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Figure 2. Conceptual model of trishear algorithm, based on Hardy and Ford 51 

(1997).  52 
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Figure 3. Three-dimensional parameter space with corresponding trishear models. The three axes represent the trishear p/s ratio, 54 
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Figure 7. Quantification of strain (ratio of hanging wall uplift versus folded bed width) 69 
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faults. (c & d) upward-shallowing reverse fault developed above deeper pre-existing 81 

reverse faults. Pre-existing faults with the same or opposite thrusting directions are 82 

all simulated.  83 
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Figure 10. The workflow of applying trishear algorithm to the Lenghu5 structure, 85 

Qaidam Basin, Northern Tibetan Plateau. 86 
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Figure 11. The forward trishear models depicts the structural evolution of the Leng-88 

hu5 structure by allowing multiple curved reverse faults in trishear forward modelling.  89 
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Table 1. A cluster of natural trishear examples in published studies and their corresponding best-fit parameters. 91 

Ref 

No. 
Structure names 

Basement-

involved 

p/s 

ratio 

apical 

angle 

fault 

dip 

Scale, fault slip 

or stratigraphy 
Example Sources 

1 Turner Valley, Rocky Mountain No 2.0+ 37 25 Scale: 12km*30km (section width*depth); 

fault slip: 10km; 

Hardy and Ford (1997) 

2 Tejerina Fault, Spain No 3.0+ 35 30 Scale: 0.8km*1.2km; fault slip: 250m; stratigra-

phy: conglomerates with thin shales; 

Hardy and Ford (1997) 

3 Broad Haven, Pembrokeshire No 3.0+ 35 24 Scale: 6m*10m; fault slip: 2m; Hardy and Ford (1997) 

4 Hudson Valley, New York No 2.5 30-35 36 Scale: 2km*3km; fault slip: 0.3km; Allmendinger (1998) 

5 Rangely anticline, W US No 2.3 76 38 Scale: 6km*12km; fault slip: 4.2km; Allmendinger (1998) 

6 Reelfoot Fault, Proctor, US Yes 0.9 36 80 Scale: 0.5km*0.8km; fault slip: 52m; Champion et al. (2001) 

7 Filo Morado structure, W 

Neuquen basin 

No 1.9 35 30-

40 

Scale: 4km*10km; fault slip: 8.7km; stratigra-

phy: thick units (evaporates & shales) 

Allmendinger et al. 

(2004) 

8 Waterpocket anticline, S Utah No 2.25 105 35 Scale: 5km*10km; fault slip:3.8km; Cardozo (2005) 

9 Rip Van Winkle anticline, New 

York 

No 1.5 90 25 Scale: 5km*8km; fault slip:43m; stratigraphy: 

wackstone, packstone and grainstone; 

Cardozo et al. (2005) 

10 Dalong fault, Gansu, China Yes 1.5 30 50 Scale: 5km*10km; fault slip:669m; stratigraphy: 

basement + cover (terrestrial clastic sediments); 

Gold et al. (2006) 

11 Chelungpu fault, Taiwan No 2.5 80 35 Scale: 5m*40m; fault slip: 6m; stratigraphy: 

clay, silt clay with sand; 

Lin et al. (2007) 

12 Hudson Valley, New York No 2.4 36 35 Scale: 2km*3km; fault slip: 0.3km; Cardozo and 

Aanonsen (2009) 

13 Santa Fe Springs anticline, Los 

Angeles basin 

No 2.52 71 29 Scale: 7km*12km; fault slip:6.7km; Cardozo and 

Aanonsen (2009) 
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