimisation. The
corresponding execution time speedups achieved with each optimisation level in
implementing the LMS and beam simulation algorithms are shown in Figure 3. It is noted in
Figures 2 and 3 that the performance of the processor in implementing the LMS algorithm
has enhanced significantly with higher levels of optimisation. The enhancement in case of
the beam simulation algorithm, on the other hand, is not significant beyond the first level.
The disparity in the speedups in case of the two algorithms is thought to be due to the type
of operations performed by the optimiser. As the LMS algorithm has multiple nested loops,
the compiler is able to recognise the structures involved and restructure the actual code so
that it is still functionally equivalent but suits the CPU architecture better. Branches to sub-
routines, for instance, are in-lined which cuts out procedure call overheads, hence speeding
up the execution time. The beam simulation algorithm, however, is already in a matrix
format and thus does not need as much room for improvement (Portland Group Inc.,

1991).

11




Figure 2:

Tokhi MO

Execution time (sec)

Opimisation level

(a)

| 0.113035

0.073536  0.073535 0. 073533

Execution time (sec)
o
g

0.04+
0.02- \E\ ‘ ‘E
i \ﬂtlw )
0 1 2 3
Opimisation level
(b)

Execution times of the i860 in implementing the algorithms with the Portland
Group C compiler optimiser;

(a) The LMS algorithm.

(b) The beam simulation algorithm.
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Figure 3: Speedup with the Portland Group C compiler optimiser in implementing the
algorithms on the i860;

(a) The LMS algorithm.
(b) The beam simulation algorithm.
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To study the effect of the optimisers further on the performance of the system,
optimisation level 0 (no optimisation) and level 2 were used with the 3L optimiser in
implementing the algorithms on the C40. Similarly, with the i860, using the PG compiler,
optimisation level 0 and level 4 were utilised. The LMS and the beam simulation algorithms
were coded for various task sizes, by changing the number of weights in case of the LMS
algorithm and number of segments in case of the beam simulation algorithm. The
algorithms were thus implemented on the i860 and the C40. Figures 4 and 5 show the
execution times achieved by the processors in implementing the LMS and beam simulation
algorithms over 1000 and 20000 iterations respectively. It is noted that the execution time
in each case varieé approximately linearly as function of the task size. With the LMS
algorithm, as noted, the relation has a relatively smaller gradient for less than 10 and 20
weights with the i860 and the C40 respectively. For the number of weights greater than
these, the gradient is larger. Such a phenomenon is more likely associated with dynamic
memory management conditions of the processor in each case. In case of the beam
simulation algorithm, as noted in Figure 5, such a situation is not clearly evident. This
suggests that with the amount of data handling involved in implementing this algorithm
both processors appear to have required utilising the lower level memory throughout. The
slight variation in gradient noted in Figure 5(b) with the algorithm implemented on the C40
is more likely due to computational error.

It is noted in Figures 4 and 5 that the enhancement in performance of the processors in
implementing the LMS algorithm with optimisation is substantially greater than in
implementing the beam simulation algorithm. This, as discussed above, is due to the
structure of the algorithms where for the LMS algorithm the features of the optimisation
are well exploited and not much for the beam simulation algorithm. This is further
evidenced in Figure 6 with the corresponding speedups achieved with optimisation in
implementing the algorithms on the i860 and the C40. It is important to note that the
optimisation with the C40 offers significant enhancement in implementing the LMS
algorithm. However, the enhancement occurs within a specific bandwidth of the task size

(number of filter weights). A similar trend will also be expected with the speedup achieved

14
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Figure 4: Execution times of the processors in implementing the LMS algorithm;
(a) With the 1860.
(b) With the C40.
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Figure 5: Execution times of the processors in implementing the beam simulation
algorithm;
(a) With the i860.
(b) With the C40.
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Figure 6: Optimisation speedup with the processors in implementing the algorithms;
(a) The LMS algorithm.
(b) The beam simulation algorithm.
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in case of the i860 in implementing the LMS algorithm. However, due the better data
handling capability of the i860 the upper roll-off point is expected to occur at a larger task
size in comparison to that with the C40 implementation.

The execution time speedups achieved with code optimisation in implementing the
beam simulation algorithm on the processors, as noted in Figure 6(b), reach a similar level
with both the i860 and the C40. At the lower end of task sizes the speedup with the C40 is
relatively larger and continues to decrease with an increase in the task size. The speedup
with the implementation on the i860, on the other hand, increases with the task size rapidly
at the lower end and slowly beyond 20 beam segments. This suggests that the optimisation

for the i860 is performing better than that for the C40 in this type of application.

6.3 Comparative performances of the processors

To evaluate the performance of the processors in implementing the algorithms relative to
one another, the algorithms were implemented on the i860, the C40 and the T8 with
various task sizes ;md the execution times recorded accordingly. With the i860 and the C40
implementations the two levels of optimisation considered above were utilised. The
execution times recorded in implementing the LMS algorithm in these exercises correspond
to 1000 iterations and those for the beam simulation algorithm correspond to 20000
iterations.

Figure 7 shows the execution times of the processors in implementing the LMS
algorithm. It is noted that the 1860 with optimisation has performed the fastest and the T8
as the slowest of the processors. The performance of the C40, on the other hand, appears
to have enhanced significantly with optimisation as compared to its performance without
optimisation. This is further demonstrated by the average computational speed of the
processors shown in Figure 8 in implementing the LMS algorithm. It is evident from Figure
8 that the speedup achieved with the 1860 including optimisation is 5.262, 2.2728, 16.274
and 35.996 relative to the i860 with no optimisation, the C40 with optimisation, the C40

with no optimisation and the T8 respectively. The C40 with optimisation, on the other
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Figure 7: Execution times of the processors in implementing the LMS algorithm.
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Figure 8: Processor average speed in implementing the LMS algorithm.

hand, appears to have performed 2.315, 7.16 and 15.838 times faster than the i860 without
optimisation, the C40 without optimisation and the T8 respectively. Although, the 1860
without optimisation appear to have performed slower than the C40 with optimisation, as is

further evidenced from the execution time speedup achieved with the i860 relative to the
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T8 and the C40 as function of the number of filter weight in Figure 9, the i860 with
optimisation has outperformed both the C40 and the T8 significantly in implementing the

LMS algorithm.
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Figure 9: Execution time speedup with the i860 in implementing the LMS algorithm;
(a) Relative to the T8.
(b) Relative to the C40.
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Figure 10: Execution times of the processors in implementing the beam simulation
algorithm.

Figure 10 shows the execution times of the processors in implementing the beam
simulation algorithm. It is noted that the i860 with optimisation has performed the fastest
and the T8 as the slowest of the processors. The performance of both the i860 and the C40
appear not to have enhanced significantly with optimisation as compared to their
performances without optimisation. This is due to the nature of the beam simulation
algorithm for which the optimisation facility does not offer much in each case. The
performance of the C40 without optimisation appear not to be significantly different from
that of the T8. The performance of the i860 with and without optimisation is significantly
better than the performance of both the C40 and the T8. This is further demonstrated by
the average computational speed of the processors shown in Figure 11 in implementing the
algorithm. It is evident from Figure 11 that the speedup achieved with the i860 with
optimisation is 1.322, 9.693, 14.032 and 14.711 relative to the i860 without optimisation,
the C40 with optimisation, the C40 without optimisation and the T8 respectively. The C40
with optimisation, on the other hand, appears to have performed 7.331 times slower than
the 1860 without optimisation, but only 1.448 and 1.518 times faster than the C40 without

optimisation and the T8 respectively. Such a significant performance of the i860 in
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implementing the beam simulation algorithm is further evidenced in Figure 12 which shows
the speedup achieved with the 1860 relative to the T8 and the C40 as function of the beam

segments.

i860 with  i860 without C40 with  C40 without
optimisation optimisation optimsation optimsation

Figure 11: Processor average speed in implementing the beam simulation
algorithm.

7 CONCLUSION

An investigation into the comparative performance evaluation of several high-performance
DSP and RISC processors within the framework of real-time applications has be presented.
Compiler efficiency and code optimisation of the processors as important issues, affecting
the performance of the processors, in real-time applications have been investigated.

Several areas of importance when considering optimising algorithms to suit an
architecture or vice versa have been noted. In configuration files, amounts of memory may
be allocated for the use of stack, heap or data storage functions. Careful choice of these
can determine whether an algorithm can be run in on-chip cache memory or in local
memory. This, in turn, can affect the speed of execution. In cases where the algorithm is
irregular, involving many branches or subroutines and uneven loops, such as digital filters

and similar signal processing algorithms, the C40 has been found to be well suited.
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However, with an efficient compiler optimiser tie more powerful number crunchers, such
as the i860 vector processor, can out perform the C40 at its own game. One reason for this

is that the compiler optimiser restructures the code so that it is in a more regular form.
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Figure 12: Execution time speedup with the i860 in implementing the beam simulation
algorithm;
(a) Relative to the T8.
(b) Relative to the C40.
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A quantitative measure of performance of processors has been introduced and utilised
in a comparative performance evaluation of processors in the implementation of real-time
application algorithms. It has been shown that the performance of a processor evolves
approximately linearly with task size. The has lead to the introduction of several
performance metrics, namely the average speed, average gradient and generalised speedup,
for a more comprehensive performance evaluation of a processor under various processing
conditions and relative to other processors within an application. These have been shown to
provide suitable measures of the performance of a processor over a wide range of loading
conditions and thus reflect on the real-time computing capabilities of the processor in a

comprehensive manner.
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