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Abstract 

We identified a family in which pitted hypomineralised AI with premature enamel 

failure segregated in an autosomal recessive fashion. Whole exome sequencing 

revealed a missense mutation (c.586C>A, p.P196T) in the I-domain of integrin-β6 

(ITGB6), which is consistently predicted to be pathogenic by all available 

programmes and is the only variant that segregates with the disease phenotype. 

Furthermore, a recent study revealed that mice lacking a functional allele of Itgb6 

display a hypomaturation AI phenotype. Phenotypic characterisation of affected 

human teeth in this study showed areas of abnormal prismatic organisation, areas of 

low mineral density and severe abnormal surface pitting in the tooth’s coronal 

portion.  We suggest that the pathogenesis of this form of AI may be due to 

ineffective ligand binding of ITGB6 resulting in either compromised cell-matrix 

interaction or compromised ITGB6 activation of TGFβ impacting indirectly on 

ameloblast-ameloblast interactions and proteolytic processing of extracellular matrix 

proteins via MMP20. This study adds to the list of genes mutated in AI and further 

highlights the importance of cell-matrix interactions during enamel formation.     
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Introduction 

Enamel is the hardest human tissue and when formed correctly has the capacity to 

remain functional in to very old age.  Amelogenesis Imperfecta (AI) is the collective 

term for a heterogeneous group of conditions characterised by genetically determined 

defects in tooth enamel biomineralisation that lead to premature clinical failure. 

Typically, all teeth of the primary and secondary dentitions are affected, with 

variations in phenotype being influenced by the underlying genotypes (1). The impact 

of AI on affected individuals, their families and those providing longitudinal care is 

considerable (2).  

 

Amelogenesis is a stepwise process conserved between species (3), yet the precise 

mechanisms underlying each phase are not well understood. The basic unit of enamel 

structure is the prism (or rod), with each prism representing a bundle of nanocrystals 

of calcium hydroxyapatite mineral (Ca10[PO4]6[OH]2) (HAP). The physical properties 

of mature enamel are a result of its high mineral content and the complex, though 

ordered, spatial inter-relationship and orientation of the enamel prisms.  For correct 

enamel formation to occur, ameloblasts must undergo four main stages: pre-secretory, 

secretory, transition and maturation (4). Briefly, ameloblasts grow in length and 

secrete an enamel matrix at their apical surface which forms the initial layer of 

aprismatic enamel. As the ameloblasts retreat away from the dentine they lay down an 

extracellular matrix within which the hydroxyapatite crystals begin to form. Each 

enamel prism reflects the migration path of an ameloblast, which is not straight but 

includes several changes in direction. The highly organised interlocking prismatic 

pattern resulting from  the concerted movement of ameloblast cohorts provides the 

structure that is key to the physical strength of the final enamel (5). During the 
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maturation stage, ameloblast-mediated proteolytic destruction and removal (via 

secretion of the protease KLK4) of organic material from the matrix and ameloblast-

mediated ion exchange is required for HAP crystals to grow in  both thickness and 

width, until almost the entire tissue volume is occluded by mineral. By the end of the 

maturation stage, the newly formed enamel contains a mineral content of 

approximately 95% (by weight), (6), but due to the loss of cells from the crown 

surface on tooth eruption, it is without capacity for cellular repair.  

 

AI can be subclassified on the basis of the volume of enamel matrix formed and its 

subsequent mineralisation. Prior to tooth eruption hypomineralised AI has a near 

normal enamel matrix volume that is not normally mineralised. Within the spectrum 

of hypomineralised AI there are two subtypes that typify the two extremes; 

hypocalcified and hypomaturation AI. In hypocalcified AI the enamel may be so soft 

that it can be scraped away by hand, whereas in hypomaturation AI the enamel is hard 

yet brittle and prone to fracture off.  By contrast, in hypoplastic AI there is failure of 

enamel matrix formation. In its most extreme form a very thin layer of enamel, which 

may be hard or soft, covers the underlying dentine.  As such, the tooth crowns have a 

markedly reduced enamel volume and an abnormal morphology clinically.  Focal 

hypoplasia in the form of pits or grooves may occur within hypomineralised AI 

reflecting localised areas where enamel matrix formation has been incomplete. 

 

Insight into enamel biomineralisation has been gained from identification of AI-

causing mutations in genes encoding enamel matrix proteins (AMELX, MIM 30039; 

ENAM, MIM 606585), enamel matrix proteolytic enzymes (KLK4, MIM 603767; 

MMP20, MIM 604629), an ion transporter (SLC24A4, MIM 609840) and a putative 
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crystal nucleator (C4orf26, MIM614829) (7-12).  However, the identification of AI-

causing mutations in FAM83H (MIM 611927) and WDR72 (MIM 613214), which are 

of unknown functions, shows that much remains to be understood (13, 14).   

 

Mutations in genes with an important role in cell-cell and cell-matrix adhesion, such 

as ITGB4 (MIM 147557) and LAMB3 (MIM 150310) have been identified in patients 

with isolated and syndromic AI (15-17). The finding that mutations in these genes, 

encoding integrins and laminins, cause AI, indicates that cell-cell and cell-matrix 

interactions play a vital role in amelogenesis.  Recently, an Integrin-β6 (Itgb6) null 

mouse was described with a hypomaturation AI phenotype (18), but to-date no human 

mutations have been identified in this gene as a cause of AI.    

 

Here we report findings from a consanguineous family with autosomal recessive 

pitted hypomineralised AI. We show that a missense mutation of a highly conserved 

residue in ITGB6 is the cause of the condition in this family and that the enamel 

phenotype is similar to that described for the Itgb6-null model except that prism 

organisation is not completely lost in the human case. Based upon our detailed 

phenotyping and recently published data of others we suggest a potential pathogenic 

mechanism for AI in these patients based on ITGB6 activation of TGFβ and 

subsequent MMP20 activation via Runx2.  

 

Results 

Dental phenotype and SNP mapping. 

We identified a consanguineous family (AI-23) living locally, but originating from 

Pakistan, in which pitted hypomineralised AI segregates with an autosomal recessive 
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mode of inheritance in the absence of any other co-segregating diseases (Fig. 1). 

Affected individuals presented with poor dental aesthetics and associated pain, for 

example on eating or drinking. 

 

To identify the genetic basis of AI in this family, individuals V:3 and V:5 were 

genotyped using Affymetrix 6.0 SNP microarrays and shared regions of 

homozygosity were identified using AutoSNPa (19). Six regions of homozygosity 

spanning approximately 73 Mb were identified (Table 1), none of which overlapped 

with previously published AI loci. We therefore decided to use whole exome 

sequencing to identify the cause of disease in this family. 

 

Whole exome and Sanger sequencing 

Genomic DNA from individual V:3 was subjected to whole exome sequencing using 

a 100-bp paired-end protocol on an Illumina Hi-Seq 2000 sequencer. Sequence reads 

obtained were aligned to the human reference sequence (GRCh37) using Bowtie2 

software. The resulting alignment was processed in the SAM/BAM format using the 

SAMtools, Picard and GATK programs in order to correct alignments around indel 

sites and mark potential PCR duplicates. Following post-processing and duplicate 

removal, a mean depth of 64 reads was achieved for targeted exons in the 

homozygous regions, with 98.2% of these bases covered by at least 5 reads. 

 

Indel and single nucleotide variants within the six candidate regions were called in the 

VCF format using the Unified Genotyper function of the GATK program, revealing a 

total of 1,847 variants. Using the dbSNP database at NCBI 

(http://www.ncbi.nlm.nih.gov/projects/SNP/), any variants present in dbSNP 129, 
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together with those variants present in dbSNP 137 with a minor allele frequency 

(MAF) equal to or greater than 1%, were then excluded. The 138 remaining variants 

were annotated using the SeattleSeq Variation Annotation server v.137 

(http://snp.gs.washington.edu/SeattleSeqAnnotation137/), which identified 134 as 

either synonymous or deep intronic variants. Of the remaining four variants, two are 

present in dbSNP with a MAF <1.0%. These are rs147066399 

(NM_213621:c.736C>T [p.R246W] in HTR3A (MIM 182139)) with a MAF of 

1/4545; and rs113262393 (NM_033394.2:c.1413T>G [p.S471R] in TANC1 (MIM 

611397)) with a MAF of 9/2190. In addition, rs147066399 in HTR3A has been 

observed once in 87 South Asian samples in an in-house exome data set. A third 

missense variant, p.W879S in LRP2 (NM_004525:c.2636C>G (MIM 600073)), has 

also been observed in heterozygous form twice in 87 South Asian samples in our in-

house exome data set. Furthermore, these three variants do not segregate fully with 

the disease phenotype in the AI-23 family.  

 

The remaining variant, p.P196T in ITGB6 (NM_000888:c.586C>A) (Fig. 2A) was not 

present in dbSNP 137 nor in the in-house exome data set. The c.586C>A variant in 

ITGB6 was further excluded in a panel of 174 control chromosomes from an ethnic 

diversity panel and was found to segregate perfectly with the disease phenotype in 

family AI-23. Both parents were heterozygous for the change. Investigation of the 

P196 residue, present within the I-domain of ITGB6, revealed it to be fully conserved 

in all orthologues and paralogues, with only ITGB8 differing at this residue (Fig. 2B), 

suggesting it plays a crucial role in the function of the protein. Furthermore the 

bioinformatic prediction packages PolyPhen2, MutationTaster, Sift, Blosum62, 
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Provean and MutPred consistently predicted this to be a likely pathogenic change 

(Supplementary Table 1). 

 

In light of these findings we investigated a panel of 44 unrelated individuals 

diagnosed with hypomineralised AI from diverse backgrounds. PCR amplification 

and Sanger sequencing of all the coding exons and intron-exon boundaries of ITGB6 

was therefore performed. No further pathogenic variants were identified.  

 

Enamel Phenotyping 

To gain further insight into why the affected enamel undergoes premature clinical 

failure we undertook laboratory investigations of the remaining enamel on affected 

deciduous teeth and matched normal teeth. Fig. 3 shows representative µCT buccal-

lingual sections through an affected deciduous canine tooth and a matched control. 

The scans have been calibrated for mineral density and mapped in colour. Both teeth 

exhibit wear at the cusp tips where the outer covering of mineral-dense enamel has 

worn away to expose the less-mineralised underlying dentine. However, the affected 

tooth was characterised by an abnormally roughened lingual surface with areas of 

sub-surface enamel exhibiting reduced mineral density, though in general, affected 

enamel was comparable in thickness to control enamel suggesting that enamel matrix 

volume was not markedly affected by the mutation. The apparent subsurface voids or 

“holes” in the affected enamel shown in Fig. 3 are actually pits running orthogonally 

to the section. An orthogonal section (inset) along the plane indicated by the white 

dotted line reveals a typical pit running from the enamel surface towards the enamel-

dentine junction. By comparison, the control tooth exhibits enamel of a more uniform 
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mineral density comparable to previous reports of deciduous molar enamel density 

which ranged from 2.69-2.92g/cm3 (20) and a smooth enamel surface.    

 

At the ultrastructural level and following surface etching (Fig. 4A), SEM revealed an 

abnormal surface in affected teeth associated with the pits previously identified using 

µCT (Fig. 4B). In control enamel (Fig. 4C), SEM of the internal enamel structure in 

teeth cut longitudinally along the buccal-lingual midline revealed typical enamel 

architecture comprising cohorts of enamel prisms changing direction relative to each 

other (reflecting the movement of ameloblast cohorts) to generate Hunter-Schreger 

banding (21). In contrast, our data suggest that prism orientation in affected enamel 

may be disturbed and the synchronous changes in direction of the enamel prisms 

responsible for generating the Hunter-Schreger bands is compromised (Fig. 4D).  At 

the micro-scale, the structure of individual prisms in both control and affected enamel 

is indistinguishable using SEM (inset Figs. 4C and 4D). SEM of internal enamel 

structure revealed by cutting transversely through the cuspal region shows prisms in 

control teeth evenly arrayed across the cut surface (Fig. 4E). In contrast, affected 

enamel exhibits areas of grossly disorganised prism architecture in the inner third of 

the enamel (Fig 4D).  
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Discussion 

We identified a family of Pakistani origin segregating pitted hypomineralised AI in an 

autosomal recessive manner. SNP chip analysis and whole exome sequencing 

revealed a homozygous ITGB6 mutation resulting in the missense, p.P196T change as 

the only plausible cause. A screen of 44 further unrelated families revealed no further 

mutations indicating that this is a rare cause of AI in the cohort studied.  Disruption of 

ITGB6 function has been linked with aged-related chronic obstructive pulmonary 

disease (COPD) (22).  The affected individuals in the family studied are young and it 

is too early to know if the missense change identified will predispose them to COPD.  

 

The integrins are a major family of cell surface-adhesion receptors involved in cell-

cell, cell-matrix and cell-pathogen interactions (23). Each integrin is composed of an 

α and β subunit which are non-covalently bound together with some promiscuity in 

subunit partnerships.  ITGB6 commonly binds integrin-αv, forming integrin-αvβ6, an 

epithelial cell-specific integrin which is a predominant binder to the arginine-glycine-

aspartic acid (RGD) amino acid motif (24, 25).  Others have described the binding of 

cell surface expressed integrin-αvβ6 to RGD-motifs which are widely distributed, for 

example in extracellular matrix proteins such as fibronectin, vitronectin and tenascin-

C as well as the latency-associated peptide (LAP) of transforming growth factor-β1 

(TGF-β1) and TGF-β3. The missense variant identified in this study is present within 

the β6-integrin I-domain, which is involved in α-integrin, divalent cation and ligand 

binding. Furthermore, the mutated 196P residue is in a highly conserved region next 

to one of the conserved extracellular cysteine residues important for integrin structure 

and function (Fig. 2B). 
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Matrix-cell binding proteins such as fibronectin are important in the epithelial-

mesenchymal interactions during the pre-secretory stage amelogenesis (26), but are 

absent during the later stages (27). However the patients described herein have teeth 

with a near normal enamel volume, but with structurally compromised enamel, 

consistent with a defect that occurred after the pre-secretory phase of amelogenesis. 

This suggests that problems due to integrin-fibronectin RGD binding may not be the 

primary causal effect in the case of this mutation.  

 

The AI phenotype in this family shares some similarity to that of mice lacking a 

functional allele of Itgb6, with both falling within the hypomineralised AI spectrum. 

The cause of hypomineralisation in affected teeth could be a reduction in prism 

density per se or prism density may be normal but the individual enamel crystallites 

within each prism may have failed to grow to their normal maximum dimensions.  

The laboratory phenotyping of affected human enamel presented here provides insight 

into why the enamel is prone to premature failure post-eruption. Although enamel of 

normal thickness is produced during amelogenesis of affected individuals and the 

normal elements of enamel architecture; i.e. enamel prisms are present, µCT and 

SEM indicate that the enamel is compromised by defects running from abnormal 

enamel surface defects (pits) towards the enamel-dentine junction. In addition, the 

affected teeth appear to contain localised regions of hypomineralisation; especially in 

the cuspal regions. There is also indication that the macro-organisation of enamel 

prisms in affected teeth is abnormal as evidenced by the SEM data which would be 

expected to impact on the mechanical properties of the enamel that depend on the 

organisation of prism cohorts. In normal enamel development, the synchronous 

movement of cohorts of ameloblasts gives rise to equivalent cohorts of prisms that 
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follow a sinusoidal track from the enamel-dentine junction to the enamel surface. This 

gives rise to the Hunter-Schreger bands which serve to inhibit crack propagation in 

the enamel. Based on our preliminary phenotyping we suggest that affected enamel is 

structurally compromised by pitting, localised hypomineralisation and disturbed prism 

architecture, all of which undermine the ability of the enamel to resist the stresses 

generated during mastication.  In summary, the enamel in affected members of this 

family is consistent with hypomineralised AI with focal hypoplasia in the form of 

pits. 

 

ITGB6 binding to latency-associated peptide (LAP) of TGF-β1 activates the cytokine 

(28). TGF-β1and its associated receptor are expressed by secretory stage ameloblasts 

(autocrine signalling) and in ameloblast cell lines TGF-β1 promotes the expression of 

MMP20 (29) via Runx2 (30). MMP20 is a crucial enzyme responsible for the 

processing of the developing enamel extracellular matrix. Failure to correctly process 

the enamel matrix proteins (e.g. amelogenin) would lead to retention of matrix 

proteins in maturing enamel and prevent the enamel mineralising fully. Retained 

amelogenin has been identified in other AI isoforms (31).  

 

MMP20 has also been implicated in controlling ameloblast-ameloblast cell contact by 

cleaving an extracellular domain of cadherin, which in turn controls the ability of 

ameloblasts to execute their movements relative to each other. These movements are 

essential to generate the correct prism architecture (32, 33) needed to produce 

functional mature enamel. In MMP20 null mice normal prism decussation is 

abolished, matrix proteins are retained and erupting enamel undergoes rapid failure 

(34). Thus there is a putative molecular trail linking mutated ITGB6 to prism 
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disorganisation and the eruption of hypomineralised enamel (caused by retention of 

enamel matrix proteins) due to compromised MMP20 expression by epithelia derived 

ameloblasts. That Itgb6 is able to activate TGF-β1 in oral epithelia tissue is supported 

by the Itgb6 mediated activation of TGF-β1 in gingival epithelium (35). However, in 

argument against the hypothesis presented above, TGF-β1 activation in mouse enamel 

organ, as determined by Smad1/2 phosphorylation, and MMP20 expression was 

similar in WT and Itgb6 knockout animals (18). It is unclear what species-species 

differences exist between human and mouse amelogenesis in terms of TGF-β1 

signalling and it is equally unclear how expression of ITGB6 with a missense change 

compares to a complete ITGB6 knockout; certainly the mouse Itgb6 knockout 

phenotype is different form the human example presented here as at least some degree 

of prism organisation is retained in affected human enamel. Clearly, more work is 

required to support a mechanism by which ITGB6 causes AI via a TGF-β1 induced 

MMP20 activity, but we present the hypothesis as a frame work on which to base 

future studies. 

 

The distribution of enamel defects in AI resulting from a mutation in ITGB6 was not 

evenly distributed throughout the anatomical crown. Pitting and areas of 

hypomineralisation were localised to the coronal portion of the tooth, the thinner 

cervical enamel being spared and of normal mineral density and appearance. 

Ameloblasts travel a shorter distance in elaborating cervical tissue and their activity 

takes place over a shorter time scale (as apposition rates are similar irrespective of 

location on the tooth) (36). Mathematical modelling has shown that the strains on 

ameloblasts producing enamel in the coronal region of the tooth is much greater that 

that experienced by their cervical counterparts, as the coronal portion of the tooth 
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expands greatly during amelogenesis yet the numbers of ameloblasts do not increase 

(37). In simple terms, as coronal enamel is laid down, the surface area of the enamel 

increases and the monolayer sheet of ameloblasts covering the increasing surface 

must be able to modulate cell to cell contact to prevent stress related holes being 

formed in what is normally a continuous cell monolayer. Any compromise in the 

ability of cells to modulate their contacts with adjacent cells would leave the 

ameloblast monolayer more susceptible to stress induced disruption. Any holes 

appearing in the ameloblast monolayer during enamel secretion would be recorded in 

the enamel as a pit; similar to the pitting found in affected enamel in this study. 

 

In summary, if we combine all of the information available to us from this study and 

the work of others we are able to suggest a hypothesis for the pathogenesis of AI in 

these patients (summarised in Fig. 5). 

1. The mutation in ITGB6 would be predicted to inhibit activation of TGFβ due 

to its failure to bind to LAP. 

2. This in turn would inhibit expression of MMP20 which is essential for matrix 

processing to permit secondary crystal growth to occur. Failure to process 

matrix would lead to hypomineralisation as observed in our study and in the 

Itgb6-null mouse. 

3. MMP20 is also necessary for correct ameloblast-ameloblast cell contact due to 

its role in cadherin processing. Failure in cell-cell contacts will compromise 

the ability of ameloblasts to move relative to one another, leading to the 

abnormal prism decussation seen here (and in the Itgb6-null mouse), including 

the disruption of Hunter-Schreger banding. 
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4. Mathematical modelling predicts that coronally positioned ameloblasts are 

under greater strain and thus the effects of any compromised cell-cell contact 

would be more severely manifest at the upper part of the tooth compared to 

the cervical margins. This corresponds to the spatial distribution of pitting that 

we see in the affected teeth in this study. 

 

We propose therefore that the observed phenotype of the ITGB6 mutation is due 

to the combined effects of lack of MMP20 and compromised ameloblast cell-cell 

binding resulting in hypomineralisation, structural abnormalities and where 

ameloblast strain is maximal, pitting due to the integrity of the ameloblast 

monolayer being compromised. Taken together these developmental defects 

would result in the pitted hypomineralised AI and failure of enamel function as 

seen in these patients. 

 

Materials and Methods 

Patients: Members of a family (AI-23), originating from Pakistan, were recruited 

following informed consent in accordance with the principles outlined in the 

declaration of Helsinki, with local ethical approval. DNA samples were obtained from 

family members using either Oragene® DNA sample collections kits (DNA Genotek, 

Ontario, Canada) or via venous blood samples using conventional techniques. 

 

SNP analysis: Genomic DNAs from two affected individuals were genotyped using 

Affymetrix 6.0 SNP microarrays by AROS Applied Biotechnology (Aarhus, 

Denmark). The resulting CEL files where annotated and analysed using autoSNPa to 

identify shared regions of homozygosity between both affected individuals (19). 
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Exome Sequencing: Whole exome sequencing was performed on genomic DNA using 

the Nextera Exome Enrichment system (Illumina, California, USA). In brief, 50ng of 

genomic DNA was tagged and fragmented using the Illumina Tagmentation system. 

Following a clean-up step, tagged DNA was PCR amplified and the subsequent 

library validated. Validated samples were pooled six per lane with sequencing 

performed on an Illumina Hi-Seq 2000 using a 100-bp paired-end protocol. Data 

analysis was performed using Bowtie2, SAMtools, Picard and the Genome Analysis 

Toolkit (GATK) (38-41). 

 

PCR and Sequencing: Segregation of variants identified by whole exome sequencing 

and screening of additional AI families was performed by PCR and Sanger 

sequencing using standard protocols. Primers to amplify the exons and exon-intron 

boundaries of ITGB6 were designed using ExonPrimer 

(http://ihg.gsf.de/ihg/ExonPrimer.html) and can be found in Supplementary Table 2. 

 

Tooth Ultrastructure analysis: X-ray micro-computed tomography (µCT) and 

scanning electron microscopy (SEM) 

An extracted, dried AI-23 deciduous canine was compared to an extracted, dried 

control deciduous canine using µCT and SEM. The control tooth was obtained with 

patient consent and ethical approval from a registered tissue bank operated by the 

School of Dentistry University of Leeds.  Teeth were scanned in air together with a 

calibration phantom comprising a segment of mouse incisor enamel and dentine of 

known mineral density using a Skyscan 1172 high resolution X-ray CT scanner 

(Bruker, Kontich, Belgium) operated at 55kV; 10 watts power with an image pixel 
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size of 2-2.2µm. The teeth were rotated through 180° and shadow X-ray images 

captured at 0.27°intervals. The X-rays were filtered through a 0.5mm Al/Cu filter to 

reduce beam hardening effects. The shadow images were reconstructed using Skyscan 

Recon software to generate an image stack comprising sections through the teeth. The 

Recon software was also used to further correct ring artefacts and beam hardening. 

The sectional images were further analysed and using ImageJ software (National 

Institutes of Health, Bethesda, Maryland, USA) and calibrated with respect to mineral 

density using the mouse incisor as a calibrator.  

 

For SEM, teeth were cut along the buccal-lingual midline or transversely through the 

cusp region with a diamond cutting disk. The cut surfaces were lightly polished using 

2000 grade carborundum paper and etched for 20 seconds by gentle agitation in 

30% phosphoric acid to remove any smear layer. Samples were rinsed in copious 

amounts of distilled water and dried under vacuum overnight prior to sputter coating 

with gold. SEM images were obtained using a Hitachi S-3400 operating in secondary 

electron emission mode at an accelerating voltage of 20kV and an emission current of 

22.1µA.         

 

 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


18 

 

Acknowledgements 

The authors wish to thank the family involved in this study for their support for this 

research. The project was funded by the Wellcome Trust [Grant No. 093113]. J.K is 

supported by the NIHR Leeds Musculoskeletal Biomedical Research Unit.  

 

 

Conflict of Interest 

The authors declare no conflict of interest. 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


19 

 

References 

1 Bailleul-Forestier, I., Molla, M., Verloes, A. and Berdal, A. (2008) The 

genetic basis of inherited anomalies of the teeth. Part 1: clinical and molecular aspects 

of non-syndromic dental disorders. Eur. J. Med. Genet., 51, 273-291. 

2 Coffield, K.D., Phillips, C., Brady, M., Roberts, M.W., Strauss, R.P. and 

Wright, J.T. (2005) The psychosocial impact of developmental dental defects in 

people with hereditary amelogenesis imperfecta. J. Am. Dent. Assoc., 136, 620-630. 

3 Robinson, C., Kirkham, J., Weatherell, J.A., Richards, A., Josephsen, K. and 

Fejerskov, O. (1988) Mineral and protein concentrations in enamel of the developing 

permanent porcine dentition. Caries. Res., 22, 321-326. 

4 Smith, C.E. (1998) Cellular and chemical events during enamel maturation. 

Crit. Rev. Oral Biol. Med., 9, 128-161. 

5 Sawada, T., Yamamoto, T., Yanagisawa, T., Takuma, S., Hasegawa, H. and 

Watanabe, K. (1990) Evidence for uptake of basement membrane by differentiating 

ameloblasts in the rat incisor enamel organ. J. Dent. Res., 69, 1508-1511. 

6 Porto, I.M., Merzel, J., de Sousa, F.B., Bachmann, L., Cury, J.A., Line, S.R. 

and Gerlach, R.F. (2009) Enamel mineralization in the absence of maturation stage 

ameloblasts. Arch. Oral Biol., 54, 313-321. 

7 Lagerstrom, M., Dahl, N., Nakahori, Y., Nakagome, Y., Backman, B., 

Landegren, U. and Pettersson, U. (1991) A deletion in the amelogenin gene (AMG) 

causes X-linked amelogenesis imperfecta (AIH1). Genomics, 10, 971-975. 

8 Rajpar, M.H., Harley, K., Laing, C., Davies, R.M. and Dixon, M.J. (2001) 

Mutation of the gene encoding the enamel-specific protein, enamelin, causes 

autosomal-dominant amelogenesis imperfecta. Hum. Mol. Genet., 10, 1673-1677. 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


20 

 

9 Hart, P.S., Hart, T.C., Michalec, M.D., Ryu, O.H., Simmons, D., Hong, S. and 

Wright, J.T. (2004) Mutation in kallikrein 4 causes autosomal recessive 

hypomaturation amelogenesis imperfecta. J. Med. Genet., 41, 545-549. 

10 Kim, J.W., Simmer, J.P., Hart, T.C., Hart, P.S., Ramaswami, M.D., Bartlett, 

J.D. and Hu, J.C. (2005) MMP-20 mutation in autosomal recessive pigmented 

hypomaturation amelogenesis imperfecta. J. Med. Genet., 42, 271-275. 

11 Parry, D.A., Poulter, J.A., Logan, C.V., Brookes, S.J., Jafri, H., Ferguson, 

C.H., Anwari, B.M., Rashid, Y., Zhao, H., Johnson, C.A. et al. (2013) Identification 

of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium 

exchanger, as a cause of amelogenesis imperfecta. Am. J. Hum. Genet., 92, 307-312. 

12 Parry, D.A., Brookes, S.J., Logan, C.V., Poulter, J.A., El-Sayed, W., Al-

Bahlani, S., Al Harasi, S., Sayed, J., Raif el, M., Shore, R.C. et al. (2012) Mutations 

in c4orf26, encoding a Peptide with in vitro hydroxyapatite crystal nucleation and 

growth activity, cause amelogenesis imperfecta. Am. J. Hum. Genet., 91, 565-571. 

13 Kim, J.W., Lee, S.K., Lee, Z.H., Park, J.C., Lee, K.E., Lee, M.H., Park, J.T., 

Seo, B.M., Hu, J.C. and Simmer, J.P. (2008) FAM83H mutations in families with 

autosomal-dominant hypocalcified amelogenesis imperfecta. Am. J. Hum. Genet., 82, 

489-494. 

14 El-Sayed, W., Parry, D.A., Shore, R.C., Ahmed, M., Jafri, H., Rashid, Y., Al-

Bahlani, S., Al Harasi, S., Kirkham, J., Inglehearn, C.F. et al. (2009) Mutations in the 

beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis 

imperfecta. Am. J. Hum. Genet., 85, 699-705. 

15 Poulter, J.A., El-Sayed, W., Shore, R.C., Kirkham, J., Inglehearn, C.F. and 

Mighell, A.J. (2013) Whole-exome sequencing, without prior linkage, identifies a 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


21 

 

mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. 

Eur. J. Hum. Genet., in press. 

16 Kim, J.W., Seymen, F., Lee, K.E., Ko, J., Yildirim, M., Tuna, E.B., Gencay, 

K., Shin, T.J., Kyun, H.K., Simmer, J.P. et al. (2013) LAMB3 Mutations Causing 

Autosomal-dominant Amelogenesis Imperfecta. J. Dent. Res., in press. 

17 Jonkman, M.F., Pas, H.H., Nijenhuis, M., Kloosterhuis, G. and Steege, G. 

(2002) Deletion of a cytoplasmic domain of integrin beta4 causes epidermolysis 

bullosa simplex. J. Invest. Dermatol., 119, 1275-1281. 

18 Mohazab, L., Koivisto, L., Jiang, G., Kytomaki, L., Haapasalo, M., Owen, 

G.R., Wiebe, C., Xie, Y., Heikinheimo, K., Yoshida, T. et al. (2013) Critical role for 

alphavbeta6 integrin in enamel biomineralization. J. Cell. Sci., 126, 732-744. 

19 Carr, I.M., Flintoff, K.J., Taylor, G.R., Markham, A.F. and Bonthron, D.T. 

(2006) Interactive visual analysis of SNP data for rapid autozygosity mapping in 

consanguineous families. Hum. Mutat., 27, 1041-1046. 

20 Wong, F.S., Anderson, P., Fan, H. and Davis, G.R. (2004) X-ray 

microtomographic study of mineral concentration distribution in deciduous enamel. 

Arch. Oral Biol., 49, 937-944. 

21 Lynch, C.D., O'Sullivan, V.R., Dockery, P., McGillycuddy, C.T. and Sloan, 

A.J. (2010) Hunter-Schreger Band patterns in human tooth enamel. J. Anat., 217, 106-

115. 

22 Morris, D.G., Huang, X., Kaminski, N., Wang, Y., Shapiro, S.D., Dolganov, 

G., Glick, A. and Sheppard, D. (2003) Loss of integrin alpha(v)beta6-mediated TGF-

beta activation causes Mmp12-dependent emphysema. Nature, 422, 169-173. 

23 Zhang, K. and Chen, J. (2012) The regulation of integrin function by divalent 

cations. Cell. Adh. Migr., 6, 20-29. 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


22 

 

24 Breuss, J.M., Gillett, N., Lu, L., Sheppard, D. and Pytela, R. (1993) Restricted 

distribution of integrin beta 6 mRNA in primate epithelial tissues. J. Histochem. 

Cytochem., 41, 1521-1527. 

25 Brown, A.C., Rowe, J.A. and Barker, T.H. (2011) Guiding epithelial cell 

phenotypes with engineered integrin-specific recombinant fibronectin fragments. 

Tissue Eng. Part A, 17, 139-150. 

26 Hurmerinta, K., Kuusela, P. and Thesleff, I. (1986) The cellular origin of 

fibronectin in the basement membrane zone of developing tooth. J. Embryol. Exp. 

Morphol., 95, 73-80. 

27 Thesleff, I., Barrach, H.J., Foidart, J.M., Vaheri, A., Pratt, R.M. and Martin, 

G.R. (1981) Changes in the distribution of type IV collagen, laminin, proteoglycan, 

and fibronectin during mouse tooth development. Dev. Biol., 81, 182-192. 

28 Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., 

Pittet, J.F., Kaminski, N., Garat, C., Matthay, M.A. et al. (1999) The integrin alpha v 

beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary 

inflammation and fibrosis. Cell, 96, 319-328. 

29 Gao, Y., Li, D., Han, T., Sun, Y. and Zhang, J. (2009) TGF-beta1 and 

TGFBR1 are expressed in ameloblasts and promote MMP20 expression. Anat. Rec. 

(Hoboken), 292, 885-890. 

30 Lee, H.K., Lee, D.S., Ryoo, H.M., Park, J.T., Park, S.J., Bae, H.S., Cho, M.I. 

and Park, J.C. (2010) The odontogenic ameloblast-associated protein (ODAM) 

cooperates with RUNX2 and modulates enamel mineralization via regulation of 

MMP-20. J. Cell Biochem., 111, 755-767. 

31 Wright, J.T., Hall, K.I. and Yamauche, M. (1997) The enamel proteins in 

human amelogenesis imperfecta. Arch. Oral Biol., 42, 149-159. 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


23 

 

32 Bartlett, J.D. and Smith, C.E. (2013) Modulation of cell-cell junctional 

complexes by matrix metalloproteinases. J. Dent. Res., 92, 10-17. 

33 Guan, X. and Bartlett, J.D. (2013) MMP20 Modulates Cadherin Expression in 

Ameloblasts as Enamel Develops. J. Dent. Res., in press. 

34 Caterina, J.J., Skobe, Z., Shi, J., Ding, Y., Simmer, J.P., Birkedal-Hansen, H. 

and Bartlett, J.D. (2002) Enamelysin (matrix metalloproteinase 20)-deficient mice 

display an amelogenesis imperfecta phenotype. J. Biol. Chem., 277, 49598-49604. 

35 Ghannad, F., Nica, D., Fulle, M.I.G., Grenier, D., Putnins, E.E., Johnston, S., 

Eslami, A., Koivisto, L., Jiang, G.Q., McKee, M.D. et al. (2008) Absence of alpha v 

beta 6 integrin is linked to initiation and progression of periodontal disease. Am. J. 

Pathol., 172, 1271-1286. 

36 Robinson, C. and Kirkham, J. (1984) Is the Rat Incisor Typical? INSERM, 

125, 377-386. 

37 Cox, B. (2010) A multi-scale, discrete-cell simulation of organogenesis: 

Application to the effects of strain stimulus on collective cell behavior during 

ameloblast migration. J. Theor. Biol., 262, 58-72. 

38 Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with 

Bowtie 2. Nat. Methods, 9, 357-359. 

39 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, 

G., Abecasis, G. and Durbin, R. (2009) The Sequence Alignment/Map format and 

SAMtools. Bioinformatics, 25, 2078-2079. 

40 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., 

Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. et al. (2010) The 

Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation 

DNA sequencing data. Genome Res., 20, 1297-1303. 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


24 

 

41 DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, 

C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M. et al. (2011) A 

framework for variation discovery and genotyping using next-generation DNA 

sequencing data. Nat. Genet., 43, 491-498. 

 

 at U
niversity of L

eeds on D
ecem

ber 6, 2013
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/
http://hmg.oxfordjournals.org/


25 

 

Legends to Figures 

Figure 1. Family pedigree and clinical dental phenotypes for AI-23. (A) Pedigree 

of family AI-23 recording the three affected individuals within a consanguineous 

family. DNA was available for all labelled individuals. (B) (i & ii) The clinical 

appearances for V8 aged 7-years of the early mixed dentition with premature enamel 

failure.  Surface enamel pitting is evident on many teeth including the partially 

erupted permanent lower incisors (arrows) and via the ‘speckled black’ appearances 

due to exogenous staining in the pits.  Inset image is a higher magnification image of 

the deciduous tooth (arrow *) highlighting the pitting.  The retention of enamel over 

the cusps of the permanent molar teeth (arrow heads) at this stage highlights the 

dramatic loss of enamel from the rest of the dental crown, even though these teeth 

have been in the mouth for a short period of time.  (iii) Clinical appearances of the 

upper dentition for V3 aged 9-years illustrating how the enamel can fracture cleanly 

away leaving a shoulder of remaining enamel at the cervical margin (arrows).  The 

enamel of the newly erupted second permanent molar teeth has yet to fail (arrow *). 

(iv) Dental radiograph of V3 aged 7-years confirming a near-normal enamel volume 

in the unerupted 2nd premolar (arrowhead) and 2nd molar (arrowhead +) lower 

permanent teeth with a clear difference in radiodensity between enamel and dentine, 

consistent with what is observed in normal teeth.  The 1st lower permanent molar 

tooth has been restored with a metal crown (+).  The crown of the permanent lower 3rd 

molar tooth is starting to mineralise (arrowhead *).  

 

Figure 2. Electropherogram of mutation and conservation of the P196T variant. 

(A) Representative electropherogram of the ITGB6 mutation in an affected member 

of family AI-23 alongside the wild-type sequence. Arrows indicate the localisation of 
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the variant. (B) Conservation of the P196 residue in orthologues (upper) and 

paralogues (lower). Conserved residues are highlighted. Human (NP_000879), Chimp 

(XP_001149234), Macaca (XP_001094740), Dog (XP_857148), Cat 

(XP_003990848), Horse (XP_001492914), African Elephant (XP_003406050), Wild 

Boar (NP_001090892), Cow (NP_777123), Guinea Pig (XP_003478725), Sheep 

(NP_001107244), Rat (NP_001004263), Mouse (NP_067334), Chicken 

(XP_422037), Zebra Finch (XP_002193421), Frog (NP_001090775), Zebrafish 

(XP_003199474), Human ITGB1 (NP_596867), ITGB2 (NP_001120963), ITGB3 

(NP_000203), ITGB4 (NP_000204), ITGB5 (NP_002204), ITGB7 (NP_000880) and 

ITGB8 (NP_002205). 

 

Figure 3. Phenotypic analyses of enamel: µCT   

(A) µCT confirmed a reasonable enamel volume in affected teeth, but with multiple 

enamel surface and sub-surface abnormalities.  Particularly striking were the regions 

of enamel exhibiting reduced mineral density and pits running for the enamel surface 

deep in to the bulk of the enamel.   

 

Figure 4. Phenotypic analyses of enamel: SEM 

(A) SEM of etched control enamel surface showed the characteristic appearance of 

arrays of enamel prisms terminating at the surface. (B) In contast, the affected enamel 

was punctured by numerous pits and the prism array was more obscure. (C) SEM of 

the internal prim architecture of control enamel in longitudinal section revealed the 

characteristic sinusoidal pattern of prism cohorts giving rise to Hunter–Schreger 

bands. (D) The prism architecture in affected enamel was less regular and clear 

Hunter-Schreger bands were less distinct.  The inset images in (C) and (D) show that 
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individual prism structure at the micron level in control and affected enamel is 

indistinguishable by SEM in some areas. (E) SEM of transversely cut sections 

through control cuspal enamel showed the characteristic array of prisms themselves in 

transverse section (higher magnification inset). (F) In affected enamel the inner 

enamel layer is structurally abnormal with loss of prism organisation.  Structural 

features designed to provide mechanical stability that depend on the correct 

interrelationship between prism cohorts (e.g. Hunter-Schreger bands) will be 

compromised in this enamel (inset shows higher magnification detail).    

 

Figure 5. Cartoon summarising the hypothesis presented here to explain the 

mechanism underpinning the AI subtype described. (A) At the beginning of 

normal enamel secretion an army of ameloblasts, present as a monolayer, migrates 

away from the preformed dentine surface leaving enamel matix in their wake. (B) As 

the cuspal enamel volume increases the ameloblasts modulate cell-cell contacts to 

cope with the stresses encountered by the monolayer being required to cover an ever 

expanding area. We hypothesise that ITGB6 upregulates MMP20 expression (via 

TGFactivation This in turn cleaves cadherin thus allowing ameloblasts to 

modulate cell-cell contacts to cope with the increasing stress of an expanding enamel 

surface and to allow cohorts of ameloblast to move relative to one another to produce 

sinusoidal prism architecture. MMP20 also processes enamel matrix proteins which is 

required for their final degradation prior to the completion of mineralisation. In 

affected enamel we hypothesise that cadherin cleavage and matrix processing are 

compromised due to the ITGB6 mutation resulting in breaks in the ameloblast 

monolayer in the cuspal regions leading to pitting, abnormal prism architecture and 

retained matrix proteins that inhibit final enamel mineralisation.   
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Region Size (Mb) Variants not in dbSNP 
129 or MAF ≤ 1% 

…and predicted 
functional 

…and segregates 
with the disease 

Chr2:154,600,940-173,240,770 18.64Mb 31 3 1 
Chr7:154,812,233-157,683,557 2.87Mb 4 0 - 
Chr10:80,853,408-90,425,474 9.57Mb 8 0 - 
Chr11:100,244,686-113,840,625 13.60Mb 21 1 0 
Chr12:4,023,387-21,726,294 17.70Mb 41 0 - 
Chr22:22,798,234-33,658,203 10.86Mb 33 0 - 
Total 72.6Mb 138 4 1 

 

Table 1: Summary of variants in AI-23 candidate disease regions and variants discovered by exome sequencing. The total variants identified in each 

region are shown. 
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