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ABSTRACT 7 

The application of trishear, in which deformation occurs in a triangular zone in front 8 

of a propagating fault tip, is often used to understand fault related folding. A key ele-9 

ment of trishear, in comparison to kink-band methods, is that non-uniform defor-10 

mation within the triangle zone allows the layer thickness and length to change dur-11 

ing deformation. By varying three controlling parameters independently (trishear 12 

propagation/slip ratio, trishear apical angle and fault dip), we construct a three-13 

dimensional parameter space to demonstrate the variability of resultant geometry 14 

feasible with trishear. We plot published natural examples in this parameter space 15 

and identify two clusters and show that the most applicable typical trishear propaga-16 

tion/slip ratio is 2-3, while the trishear apical angle varies from 30° to 100°. We pro-17 

pose that these findings can help estimate the best-fit parameters for natural struc-18 

tures. We then consider the temporal evolution of specific geometric examples and 19 

factors that increase the complexity of trishear including: (1) fault-dip changes and (2) 20 

pre-existing faults. 21 

To illustrate the applicability of the parameter space and complex trishear models to 22 

natural examples, we apply our results to a sub-surface example from the Qaidam 23 

basin in northern Tibetan Plateau.  24 
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1. Introduction 27 

It has been extensively documented from outcrop and sub-surface studies that there 28 

is an intimate relationship between folding of sedimentary sequences and underlying 29 

faults, although a variety of different models are invoked, including fault-bend fold 30 

(Jamison, 1987; Medwedeff and Suppe, 1997; Suppe, 1983; Tavani et al., 2005), 31 

fault-propagation fold (Jamison, 1987; Mitra, 1990; Suppe and Medwedeff, 1990) 32 

and detachment folding (Dahlstrom, 1990; Jamison, 1987; Mitra, 2003; Poblet and 33 

McClay, 1996) to explain specific examples. Many of these models utilise a kink 34 

band method (Fig.1a, b) that maintains a constant layer thickness and line length, 35 

which results in uniform dips and homogeneous deformation of the fold limbs (Suppe, 36 

1983; Suppe and Medwedeff, 1990). An alternative approach is the trishear model 37 

that has a precondition of maintaining section area during deformation (Erslev, 1991) 38 

(Fig.2) and is often applied to examples in which non-uniform dip and inhomogene-39 

ous strain occurs within the faults; examples of such folds are evident in experi-40 

mental analogue studies (Bose et al., 2009; Ellis et al., 2004; McQuarrie, 2004; Miller 41 

and Mitra, 2011), numerical models (e.g., Allmendinger, 1998; Cristallini and 42 

Allmendinger, 2001; Erslev, 1991; Hardy and Ford, 1997) and natural geological 43 

structures (e.g., Allmendinger, 1998; Cristallini and Allmendinger, 2001; Erslev, 1991; 44 

Erslev and Mayborn, 1997; Erslev and Rogers, 1993). 45 

The simplest trishear model and its potential application has been discussed in many 46 

studies (Allmendinger et al., 2004; Cardozo, 2005, 2008; Cardozo and Aanonsen, 47 

2009; Cardozo et al., 2005; Cardozo et al., 2011; Gold et al., 2006; Jin and 48 
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Groshong, 2006; Jin et al., 2009; Lin et al., 2007). Allmendinger (1998) demonstrat-49 

ed the geometric complexities resulting from varying parameters associated with a 50 

single fault, while Allmendinger et al. (2004) considered the resulting geometry when 51 

multiple faults with opposing dips are modelled. The conceptual trishear model of 52 

Erslev (1991) has subsequently been quantified to account for definition of the pa-53 

rameters controlling the trishear geometry by the later studies (e.g., Cristallini and 54 

Allmendinger, 2001; Cristallini et al., 2004; Hardy and Ford, 1997; Zehnder and 55 

Allmendinger, 2000). 56 

By varying the controlling parameters, further modifications also allow a spectrum of 57 

trishear models, including basic (homogeneous) trishear models (Hardy and Ford, 58 

1997), heterogeneous trishear models (Erslev, 1991), asymmetric trishear models 59 

(Zehnder and Allmendinger, 2000), extensional trishear models (Jin and Groshong, 60 

2006), reverse trishear models (Cruden and McCaffrey, 2001), evolving apical angle 61 

trishear models (Allmendinger, 1998) and Quadshear models (Welch et al., 2009), 62 

where propagation of two pre-existing faults towards each other is used to model 63 

fault development in mechanically heterogeneous sequences.  64 

Despite these studies, there has been little attention to the spectrum of potential 65 

trishear geometry, which limits the application of the trishear mechanism in under-66 

standing natural structures. 67 

In this paper, we focus on the trishear deformation associated with reverse faults. 68 

Given the significant degrees of freedom available within the trishear algorithm, it 69 

can be difficult to define appropriate parameters, hence derive a unique solution, for 70 

natural structures. Therefore, here we evaluate the effect of varying each parameter 71 

independently and consider the effect on the resultant geometry; we illustrate the re-72 
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sults by defining a three-dimensional parameter space, where the three controlling 73 

parameters can vary independently of each other. With natural examples plotted in 74 

the parameter space, we propose a range of parameter values that best represent 75 

natural structures. As an important element of the trishear model is the temporal evo-76 

lution of the structure, we build a new three-dimensional parameter space to consid-77 

er how the structures most represented in natural systems evolve with time. Finally, 78 

a natural example from the Lenghu5 structure (Qaidam Basin, Northern Tibetan 79 

Plateau) is interpreted using the trishear parameter space and the strain quantifica-80 

tion, which provides a new workflow of applying trishear algorithm to complex natural 81 

structures. 82 

2. Three-dimensional parameter space and clusters of natural examples 83 

Within the trishear model (Fig.2), the deformation is concentrated within a triangle 84 

zone in front of the propagating fault tip. Compared with the simple shear algorithm 85 

(Withjack and Peterson, 1993), the particles in the triangle zone no longer migrate 86 

parallel to the fault trace, but with a displacement component from the hanging wall 87 

side to the footwall side. The migration velocity within the triangle zone decreases 88 

from the maximum on the hanging wall trishear boundary to zero on the footwall 89 

trishear boundary. This non-uniform migration within the triangle zone allows the lay-90 

er thickness and length to change during the trishear deformation; however, the sec-91 

tion area is kept constant. In this paper, we choose to model three of the parameters 92 

in the trishear algorithm, which are the trishear p/s ratio (the fault propagation/slip 93 

ratio); the trishear apical angle; and the fault dip. For example, when the fault slips 94 

from point A to point B, the fault tip propagates from point A to point C (Fig.2). The 95 

ratio between the length of AC and AB is the trishear p/s ratio. 96 
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In order to evaluate the effects of the parameters on the resulting geometry, a three-97 

dimensional parameter space is created, with three axes representing each of the 98 

parameters (Fig.3). By varying the three parameters, the parameter space is con-99 

structed, allowing the construction of a variety of trishear models with different ge-100 

ometries. In this parameter space, the trishear models are constructed using 2D 101 

MOVE (Midland Valley), in which we assume heterogeneous deformation (trishear 102 

zones = 10) in the trishear zone and ‘Fault Parallel Flow’ algorithm outside the 103 

trishear zone. 104 

As described in previous studies, the development of a monocline in front of the fault 105 

tip and coincident thinning of hanging wall strata and thickening of footwall strata are 106 

consequences of the general algorithm and are therefore common to all trishear 107 

models (Fig.3). These features are consistent with the observations in natural 108 

trishear examples, e.g., rotation structures (Fig.1c). Although these geometries are 109 

common to all examples the specific resultant geometries vary significantly depend-110 

ing upon the specific parameters that are used (Fig.3). For example, with some 111 

trishear apical angles and reverse fault dips, low trishear p/s ratio leads to high mag-112 

nitude of hanging wall thinning and footwall thickening. By comparing the trishear 113 

models distributed in the parameter space, the effects of the parameter selection on 114 

the geometry of trishear models are summarized below: 115 

i. With a constant fault slip, the amplitude of the hanging wall uplift has a posi-116 

tive correlation with fault dip that is unaffected by p/s ratio or apical angle 117 

whereas the fault tip propagation is positively correlated with high p/s ratio 118 

and unaffected by apical angle or fault dip. 119 
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ii. Parameters of low fault dip, low p/s ratio and high apical angle result in a 120 

high magnitude of hanging wall thinning and footwall thickening. 121 

iii. Parameters of low fault dip, low p/s ratio and high apical angle form a wide 122 

monocline. 123 

iv. The monocline in front of the fault tip can be overturned with parameters of 124 

high fault dip, high p/s ratio and low apical angles. 125 

Many natural structures have been explained by the application of trishear algorithm 126 

(e.g., Allmendinger, 1998; Allmendinger et al., 2004; Cardozo, 2005; Cardozo and 127 

Aanonsen, 2009; Cardozo et al., 2005; Champion et al., 2001; Gold et al., 2006; 128 

Hardy and Ford, 1997; Lin et al., 2007). We use 13 published examples of trishear 129 

and characterise them according to their trishear parameters. The 13 natural trishear 130 

examples are plotted in the parameter space according to their best-fit parameters 131 

(Fig.4). Two clusters of the natural trishear examples are observed, although there 132 

are several examples located outside of the clusters. The two clusters are best de-133 

scribed by p/s ratios of 2-3, trishear apical angles from 30°-100°, and fault dips of 134 

25°-45°. We propose that these findings can be used to estimate the best-fit trishear 135 

parameters when applying trishear algorithm to natural structures.  It is also im-136 

portant to highlight the relatively small sample set, hence more natural trishear ex-137 

amples need to be added in this parameter space in the future to define more relia-138 

ble clusters. As noted in previous studies (Hardy and Finch, 2007; Loveless et al., 139 

2011; Roche et al., 2012), competent packages are likely to develop steep faults 140 

while incompetent packages can develop shallow or even bedding-parallel faults. In 141 

the parameter space, the trishear models associated with high angle reverse faults, 142 
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which are not well-described by the clusters, may correspond to the steep faults de-143 

veloped in competent packages. 144 

3. Temporal evolution of trishear models 145 

In the previous section we considered the clustering of natural examples in a static 146 

parameter space; it is also clearly important to consider how the temporal evolution 147 

impacts on the resulting geometry. To illustrate this temporal evolution we need to 148 

consider how deformed the structure is, therefore, we define a deformation stage 149 ࢏ࡾ for a reference horizon by the following equation: 150 

࢏܀  ൌ ܐ Τ࢏ࢎ                                      (Equation 1) 151 

In the above equation, ࢎ is the hanging wall uplift and ࢏ࢎ is the depth from hanging 152 

wall to the fault tip (Fig.2, Fig.5). 153 

It is important to note that the deformation stage parameter ࢏ࡾ is not unique within a 154 

trishear model, but is variable for different horizons at different levels within the struc-155 

ture. The ࢏ࡾ value, therefore, depends on the selection of the reference horizon used 156 

for calculation. In Fig.5, a trishear model (left) with the parameters p/s ratio of 2.5, 157 

fault dip of 30° and apical angle of 50° is used to illustrate the impact of the selection 158 

of the reference horizon. The ࢏ࡾ values are calculated for the horizons that have not 159 

been propagated through by the underlying fault. The diagram (right) suggests a de-160 

creasing ࢏ࡾ value from h8 to h1 upward through the model. 161 

We take one of the clustered points on the parameter space (p/s ratio of 2.5) and 162 

consider how varying trishear apical angle (30°, 50°, 70° and 100°) and reverse fault 163 

dip (30° and 45°) alter the resultant geometry. For this example, a new three-164 

dimensional space is generated here, with two horizontal axes representing the 165 
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trishear apical angle and the reverse fault dip, and the vertical axes representing the 166 

deformation stage ࢏ࡾ (Fig.6). Given the variability of the ࢏ࡾ value for different hori-167 

zons, here we select the top horizon as the reference for the calculation. In this pa-168 

rameter space, three ࢏ࡾ values are set, which are 0.2, 0.5 and 0.8. 169 

The parameter space of trishear models introduced above provides a platform for the 170 

application of trishear algorithms to natural structures. Although it is still difficult to 171 

identify unique solutions for the natural structures because of the significant degrees 172 

of freedom available with the trishear parameters, we can narrow the range of the 173 

parameters and estimate the temporal evolution of the structure by using the param-174 

eter space. For example, with a natural structure, by comparing the first-order struc-175 

tural geometry with the trishear models in the parameter space, the range of best-fit 176 

parameters for this structure can be determined. With the best-fit parameters sug-177 

gested by the parameter space, the deformation stage can be identified by compar-178 

ing the hanging wall geometry of the natural structures with the trishear forward 179 

models in the parameter space.  180 

4. Quantification of the strain associated with the trishear algorithm 181 

As the deformation associated with the trishear algorithm is always constrained with-182 

in the triangle zone in front of the fault tip, it is possible to calculate the strain of the 183 

folded beds, which is the ratio of the hanging wall uplift (ࢎ) versus the width of the 184 

folded beds (࢝). Fig.7a delineates the trigonometric relationship of the key variables, 185 

and we hereby define the strain ࢋ as Eq.2: 186 

ࢋ ൌ ࢎ Τ࢝                                          (Equation 2) 187 

࢝               ݏܣ ൌ ஺஼ܮ ൌ ௃௄ܮ െ ிுܮ െ ஽஼ܮ                          ൌ ஻௄ܮ    ሺܭܬܤסሻ െ ܮி௃ ൈ    ሺܬܪܨסሻΤ െ ܮ஽ு ൈ    ሺܥܪܦסሻ 
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                        ൌ ܪ     ሺࢻ െ ࣂ ʹΤ ሻΤ െ ݄ ൈ ࢻ    െ ܪ ൈ    ሺߨ ʹΤ െ ࢻ െ ࣂ ʹΤ ሻ                         ൌ ܪ  ൈ    ሺࢻ െ ࣂ ʹΤ ሻ െ ݄ ൈ ࢻ    െ ܪ ൈ    ሺࢻ ൅ ࣂ ʹΤ ሻ 

࢏ࡾ           ݀݊ܽ ൌ ݄݄௜ ൌ ݄݄ ൅ ܪ െ ݄ ൈ ሺ݌ Τݏ ሻ 

ǡ      ૚ݏݑ݄ݐ Τࢋ ൌ ሾ૚ Τ࢏ࡾ ൅ ሺ࢖ Τ࢙ ሻ െ ૚ሿ ൈ ሾܜܗ܋ሺࢻ െ ࣂ ૛Τ ሻ െ ࢻሺܜܗ܋ ൅ ࣂ ૛Τ ሻሿ െ ܜܗ܋  ࢻ

                (Equation 3) 188 

In Eq.3, the four involved variables are the strain ࢋ, the deformation stage ࢏ࡾ, the 189 

fault dip હ and the apical angle ࣂ. In order to avoid the variability of the ࢏ࡾ value for 190 

different reference horizons (see Fig.5), we select a trishear model with only one 191 

single layer. The equation demonstrates that the strain increases when the defor-192 

mation progresses (i.e., increasing deformation stage). With a given natural structure, 193 

the strain ࢋ can be calculated by measuring the hanging wall uplift and width of the 194 

folded beds in the monocline. If the subsurface data provided possible range of de-195 

formation stage ࢏ࡾ and fault dip હ, then the plot of apical angle ࣂ and p/s ratio can be 196 

generated based on Eq.3 (e.g., Fig.7b, strain 0.5 = ࢋ, deformation stage 1 = ࢏ࡾ and 197 

fault dip 45 = ࢻ°). Although it is still difficult to apply the equations to identify the 198 

unique solutions for natural structures, these equations and plots can narrow the 199 

range of the variables, particularly when the surface and subsurface data provide 200 

better constraints to the variables. 201 

5. Complex trishear geometry 202 

The above parameter space and the evolution of a specific structure only show 203 

trishear models that are applicable in simple natural structures with one constant-204 

dipping fault and where displacement is not substantial enough to cause overturning. 205 

In many natural examples, structures are commonly related to either a more complex 206 

fault or a set of related faults (e.g., Allmendinger, 1998; Allmendinger et al., 2004). 207 
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The complexity of the fault systems obviously inhibits the application of trishear algo-208 

rithm in natural structures and results in a large population of possible scenarios. 209 

Therefore, here we summarise the key additional factors that may influence the re-210 

sultant geometry and promote increased complexity of trishear models. The three 211 

factors that we will analyse are: the change in fault dip during propagation, multiple 212 

faults and pre-existing faults. Trishear models are created by integrating these con-213 

tributing factors (Fig.8 and Fig.9). We anticipate that the generated models are use-214 

ful for predicting subsurface structures based on high-resolution fieldwork data (sur-215 

face data, e.g., fault/stratum dips, layer thickness variation, second-order structures), 216 

particularly when the subsurface data is insufficient in the study area. The key con-217 

trols of each of these factors are reviewed individually below. 218 

5.1 Fault-dip change 219 

In many multi-layer sequences, fault dip of any one layer may be controlled by the 220 

thickness or competence of the layer (e.g., Hardy and Finch, 2007; Loveless et al., 221 

2011; Roche et al., 2012) and may change upward through the stratigraphy. In the 222 

scenario where there are basement-involved structures, the fault may initially be 223 

steep in the competent basement but will become shallower as it propagates through 224 

the overlying sedimentary cover that is relatively incompetent (Hardy and Finch, 225 

2007).  In contrast, in the scenario where there are only thin-skinned structures, the 226 

fault can initiate parallel to the mechanical stratigraphy and then propagate upward 227 

to cut through the upper layers (Hardy and Finch, 2007). To represent these two 228 

scenarios, two series of trishear forward models are created (Fig.8), with the trishear 229 

algorithm applied on an upward-steepening reverse fault in Fig.8a and an upward-230 

shallowing reverse fault in Fig.8b, respectively. The upward-steepening reverse fault 231 

modelled in Fig.8a1-3 initiates with a shallow dip angle of 20° and the stepwise incre-232 
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ment of fault-dip is 10° until it reaches 70°, while the upward-shallowing reverse fault 233 

modelled in Fig.8b1-3 initiates with a steep dip angle of 70° and the upward stepwise 234 

decrease in fault-dip is 10° until it reaches 20°. For both scenarios, the p/s ratio is set 235 

as 2.5 (suggested by the clusters of natural examples in the parameter space), while 236 

the trishear apical angle is set as 50° (a medium value of the apical angle range 237 

suggested by the clusters of natural examples in the parameter space). 238 

The upward-steepening and upward-shallowing reverse faults form very different 239 

hanging wall and footwall geometries with the former experiencing more deformation 240 

than the latter. The hanging walls are uplifted during the deformation while the foot-241 

walls stay in the original position. However, the hanging wall and footwall geometries 242 

are different in the two series of models. The upward-steepening reverse fault forms 243 

an anticline in the hanging wall, with a gentle backlimb and overturned forelimb; 244 

whereas the upward-shallowing reverse fault forms a monocline in the hanging wall 245 

and the hanging wall shows downward steepening dips towards the triangle defor-246 

mation zone. For the footwall geometry, the footwall adjacent to the fault trace shows 247 

more thickening in the model of an upward-steepening fault than that in the model of 248 

an upward-shallowing fault. 249 

In previous studies, two categories of structures are observed in compressional sys-250 

tems, which are thin-skin fold-and-thrust belts and thick-skin/basement-involved belts. 251 

In thin-skin fold-and-thrust belts, the deformation concentrates primarily in the sedi-252 

mentary cover rather than the basement, e.g., Canadian Rocky Mountain-style fore-253 

land fold-and-thrust belts (Bally et al., 1966; Barclay and Smith, 1992; Price, 1981). 254 

In contrast, in thick-skin/basement-involved belts, the basement rocks are shortened 255 

along steep dipping reverse faults and are associated with relatively low transport 256 

distances and compression (Coward, 1983), e.g., the Laramide uplifts (Schmidt et al., 257 
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1993). The upward shallowing model in Fig.8a is more akin to a thick skinned sce-258 

nario in contrast to Fig.8b which is more likely to represent thin skinned deformation. 259 

This is in agreement with the study of Erslev and Rogers (1993) and Erslev et al. 260 

(2013). Therefore, it is assumed that an upward-steepening reverse fault tends to 261 

develop in thin-skin deformation whereas an upward-shallowing reverse fault is likely 262 

to develop at the basement-cover contact. In a number of examples, thin-skin style 263 

and basement-involved style can coexist in a single structure on some scales, as the 264 

steep faults that penetrate the basement rocks can change to be sub-horizontal 265 

when they reach sedimentary cover and then help the horizontal initiation of the thin-266 

skin detachments (Hayward and Graham, 1989). In this scenario, the degree of de-267 

coupling between basement and sedimentary cover becomes more important. This 268 

is also supported by the results of physical experiments (Bose et al., 2009; McClay 269 

and Whitehouse, 2004). 270 

5.2 Pre-existing fault(s) 271 

The reactivation of pre-existing faults may also form complex structural geometries 272 

together with the younger faults. Examples permitting high geometric complexity by 273 

allowing the inclusion of multiple faults in a section are demonstrated by 274 

Allmendinger et al. (2004). However, it is also vital to understand the surface geo-275 

metrical control on the complex fault deformation in subsurface. 276 

Fig.9 shows examples of the trishear models in which deeper pre-existing faults are 277 

present beneath the upper reverse faults. As discussed above, the reverse faults in 278 

these models can be upward-steepening for thin-skinned structures or upward-279 

shallowing for thick-skinned/basement-involved structures. The sets (a) and (b) apply 280 

upward-steepening reverse faults in the trishear modelling (Fig.9a,b), while the sets 281 
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(c) and (d) apply upward-shallowing reverse faults (Fig.9c,d). Both the same and op-282 

posing thrusting directions are modelled (same direction in Fig.9a,c and opposite di-283 

rection in Fig.9b,d). The trishear models in Fig.9a,b show similar geometries to the 284 

anticlines formed in Sub-Andean belt of southern Bolivia (Belotti et al., 1995) where 285 

the middle weak layer can decouple the shallow depth strain from the deep subsur-286 

face (e.g., Burliga et al., 2012; Willingshofer and Sokoutis, 2009). Fig.9c,d delineates 287 

of basement-involved structures with upward-shallowing faults when propagating into 288 

the sedimentary cover, which is commonly observed in many studies in thick-skinned 289 

structures (e.g., Bose et al., 2009; Butler et al., 2004). In particular, Fig.9c shows an 290 

analogue model that may represent the bifurcation of an early single reverse fault or 291 

the splay faults coming off from a single reverse fault, to form a triangular strain con-292 

fined by the multiple faults. In nature, a single reverse fault may initiate within a fault-293 

propagation fold and subsequently bifurcate or form splays when propagating 294 

through the upper sedimentary cover, e.g., the Absaroka thrust sheet case 295 

(Lamerson, 1982; Mitra, 1990). In this scenario, the earlier formed fold geometry 296 

may be modified during the subsequent fault bifurcation or generation of splay faults. 297 

The models (a) and (b) all form anticlines in the surface, although different subsidiary 298 

structures (i.e., minor anticlines and synclines in the footwall) are developed in (a) 299 

and (b). For example, the subsurface minor folds in model (a) has wider wavelength 300 

than that in model (b). For the upward-shallowing reverse faults, the models (c) and 301 

(d) all form monoclines in the surface, but the hanging wall has a higher uplift in 302 

model (c) than in model (d). Moreover, in model (d), minor synclines are developed 303 

at both ends of the central common footwall, resulting in a syncline-like geometry. 304 

Different combinations of upper reverse faults and lower pre-existing faults can form 305 

very different structural styles. However, as the surface geometry is a reflection of 306 
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subsurface structures, there are still some features that can be used to illustrate the 307 

overall structure and predict the subsurface structures. For example, the symmetry, 308 

wavelength and amplitude of the folds depend on the subsurface structures and 309 

therefore these features can be used to predict the subsurface structures. According 310 

to the simulated models in Fig.9, the following inferences are drawn: 311 

i. Reverse faults are implied to be upward-steepening if the fold observed in 312 

the surface is an anticline and upward-shallowing if the surface fold is a mon-313 

ocline. 314 

ii. For upward-steepening reverse faults, asymmetric anticlines suggest re-315 

verse faults with same transport direction, while relative symmetric anticlines 316 

suggest opposite-directing reverse faults. 317 

iii. For upward-shallowing reverse faults, opposite-directing reverse faults re-318 

sult in smaller hanging wall uplift. 319 

6. Application to the Lenghu5 structure, Qaidam Basin 320 

A natural example from the Lenghu5 structure in Qaidam basin of the Northern Ti-321 

betan Plateau (e.g., Yin et al., 2008a; Yin et al., 2008b) is selected to demonstrate 322 

the applicability of our trishear modelling and our suggested workflow (Fig.10 a-c). 323 

The surface data (Fig.10a) suggest that the underlying reverse fault accounts for the 324 

development of the anticline in the SW hanging wall. The structures adjacent to the 325 

reverse fault cannot be well-described by the kink band model, therefore, we apply a 326 

trishear algorithm to interpret the Lenghu5 structure. In order to apply the trishear 327 

algorithm to the structure, the appropriate simplification is conducted to obtain the 328 

primary structural geometry (Fig.10b). The primary structure is also rotated clockwise 329 

to make the footwall horizontal. By comparing the geometry of the blue layer with the 330 
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trishear models in the parameter space (Fig.3), it is suggested that the trishear mod-331 

el in the space with the parameters of p/s ratio of 2.0, reverse fault dip of 45°, and 332 

apical angle of 50° shows the most similar geometry with the simplified Lenghu5 333 

structure (Fig.10c). We can also measure the strain ࢋ of the best-fit trishear model 334 

(Fig.10c) to compare with that of the Lenghu5 structure. The best-fit trishear model in 335 

Fig.10c presents strain 0.99=ࢋ, which shows a high similarity to the strain 336 0.92=ࢋ 

presented in the Lenghu5 structure (fig.10b). 337 

However, in the plots shown in Fig.10d created by applying the Eq.3 with fault dip 338 2.54=࢏ࡾ ,°45=ࢻ and strain 0.92=ࢋ, the corresponding apical angle 40~ = ࣂ° does not 339 

quite match the apical angle 50 = ࣂ° in the best-fit trishear model (Fig.10c). We pro-340 

pose that the mismatch of the apical angle is caused by the fault complexity that has 341 

not been considered above. As shown in the seismic section (Fig.11a), the Lenghu5 342 

anticline is mainly controlled by the underlying reverse faults F1, F2 and F3. Two anti-343 

clines are observed in this structure: the surface anticline above F1 and deeper sub-344 

surface anticline beneath F1. The upward decreasing displacement of F1 suggests a 345 

trishear algorithm is applicable in this structure. Moreover, reverse faults F1 and F2 346 

all present upward-steepening shapes, which is highly comparable with the complex 347 

trishear models shown in Fig.9b. Therefore, we applied the trishear algorithm for-348 

ward modelling to simulate the structural evolution of the Lenghu5 structure by allow-349 

ing multiple curved faults in a single section. Fig.11b-e depicts the progressive de-350 

velopment models of the Lenghu5 structure simulated using 2D Move (Midland Val-351 

ley). 352 

The parameters suggested by the best-fit trishear model in the parameter space are 353 

used in the trishear forward modelling (apical angle of 50° and p/s ratio of 2.0, sug-354 
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gested in Fig.10c). The comparison between the fault displacement and the fault tip 355 

propagation of F2 also suggests a trishear p/s ratio of 2.0. In order to simulate the 356 

upward steepening reverse faults F1 and F2, we used the interpreted F1 and F2 as 357 

templates to define the stepwise values of upward steepening angles. In Fig.11b, 358 

normal fault F2 was developed to form a half-graben in the Jr sediments followed by 359 

deposition of post-extension sequence from E1+2 to N2-1; in Fig.11c-d, the geological 360 

environment changed to be compressional which results in the inversion of F2 and 361 

the development of the reverse fault F1; after uplift and erosion to present, Fig.11e 362 

presents a good match to the geometry of the Lenghu5 structure. The models in 363 

Fig.11b-e constrain the structural evolution of the Lenghu5 structure. 364 

7. Discussion 365 

7.1 Geometric constraints of trishear algorithm 366 

A suite of trishear geometries can be formed by varying the combination of the input 367 

parameters, which inhibits the application of trishear algorithm directly to natural 368 

structures. In this study, we have constructed a simple parameter space to evaluate 369 

the effect of varying each parameter independently and to help determine the tem-370 

poral evolution of the natural structures. The spectrum of structural geometries is 371 

much broader and the resulting structures can be more complex when integrating 372 

fault-dip change and pre-existing fault(s) in a single section. Therefore, some appro-373 

priate simplification of natural structures is needed before applying the parameter 374 

space: i.e., the first-order geometry can be used as initial constraints to compare with 375 

the trishear models in the parameter space. The previously simplified structural 376 

complexity is then reproduced in the final trishear models to compare with the origi-377 

nal natural structures, which can help test the validity of the application of the 378 

trishear algorithm to the natural structures. 379 
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In the parameter space (Fig.4), the clusters of plotted natural examples are concen-380 

trated in the space with shallow reverse fault dip. This is because most of these ex-381 

amples are from thin-skin structures where the thrusting involves only the sedimen-382 

tary cover whereas the basement is unaffected in the deformation (Poblet and Lisle, 383 

2011), e.g., foreland fold-and-thrust belts in Canadian Rocky Mountain (Bally et al., 384 

1966; Barclay and Smith, 1992; Price, 1981) and Turner Valley anticline in Alberta 385 

Foothills (Gallup, 1954; Gallup, 1951; Mitra, 1990). However, in the trishear parame-386 

ter space, there are also a series of trishear models with high angle reverse faults 387 

that are very likely to be basement-involved and can be related to thick-skin structur-388 

al inversion. The contractional inversion of older extensional faults has now been 389 

widely recognized in fold-and-thrust belts, for instance, in the Neuquen Basin in Ar-390 

gentina (Rojas et al., 1999), the Spanish Pyrenees (Muñoz, 1992), Alps (Pfiffner et 391 

al., 2000; Schmid et al., 1996), Apennine Mountains (Coward et al., 1999), Papua 392 

New Guinea (Buchanan and Warburton, 1996; Hill, 1991; Hill et al., 2004). In con-393 

trast to thin-skin structures, the basement involvement in thick-skin structures have 394 

not been transported over long horizontal distances as the steep faults penetrate the 395 

basement and lead to basement uplifts (Poblet and Lisle, 2011). However, the thin-396 

skin fold-and-thrust belts (basement-unaffected) and thick-skin belts (basement-397 

involved) can coexist in a single structure. The coexistence of these different struc-398 

tural styles might be common in many orogenic belts. For example, the Rocky Moun-399 

tains-USA Cordillera exhibits thin-skin deformation in the interior and thick-skin de-400 

formation in the outer part (Hamilton, 1988); the steep faults that penetrate the 401 

basement become sub-horizontal when reaching the sedimentary cover and promote 402 

the horizontal initiation of the thin-skin detachments such as in the Alps (Hayward 403 

and Graham, 1989). 404 
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7.2 Influence of stratigraphy on trishear algorithm 405 

In this paper, the parameter space concept focus on the geometrical constraints of 406 

the trishear algorithm. We also considered curved reverse faults, multiple faults and 407 

pre-existing faults when applying trishear algorithms to natural structures. However, 408 

it needs to be recognised that lithology and mechanical strength also play a role on 409 

the trishear models, with the parameters being very different depending upon me-410 

chanical stratigraphy (Alonso and Teixell, 1992; Hardy and Finch, 2007; Hardy and 411 

Ford, 1997). It has been suggested that rocks with high competency present higher 412 

trishear p/s ratios than low competent rocks, e.g., sandy units show higher trishear 413 

p/s ratio than clay-rich units (Hardy and Ford, 1997). Hardy and Finch (2007) also 414 

employed a discrete-element technique (Finch et al., 2003; Finch et al., 2004) to in-415 

vestigate sedimentary cover deformation in response to contractional faulting. The 416 

fault zone deformation was simulated with different settings: in the homogeneous 417 

weak cover model, a wide and open triangular zone was developed in front of the 418 

fault tip and significant thinning and thickening were observed within the triangular 419 

zone, which broadly agreed with the predictions of the trishear kinematic models 420 

(Allmendinger, 1998; Erslev, 1991; Hardy and Ford, 1997); while in the strongly het-421 

erogeneous layered models, a much narrower kink-like triangular zone was ob-422 

served in front of the fault tip and layer thickness was roughly preserved within the 423 

triangular zone. In the physical modelling of Dixon (2004), the relatively homogene-424 

ous weak stratigraphy resulted in a trishear-like ductile deformation (low trishear p/s 425 

ratio) whereas the model with strong bedding-controlled heterogeneity is prone to 426 

form through-going reverse faults (high trishear p/s ratio). All these mechanical and 427 

physical models suggest the important role of stratigraphy and strength in the cover 428 
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deformation (see also Welch et al., 2009), however, are likely to be second order 429 

controls superimposed upon the first order geometry outlined here. 430 

8. Conclusion 431 

In this paper, we have presented a three-dimensional parameter space to evaluate 432 

the effects of different trishear parameters on the geometries of trishear models. The 433 

parameter space associated with the identified clusters of natural structures can be 434 

used to constrain the best-fit trishear parameters needed to apply trishear algorithms 435 

to natural structures. We also consider the temporal evolution of a specific example 436 

to demonstrate the variation in deformation stage of the structures. The strain of 437 

trishear models is also quantified, with the plots providing possible solutions for in-438 

terpreting natural structures. On the basis of the parameter space, fault-dip change, 439 

multiple faults and pre-existing faults, are integrated in the trishear models, to under-440 

stand the possible complex structures that can form. A natural example of applica-441 

tion was employed to verify the applicability of trishear algorithm. We anticipate that 442 

the application of the parameter space, and the resulting geometry associated with 443 

temporal evolution, will assist in reducing the uncertainty associated with fault related 444 

folds.  445 
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Figure 1. Fault-bend fold and fault-propagation fold based on kink bend method (a, b) 604 

(Suppe, 1983; Suppe and Medwedeff, 1990) and a natural example showing variable 605 

layer thickness (c) (Allmendinger, 1998). 606 

Figure 2. Conceptual model of trishear algorithm, based on Hardy and Ford (1997). 607 

Figure 3. Three-dimensional parameter space with corresponding trishear models. 608 

The three axes represent the trishear p/s ratio, the trishear apical angle and the re-609 

verse fault dip, respectively. 610 

Figure 4. Clusters of natural trishear examples in the three-dimensional parameter 611 

space. In the parameter space, 13 natural examples are plotted in and two clusters 612 

are observed. The clusters suggest that the most applicable trishear p/s ratio is 2-3 613 

and the trishear apical angle varies from 30° to 100°. The majority of these natural 614 

trishear examples show shallow fault dips of 25°-45°. 615 

Figure 5. Diagram delineating the impact of the selection of the reference level, i.e., 616 

the horizon used to calculate the deformation stage ࢏ࡾ. Here a trishear model (left) 617 

with the parameters p/s ratio of 2.5, fault dip of 30° and apical angle of 50° is select-618 

ed, in which we only calculate the ࢏ࡾ of the horizons that have not been propagated 619 

through by the underlying fault. The deformation stage ࢏ࡾ is not unique for a trishear 620 

model, but is variable for different horizons. The right diagram suggests a decreasing  621 ࢏ࡾ value from h8 to h1 upward through the model. 622 

Figure 6. Parameter space of trishear models with suggested parameters from the 623 

clusters of natural trishear examples. 624 

Figure 7. Quantification of strain (ratio of hanging wall uplift versus folded bed width) 625 

associated with trishear algorithm. The figure (a) delineates the trigonometric rela-626 

tionship among the variables, while the apical angle versus p/s ratio plot is generated 627 

with known strain 0.5 = ࢋ, deformation stage 1 = ࢏ࡾ and fault dip 45 = ࢻ° in (b). 628 

Figure 8. (a1-3): Trishear forward models of an upward-shallowing reverse fault. The 629 

fault dip changes from 20° to 70° upwards with a stepwise increment of 10°. (b1-3): 630 

Trishear forward models of an upward-shallowing reverse fault. The fault dip chang-631 

es from 70° to 20° upwards with a stepwise decrement of 10°. 632 

Figure 9. Trishear forward models of reverse faults affected by pre-existing faults. (a 633 

& b) upward-steepening reverse faults developed above deeper pre-existing reverse 634 

faults. (c & d) upward-shallowing reverse fault developed above deeper pre-existing 635 

reverse faults. Pre-existing faults with the same or opposite thrusting directions are 636 

all simulated. 637 

Figure 10. The workflow of applying trishear algorithm to the Lenghu5 structure, 638 

Qaidam Basin, Northern Tibetan Plateau.  639 

Figure 11. The forward trishear models depicts the structural evolution of the Leng-640 

hu5 structure by allowing multiple curved reverse faults in trishear forward modelling. 641 

Table 1. A cluster of natural trishear examples in published studies and their corre-642 

sponding best-fit parameters. 643 


