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Abstract

Identification “schemes_using wavelet networks are presented for nonlinear dynamical
systems. Based on fixed wavelet networks, parameter adaptation laws are developed using
a Lyapunov synthesis approach. This guarantees the stability of the overall identification
scheme and the convergence of both the parameters and the state errors, even in the
presence of modelling errors. Using the decomposition and reconstruction techniques of
multiresolution decompositions, variable wavelet networks are introduced to achieve a
desired estimation accuracy and a suitable sized network, and to adapt to variations of
the characterispics and operating points in nonlinear systems. B-spline wavelets are used

to form the wavelet networks and the identification scheme is illustrated using a simulated
example. ‘

Keywords: Wavelets, networks, nonlinear system, B-splines, identification, multires-
olution.
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1 Introduction

Nonlinear system identification consists of model structure selection and parameter estima-
tion. The first problem is concerned with selecting a class of mathematical operator as a
model. The second is concerned with an estimation algorithm based on input-output data
from the process, a class of models to be identified and a suitable identification criterion. A
number of techniques have been developed in recent years for model selection and parameter
estimation of nonlinear systems. Forward and backward regression algorithms were analyzed
in [18]. Stepwise regression was used in [2] and a class of orthogonal estimators were discussed
in [17]. Algorithms which save memory and allow fast computations have also been proposed
in [6]. Methods to determine a priori structural identifiability of a model have also been
studied [21]. A survey of existing techniques of nonlinear system identification prior to the
1980s is given in [1], a survey of the structure detection of input-output nonlinear systems
is given in [13] and a recent survey of nonlinear black-box modelling in system identification
can be found in [29)].

The approximation of general continuous functions by nonlinear networks has been widely
applied to system modelling and identification. Such approximation methods are particularly
useful in the black-box identification of nonlinear systems where very little a priori knowledge
is available. For example, neural networks have been established as a general approximation
tool for fitting nonlinear models from input-output. data on the basis of the universal ap-
proximation property of such networks (see, for example, [5] [19] [26]). There has also been
considerable recent interest in identification of general nonlinear systems based on radial basis
networks [27], fuzzy sets and rules [31], neural-fuzzy networks [4] [30] and hinging hyperplanes

[3].

The recently introduced wavelet decomposition [7] [10] [12] [14] [22] [24] also emerges
as a new powerful tool for approximation. In recent years, wavelets have become a very
active subject in many scientific and engineering research areas. Wavelet decompositions
provide a useful basis for localised approximation of functions with any degree of regularity
at different scales and with a desired accuracy. Recent advances have also shown the existence
of orthonormal wavelet bases, from which follows the variability of rates of convergence for
approximation by wavelet based networks. Wavelets can therefore be viewed as a new basis for
representing functions. Wavelet based networks (or simply wavelet networks) are inspired byl
both the feedforward neural networks and wavelet decompositions and have been introduced
for the identification of nonlinear static systems [32]. But little attention has been paid to
identification of nonlinear dynamical systems using wavelet networks (8] [9].

This paper presents a wavelet network based identification scheme for nonlinear dynamical
systems. Two kinds of wavelet networks are studied: fixed and variable wavelet networks.
The former is used for the case where the estimation accuracy is assumed to be achieved by a
known resolution scale. But, in practice, this assumption is not realistic because the nonlinear
function to be identified is unknown and the system operating point may change with time.
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Thus, variable wavelet networks are introduced to deal with this problem. The basic principle
of the variable wavelet network is that the number of wavelets in the network can either
be increased or decreased over time according to a design strategy in an attempt to avoid
overfitting or underfitting. In order to model unknown nonlinearities, the variable wavelet
network starts with a lower resolution scale and then increases or reduces this according to the
novelty of the observation. Since the novelty of the observation is tested, it is idealy suited
for on-line identification problems. The objective behind the development is to gradually
approach the appropriate network complexity that is sufficient to provide an épproxjmation
to the system nonlinearities and which is consistent with the observations received.

The parameters of the wavelet network are adjusted by adaptation laws developed using
a Lyapunov synthesis approach. The identification algorithm is performed over the network
parameters by taking advantage of the decomposition and reconstruction algorithms of a
multiresolution decomposition when the resolution scale changes in the variable wavelet net-
work. Combining the wavelet network and Lyapunov synthesis techniques, the identification
algorithm developed for continuous dynamical nonlinear systems guarantees the stability of
the whole identification scheme and the convergence of both the parameters and estimation
errors. The wavelet network based identification scheme is realised using B-spline wavelets
and it is shown how to calculate decomposition and reconstruction sequences needed for iden-
tification using variable wavelet networks. A simulated example shows the operation of the
proposed identification scheme.

2 Wavelet Networks

Wavelets are a class of functions which have some interesting and special properties. Some
basic concepts about orthonormal wavelet bases will be introduced initially. Then the wavelet
series representation of one-dimensional and multi-dimensional functions will be considered.
Finally, wavelet networks are introduced.

Throughout this paper, the following notations will be used. 7 and IR denote the set
of integers and real numbers, respectively. L>(IR) denotes the vector space of measurable,
square-integrable one-dimensional functions f(z). For f,g € Ly(IR), the inner product and
norm for the space Ly(IR) are written as

<hg>i= [ fe)E (1)
I F =g £ f Y2 (2)

where g(.) is the conjugate of the function g(.). Ly(IR™) is the vector space of measurable,
square-integrable n-dimensional functions f(z, 2, ..., z,). For f,g € Ly(IR™), the inner prod-
uct of f(z1,22,...,2,) With g(z1,22,.... ;) is written as

< FlZis®2: o Bn)s GlBL B0 80) B>=
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/ / / flz1, 22,0, 20)9(21, T2, oo, 25)dT1 d25.  dx, (3)
-0 J—0o -0

i

The original objective of the theory of wavelets is to construct orthogonal bases in Ly(IR).
These bases are constituted by translations and dilations of the same function . It is prefer-
able to take 1 as localized and regular. The principle of wavelet construction is the following:
() the function ¢(z — k) are mutually orthogonal for k ranging over Z: (b) ¢ is a scaling
function and the family ¢(2/z — k) constitutes an orthogonal basis of Ly(IR); (c) the wavelet
is defined as v and the family ¢(27z — k) constitutes an orthogonal basis of Ly(IR). It can

also be proved that the family {¢(2%°z — k), W(2z — k), for j > Jo} also forms an orthogonal
basis of Ly(IR).

The wavelet subspaces W; are defined as
W; = {v(2z - k), keZ} (4)

which satisfy

Wi(\W:={0}, j#i (5)

Any wavelet generates a direct sum decomposition of Ly(IR). For each j € ZZ, let us consider
the closed subspaces:

Vi= .8 Wia & W,y (6)

of Ly(IR), where & denotes the direct sum. These subspaces have the following properties:

(i) . CVLLCVoCVIC oy

(i) closg, (U VJ) = Ly(R);
€T

) NV = {0

- JEZ

(iv) Viji=V; + W,, j € Z; and

(v) f(z) e V; < f(2z) € V;41,] € ZZ.

Hence, the sequence of subspaces V; is nested, as described by property (i). Property (ii) shows
that every function fin L*(IR) can be approximated as closely as desirable by its projections,
denoted by P;f in V;. But, by decreasing j, the projections P;f could have arbitrarily small
energy, as guaranteed by property (iii). The most important intrinsic property of these spaces
is that more and more variations of P, f are removed as j — —co. In fact, these variations
are peeled off, level by level in decreasing order of the rate of variations and stored in the
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complementary subspaces W; as in property (iv). This process can be made very efficient by
an application of property (v).

If ¢ and 9 are compactly supported, they give a local description, at different scales 7y
of the considered function. The wavelet series representation of the one-dimensional function
f(z) is given by

f(z)= 3 ajordior(z) + 3 > biktir(z) (7)
keZ 7270 kEZ
where ¢ x(z) = 270/2¢(290 — k), Yie(z) ='22/2p(27z — k), and the wavelet coefficients Qjok
and b,y are
Aok =< f(ﬂ?),f;bjok(l‘) > (8)
bir =< f(z), Ysu(z) > (9)

The wavelet series representation can easily be generalized to any dimension n. For the
n-dimensional case x = [z1, 23, ..., Z,], We introduce the scaling function

O(x) = &(z1)¢(z2)...4(z) (10)

and the 2™ — 1 mother wavelets U;(x), i = 1,2, ...,2" - 1, are obtained by substituting some

#(z;)s by ¥(z;) in (10). Then the following family is an orthonormal basis in Ly(R™):

{B50(x), ¥5)(6), ¥ (%), ..., ¥ x)) (11)

i
for j 2 jo, j € Z, k = [k1,ka,...,kn) € Z™, and
&, (x) = ¥29(2 2y — ky, 2, - Egyeney P2 — k) (12)
U(x) = 220,20y — ky, Vg — ko, ., D — B (13)

For f(x) € L2(IR™), the n-dimensional wavelet series representation of the function f(x) is

2n-1
fx)= 3 g+ Y 5 Y el (1)

kezn 1270 keZ™ i=1

where the wavelet coeffiecients are

G50k = f(X), ‘bjuk(){) > (15} ‘
i = £(x), ¥9(x) > (16)

For system identification, f(x) is unknown. Then the wavelet coefficients a;,x and bgg can not
be calculated simply by (15) and (16). As (11) shows, constructing and storing orthonormal
wavelet bases involves a prohibitive cost for large dimensions n. In addition, it is not realistic
to use an infinite number of wavelets to represent the function f(x). So, we consider the
following wavelet representation of the function f(x):

N e
)= 3 a0+ Y 3 3 6Qelx) (17)
keA4;, 1=jo keB, i=1

4
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where A;,,B; € ZZ™ are the finite vector sets of integers and N € R! is a finite integer. Since
the convergence of the series in (14) is in L(R™),

15(x) = f(x)ll2 = 0 (18)

lim
N—oo,4,, By By— L™

Hence, given € > 0, there exists a number N* and vector sets Az B;U’B;o-}—i’ -y By such that
for N > N*, A;; C A} and B, C B, Bip+1 € B 41, By C By

1f(x)= f(2)ll2< € (19)

This shows that the required approximation accuracy of the function f by f can be guarantted
by properly choosing the number IV and the vector sets Ay, B, ..., By. Following neural
networks, the expression (17) is called a wavelet network. In this network, the parameters
a,k and bgﬁ, and the number N and the vector sets Ay, By, ..., By will jointly be determined
from the data, based on the scaling functions ¢ and the wavelets 1.

3 Identification Using Fixed Wavelet Networks

Consider the multi-input multi-state (MIMS) continuous dynamical system described by,
x =f(x,u), x(0)=xo, (20)

where u € R7* is the input vector,x € £4*? is the state vector and f(-) = [f1(), f2(5)y e fa( )]
€ L§(IR™) is an unknown nonlinear function vector. It is also assumed that u, X are in compact
sets.

Following the structure (17) of wavelet networks, at the resolution 2¥+1, the estimation

f(x,u) of the function f(x,u) is the output vector of the wavelet network which is expressed
by

fx,u) = > Au®k(x,u)+ Z > Z B(i)\li(t (x,u) (21)

keA;, 1=30 keB; =1

where n = r+d, and AjukaB(lg € IR™ are the wavelet coefficient vectors, the scaling function

@, k(x,u) and the wavelet functions kliglz(x,u) are similarly defined as ®(x) and ‘I’;‘(X),‘
respectively, by replacing x with (x, u).

Here, it is assumed that the number NV and the vector sets Aj,,B; are given. So, the
wavelet network (21) for the estimation of the nonlinear function f(x,u) is called a fixed
wavelet network. Based on the estimation f'(jx, u) by the fixed wavelet network, the nonlinear
function f(x,u) can be expressed by

2n_1
Z AL P k(x. u) + Z Z Z B (x,u)+ &N (22)
keA,, 1=30 ke B, i=1
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where the optimal wavelet coefficient vectors A" 5" and B( % are

[< fi(x,u), @, k(x,u) >
A;Dk _ < fg{x,u),éjok(x,u) > (23)
| € falx, u),(.IJJ-Gk(x,u) >
< fulx,u), ¥x, u) >

(7)
R < fa(x,u), ¥/ (x,u) >

|« fulse,m), \I’E-E(X, u) >

. EN = [EN1,EN2, -, ENd]T is the modelling error vector which is assumed to be bounded by
év = max sup {|ens(t)]} (25)
1,25 ‘thR

Modelling the nonlinear function vector f(x, u) using wavelet networks gives the following
identification model for the nonlinear dynamical system (20):

% = A(% - x) + f(x, u), %(0)=x¢ (26)

where X denotes the state vector of the network model and A € IR%*? is a Hurwitz or stability
matrix (i.e., all the eigenvalues are in the open left-half complex plane).

Define the state error vector and wavelet coefficient error vectors as

e; = X-%K (27)

* Ajx = AL -Ax (28)
= (4) e i

BY = BY - B (29)

so that the dynamical expression of the state error is given by

2" -1

e; = Ae; + E Amk@mk(x u) + Z Z Z B ;k x,u)+en (30).
ke, i=so keB; i=1
Consider the Lyapunov function
23 ()
T
V=e Pez-l-a—— Z AmkAmH Z Y. 3 BT (31)
70 keA 7 j=jo keB, =1

where P = {p;;} € R is chosen to be a positive definite matrix so that the matrix
Q = —PA — ATP is also a positive definite matrix, and aj, and f; are positive constants

which will appear in the parameter adaptation laws, also referred to as the adaptation rates.

6
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The first derivative of the Lyapunov function V with respect to time ¢ is

2"-1
VedPetpetl ¥ ALAN+ 2 Y T T BEY @)
0 ke A, 7 i=jo keB; i=1

Substituting (30) into (32) gives

] 9 L2

T

V=-e;Qe + . > (AjokAjok + ;eI PA; 1B (%, u))
© keA,,

2"-1

() p= = (3) o (i
Z Z Z ( jk)TBgﬁ-i-ﬁjtﬁfPBEﬁ‘l‘Sﬁ(X,U))+2egP£N (33)

7 j=j0 keB, i=1

o 3 . = —
Since A’y and Bm are constant vectors, A;x = —A,y and B 12 —Bg.tlz. If there

is no mode]bng error, i.e., ey = 0, A,y and B(lz can simply be estimated by the following
adaptation laws:

Ajgk = ijo ETP‘I-:'J'k(X u) (3—1)
BY = 8;eTPU0)(x, u) (35)

In the presence of a modelling error ey, several algorithms can be applied to ensure the
stability of the whole identification scheme, e.g., the fixed or switching o-modification (15],
¢-modification [25] and the dead-zone methods [28].

Define the following sets:
F(I,M)={z:|lz]| <M or (|zl=M and eIPzl >0)} (36)
FHO,M)={z:|lz]l=M and eIPzl <0} (37)

where z € IR?, I is a function and M is a positive constant. Here, in order to avoid parameter
drift in the presence of modelling error, the application of the pro_}ectlon algorithm [11] gives
the following adaptive laws for the parameter estimates Ay and B

i @;,eTP&, if Ak € F (50, Mix)
3 B . ‘
7 a;,eIP3. | + ajDMjof{eprjokéjokAjuk i Ak € FH(®,000 M)
i . i ( (¥)
o | PiefPTy) if BY e 7 (v, M§)
]3Jk - (39)

Bief PTG +4;(Mi) eI PBRUGBY) it B € 7+, MY)

where M, y, U(f{) are the allowed largest values of ||A; k|| and |[B(i)|| respectively. It is
clear that if the initial parameter vectors are chosen such that A k(G) € F{ Dk M)

FH (@, M;ox) and B(l)( 0) € F~ (111 © ‘u’( ))UF+(II'( ()), then the vectors Ay and
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BS{) are confined to the sets 7=(9, , M) UF* (9, M, k) and F‘(‘Ifgg, MJ(I{)) Uj-‘-i-(g;g?c‘ Mj(l?}’
respectively. Using the adaptive laws (38) and (39), (33) becomes

d d
Vo< —elQea + 23 37 |pislleailens]

1=1 j=1

d d
~eTQe, + 253 [pislleailen | (40)

=1 =1

IA

T
where e, = [sz, €z2, ---;Ezd] :

For the sake of simplicity, the positive definite matrix Q is assumed to be diagonal, i.e.,
Q = diaglq1, g2, .-, ga)- Also define

Zqz (sem|—z'?’” ) i(zpi:‘) 2—2 )

1=1 g=1 % i=1 \j=1 ¥

where ( is a positive variable, i.e., ¢ > 0.

If there is no modelling error (i.e., &y = 0), it is clear from Eq. (40) that V is negative
semidefinite. Hence the stability of the overall identification scheme is guaranteed and e, — 1,
A = 0, B() — 0. In the presence of modelling errors, if e, ¢ O(&y), it is easy to show
from (40) that V is still negative and the state error e, will converge to the set @(£y). But,
if e; € ©(£x), it is possible that V > 0, which implies that the weight vectors A i and B( 0
may drift to infinity over time. The adaptive laws (38) and (39) avoid this drift by hl:mtmg
the upper bounds of the parameters. Thus the state error e, always converges to the set
©(én) and the whole identification scheme will remain stable in the case of modelling errors.

4 Identification Using Variable Wavelet Networks

For nonlinear systems, the system operation can change with time. This will result in an
estimation error for the fixed wavelet network that is beyond the required error. In order to
improve the identification performance, both the structure and the parameters of the wavelet
network model needs to be modified in response to variations of the plant characteristics.
This section takes into account the modification of the wavelet network structure and the
adaptation of the parameters.

It is known that the modelling error ey can be reduced arbitrarily by increasing the
resolution of the wavelet network. But, generally when the resolution is increased beyond
a certain value the modelling error ¢x will improve very little by any further increasing the
resolution. This will also result in a large size network even for simple nonlinear problems
and in practice, this is not realistic. In most cases, the required modelling error can be given
by considering the design requirements and specifications of the system. Thus, the problem

8
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now is to find a suitable sized network to achieve the required modelling error. Following
variable neural networks [20], a variable wavelet network is introduced below.

Generally speaking, a variable wavelet network has the property that the number of
wavelons in the network can be either increased or decreased over time according to a design
strategy. For the problem of nonlinear modelling, the variable wavelet network is initialised
with a small number of wavelons. As observations are received, the network grows by adding
new wavelons or is pruned by removing old ones.

According to the multiresolution approximation theory, increasing the resolution of the
network will improve the approximation. To improve the approximation accuracy, the growing
network technique [16] [19] is applied. This means that the wavelets at a higher resolution need
to be added to the network. Here it is assumed that at the resolution 2% the approximation
of the function f by the wavelet network is denoted as (). Based on the growing network
technique and the structure of the function f in (21), the adding operation is defined as

f(x,u) = f{™M)(x, u) Z Z BNk\If{) (e, w) (42)
keBy 1=1

where & denotes the adding operation. Eq.(42) means that wavelets at the resolution 27+1
are added to the network. To add new wavelons to the network the following two conditions
must be satisfied: a) The modelling error must be greater than the required accuracy. b) The
period between the two adding operations must be greater than the minimum response time
of the adding operation.

The removing operation is defined as

f(x,u) = {M(x,u)s T Z By l)kw(* _ay(%s 1) (43)

keBy_; =1

where © denotes the removing operation. Eq.(43) implies that wavelets at the resolution 2V
are removed from the network. Similarly, to remove some old wavelons from the network,
the following two conditions must be satisfied: a) The modelling error must be less than the
required accuracy. b) The period between the two removing operations must be greater than
the minimum response time of the removing operation.

In both the adding and the removing operations, condition a) means that the change
of the modelling error in the network must be significant. Condition b) says the minimum
response time of each operation must be considered.

From the set ©(£x) which gives a relationship between the state error e, and the modeling
errors €y, it can be shown that the state error depends on the modelling error. If the upper
bound £ of the modelling error is known. then the set ©(£x) to which the state error wzﬂ
converge is also known. However, in most cases the upper bound &x is unknown.

9
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In practice, systems are usually required to keep the state errors within prescribed bounds,
that is,

lex:| < &, for = 1,2,..,n, teR? (44)

where g; is the required accuracy. At the beginning, it is very difficult to know how many
wavelons are needed to achieve the above identification requirements. In order to find a
suitable sized network for this identification problem, lower and upper bounds are set for the
state errors which are functions of time ¢. A variable network such that
lezil € (1), nf(D)+%), for i=1,2,..,n (45)
is then tried, where nf(t),nY(1) are monodecreasing functions of time ¢, respectively. For
example,
n (t) = e Potn(0) (46)
7H(t) = ePetnk(0) (47)

where By, S are positive constants, 1Y (0),n%(0 ) are the initial values. It is clear that

77 (1), nE(t) decrease with time t. As ¢ — 0, n¥(t),nE(t) approach 0. Thus, in this way
the state errors reach the required accuracies given in (44)

From the relatlonslup between the modelling error and the state error and given the lower

and upper bounds nY(t), n¥(t)+&; of the state errors the corresponding modelling error should
be

En(t) € [er(t), eu(t)] (48)
From (41) the area that the set ©(() covers is a hyperellipsoid with the center
(i'p”"c 3 leail, Z“:I_pilg) (1)
=1 5! 1=1 72 4=1 In

It can also be deduced from the set ©(£x(t)) that the upper bound ev(t) and the lower bound
er(t) are given by

( 2 1/2 -1
d |p13|— d d 1 %
er(t)= min <13 =D |57 S py| = n () (50)
1=1,2,---|d le 91. k=1 -_',:1 g'lqk
. 1/2\ !
|pi;] e "1
ev(t) =  max PIEES DI DY (Y@ +&)y  (51)
1i=1,2,...,d i=1 Qs k=1 \j=1 q: 9k

Thus, given the upper and lower bounds of the state error, the corresponding values for the
modelling error can be estimated by (50) and (51).

To smooth the identification performance when the adding and removing operations are
used, the decomposition and reconstruction algorithms of a multiresolution decomposition are

10
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applied to the initial calculation of the wavelet coefficients. Here two important relations are
introduced. Firstly, since the family {®,} spans Vo, then {®(2x — k)} spans the next filter
scale V1 = Vo @& Wo. Both the scaling function and the wavelet function can be expressed in
terms of the scaling function at the resolution 27 = 2! i.e.,

=v2 Y cx®(2x - k) (52)

keZ
Ui(x)=v2 Y de(2x - k) (53)
keZ

where ¢} and d{:) are known as the two scale reconstruction sequences. Secondly, any scaling
function ®(2x) in Vi can alternatively be written using the scaling function ®(x) in V; and
wavelet function ¥(x) in Wy as

P(2x-1)= > (al xkP(x—k Z_ b 21{11! x-—k)) (54)

keZ
where ay and bg) are known as the decomposition sequences, and 1 € Z™.
In addition, in terms of multiresolution decompositions, the approximation of the function

f(x, u) at the resolution 27 can be written as

) (x, ) Z AGonk®Gonk(x,u) + Z z BE;) 1)k (J 1) k(x,u) (55)
kEAJg kESJ 1 =1
where
Y AGok®iok(xu) =Y A2k ®(-2)k(x, u)
kE.AJ_l kEAJ 2
X Z B(J kY (g 2)k( u) (56)
kEB —2 =1

Hence, if the state error e; ¢ O(zy(t)), the network needs more wavelets. Add the
wavelets at the resolution 2+ into the network. Following the adding operation (42) and
the expression (55) of f(x,u)?) at j = ¥, the structure of the approximated function f(x, u)
is of the form: 7

27 -1
fx,u)= Y Apcdyexu)+ 30 3 BE 0 (x,u) (57)
keAy keBy i=1

The parameter vectors Ay and B()k are adapted by the laws (38) and (39). Using the

sequences ¢ and a’g), the initial values after the adding operation are then given by the
reconstruction algorithm [23]:

Apk(0)= 3 (cl_gkA(N_1)1+ > d&ikBE‘,&_l)l) (58)
ledy =1

B (0)=0 (59)

11
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where A(y_y) and ng_l)k are the estimated values before the adding operation.

If the state error e; € ©(cz(¢)), some wavelets need to be removed because the network
may be overfitted. In this case remove the wavelets associated with the resolution 2. In
terms of the removing operation (43) and the expression (55) of f(x,u){j) at j = N, the
structure of the approximated function f(x,u) is of the following form:

f(x, )= Z Ay k(v 2)k x,u) + Z Z B(N 2}k N 2)k(x u) (60)
keAy_s keBy_, =1
The adaptive laws for the parameters A(n_2)k and Bg\)f—z)k are still given by (38) and (39).

But, using the sequences aj and bg}, the initial values after the removing operation are then
changed by the decomposition algorithm [23] as follows:

An-ax(0)= ) a_xAm (61)
leAy_»

ng—z)k(—o): Z bgl_)gkANl (62)
leBy s

where Ay and Bg\?k are the estimated values before the removing operation.

Clearly, in both the above cases, the adaptive laws of the parameters are still given in
the form of (38) and (39), based on the above changed parameters. It also follows that the
convergence area of the state error vector begins with @(ey(0)) — ©(£(0)) and ends with
O(€), where & = epy(o0).

The determination of the vector sets A; and Bj, for j = jo,..., N is also important but
simple. The basic rule for choosing these sets is to make sure 27x — k, for k € A; or B;, is
not out of the valid range of the variables of the scaling function ®(.) or ¥;(.), respectively.

5 Identification Using B-Spline Wavelets

One of the main ingredients in wavelet network based identification is the structure of the
scaling function and the formulation of the wavelet decomposition and reconstruction. For
many applications, it will not be essential for the wavelets to be orthonormal. Relaxing
the orthonormality condition results in nonorthogonal multiresolution approximations and
provides a more flexible framework for function approximation. A typical choice of scaling
functions would be B-splines. B-splines are piece-wise polynomial functions and have a good
local properties. They are very simple to implement on the computer and can be made
as smooth as desired. For these reasons., B-splines have been used widely in interpolation
problems. In the present section therefore wavelets which use B-spline functions as scaling
functions are discussed.

12
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5.1 One-dimensional B-Spline Wavelets

For the sake of simplicity, the one-dimensional B-spline wavelets will be considered initially.
The one-dimensional B-spline function of m-th order is defined by the following recursive
algorithm [7] [30]

T ==l

le_]_(I e 1) (63)

Bn(z) = ———B_1(z) +

m—1 m —
for m € Z*\{0,1}, where

_J 1 z€(0,1)
Bu(z) = { 0 otherwise (64)
Let the m-th B-spline function be the scaling function, that is,
o(z) = Bn(z) (65)

Then both the scaling function and the wavelets can be expressed in terms of the scaling
function at the resolution 27 = 21

dlm)i= i e Bm (21 — k) (66)
k=0
3m—2
'i,"z(l‘) = Z dkBm(Qﬂ — k‘) (6?)
k=0 % g

where the two scale reconstruction sequences ¢, and dy are given by [7]

e = 21—™ (T:) : (68)

dy = (-1 3 (T)Bzm(k-l-l—l) (69)
=0

Also, the relationship between the scaling functions B,,(2z) and B,,(z) and the wavelet
¥(z) can be expressed as

Bm(2z = 1) =) (a1-2kBm(z = k) + bi_sx¥b(z — k)), l€Z (70)
k

where the decomposition sequences a; and by are given by (7]

1
ar = gg—k (71)
1
b = §h_k (72)
and g and hy are determined from the rational functions
1 k = (1 + Z>m Ezm_]_(z) T
G(z)== -l y (73
(2) 5 ;gk 9 Eom-—1(2%) )
1 i 1= 2™ (Zm ~ 1!
H(z)= = h:k:—:l( ) , 74
( ) 2; k 2 Ezm—1(32) ( )

13
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and FEs,,_; is the Euler-Frobenius polynomial of order 2m — 1.

It is clear from the above that based on the B-splines the scaling function ¢(z) and the
wavelet 1(z) are easily constructed using (65) and (67), and the reconstruction sequences cg,
dr and the decomposition sequences ay, by are readily calculated from (68), (69) (71) and
(72), respectively.

5.2 n-dimensional B-Spline Wavelets

The one-dimensional B-spline wavelet case will now be extended to the n-dimensional B-spline
wavelet case. The m-th B-spline function will still be the one-dimensional scaling function,
Le. ¢(z) = Brm(z). Then from (10), the n-dimensional scaling function is given by

3(x) = [] Bm(a1) (75)
=1

Using the relations (65) and (66) gives

d(x) = Z Z .. Z Cky Chy canBm(Qsci k;) (76)
k)—f) kz—o anU 1=1
which leads to
b(x) = Z ck®(2x — k) {T7)
k

where ¢y = €, Ok, oiChy, s

The wavelets ¥;(x) are a combination of n functions from the function set {¢(z1), d(z2), .-y
¢(zn), ¥(z1), ¥(22), .., ¥(2n)}. The wavelets T (x) can similarly be expressed as the n-
dimensional scaling function ®(x). For example, if Uz(x) = ¥(z1)d(z2)¥(23)...199(z), then
using (66) and (67) results in

3m-2 m 3m-=2 3m-2

Z Z Z Z dk; Chy Qi -k, HBm(th - ki) (78)

k=0 ko=0 k3=0 i=1

In this case,

x) = Z dPo(2x - k) (79)

where d( )= di, Ckydiy-..dk,. Thus, all sequences {d( )} can be calculated in the same way as
442
e

With (70), the relationship between the scaling functions ®(2x) and ®(x) and wavelets
U, (x) can be expresed as

Q(2x - 1) H > (@t -2k, Bmlai = ki) + by ok ¥(zi — k;)), le Z* (80)

=1 k;

14
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which results in the following compact form
-
P2x-1)=3" (dl_zk@(x k) + > b Ti(x - k}) (81)
k \ =1

where aj and by can simply be calculated using ax and bg.

It is clear from the above that the scaling function, the wavelet, the reconstruction se-
quences and the decomposition sequences for the n-dimensional case can be computed directly
from the those obtained for the one-dimensional case. Therefore, the structure of the scaling
function and the formulation of the wavelet decomposition and reconstruction for the wavelet
network based identification are completed using B-splines.

6 Simulation

Consider a nonlinear system described by
& = (u— zu — z)e 05 +?) (82)

where the input u = 0.5(cos(1.2t) sin(1.7¢) + exp(— sin(#*))). Since n = 2, we will need 2-D
B-spline wavelets for the wavelet network to identify this nonlinear dynamical system. The
fourth order B-splines were used as the scaling function. Thus, the 2-D scaling function is
given by

®(z,u) = By(z)Ba(u) (83)

where By4(.) is the 4th-order B-spline, which is a piecewise cubic function. For n = 2, there
are three 2-D mother wavelets expressed by

¥i(z,u) = By(z)(u) (84)
Ua(z,u) = ¢(x)By(u) (85)
Ta(z,u) = P(a)¢(u) (86)
where the one-dimensional mother wavelet 9(z) is
10 4 / 1vk
¥(z) = ZZ( 81) (?)Be(k—}—lnl)fu(?r—k) (87)
k=0 [=0

The 2-D scaling function ®(z,u) and the three 2-D wavelets Vi(z,u), Ya(z, u), Us(z,u) are
shown in Figs.(1)-(4). The state z and the nonlinear function f(z, u) (or the state derivative
z) are shown in Figs.(5) and (6), respectively. Wavelet networks at the resolutions 27, for
7 =10,1,2,3 were used for the identification with 16, 81, 146 and 278 wavelons. respectively.
The state errors and the modelling errors for different resolutions are shown in Figs.(7)-(14).

All figures denoted as (b) are larger scale versions of the figures denoted as (a).

15
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As expected, at the beginning of the identification larger state errors and modelling errors
exist. After a while, these errors become smaller and smaller, and finally they converge to
certain ranges. It is clear from the simulation results that the whole identification scheme is
stable from the beginning to the end. It has also been shown that the state error and the
modelling error decrease with an increase in the resolution of the wavelet networks. But, the
state error and the modelling error are improved only slightly when the resolution becomes ad-
equate. Thus, for nonlinear dynamical system identification using wavelet networks, a proper
resolution should be chosen so as to achieve the desired practical identification requirements.

7 Conclusions

A wavelet network based identification scheme has been proposed for nonlinear dynamical
systems. Two kinds of wavelet networks, fixed and variable wavelet networks, were studied
and parameter adaptation laws were derived which achieve the required estimation accuracy
for a suitable sized network. The parameters of the wavelet network were adjusted using
laws developed by the Lyapunov synthesis approach. By combining wavelet networks with
Lyapunov synthesis techniques, adaptive parameter laws were developed which guarantee
the stability of the whole identification scheme and the convergence of both the network
parameters and the state errors. The wavelet network identification scheme was realised
using B-spline wavelets and the calculation of the decomposition and reconstruction sequences
using variable wavelet networks was given. A simulated example was used to demonstrate
the operation of the identification scheme.
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0.5+

Figure 1: The scaling function ®(z,u).

0,15+

Psi1(x,u)

Figure 2: The wavelet function ¥;(z,u).
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Psi2(x,u)

Psi3(x,u)
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Figure 3: The wavelet function Uy(z,u).
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Figure 4: The wavelet function U3(z,u).
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AR

The system state x

_O'B 1 1 1 L 1
0 5 10 15 20 25 30
time t
Figure 5: The system state z(t).
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Figure 6: The nonlinear function f(z,u) (or the state derivative ).
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Figure 12: The modelling error f(z,u) — f(z,u) at the resolution 22.
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