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Translational potential of a mouse in vitro bioassay in

predicting gastrointestinal adverse drug reactions in Phase

I clinical trials

C. KEATING,*,#
L. EWART,† L. GRUNDY,* J.P. VALENTIN†## & D. GRUNDY*

*Department of Biomedical Sciences, University of Sheffield, Sheffield, UK

†Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley Park, Macclesfield, UK

Key Messages

• Gastrointestinal adverse drug reactions (GADRs) such as diarrhea and constipation pose a genuine clinical issue

for drug discovery programs, prompting the need to design simple and reliable biomarkers of gastrointestinal

(GI) function.

• The main findings from this study were that a novel in-vitro bioassay and an established in-vivo charcoal meal

model were poor predictors of GADRs when both models were assessed using a series of 15 compounds

associated with/without clinical GADRs.

• Our observations suggest that improved models are required for safety pharmacology assessments of motility-

related GADRs.

Abstract

Background Motility-related gastrointestinal (GI)

adverse drug reactions (GADRs) such as diarrhea and

constipation are a common and deleterious feature

associated with drug development. Novel biomarkers

of GI function are therefore required to aid decision

making on the GI liability of compounds in develop-

ment. Methods Fifteen compounds associated with or

without clinical GADRs were used to assess the ability

of an in vitro colonic motility bioassay to predict

motility-related GADRs. Compounds were examined

in a blinded fashion for their effects on mouse colonic

peristaltic motor complexes in vitro. For each

compound concentration-response relationships were

determined and the results compared to clinical data.

Compounds were also assessed using GI transit mea-

surements obtained using an in vivo rat charcoal meal

model. Key ResultsWithin a clinically relevant dosing

range, the in vitro assay identified five true and three

false positives, four true and three false negatives,

which gave a predictive capacity of 60%. The in vivo

assay detected four true and four false positives, four

false and three true negatives, giving rise to a predictive

capacity for this model of 47%. Conclusions & Infer-

ences Overall these results imply that both assays are

poor predictors of GADRs. Further analysis would

benefit from a larger compound set, but the data show

a clear need for improved models for use in safety

pharmacology assessment of GI motility.

Keywords adverse drug reaction, bioassay, biomar-

ker, gastrointestinal motility, safety pharmacology.

Abbreviations: ADR, adverse drug reaction; AUC, area

under curve; CNS, central nervous system; CPMCs,

colonic peristaltic motor complexes; FN, false nega-

tive; FP, false positive; GADRs, gastrointestinal

adverse drug reactions; GI, gastrointestinal; IP, intra-

luminal pressure; TIQ, time in quiescence; TN, true

negative; TP, true positive.
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INTRODUCTION

Gastrointestinal adverse drug reactions (GADRs) repre-

sent around 67% of adverse drug reactions (ADRs)

described on drug labels1 and account for 23%of adverse

events encountered in phase I studies.2 Motility-related

GADRs such as diarrhea and constipation are common

side-effect profiles ofmarketed drugs,3–6 and account for

a high proportion of ADRs encountered during the

development of new chemical entities.7 Gastrointesti-

nal adverse drug reactions can be dose limiting precli-

nically and/or clinically, affect patient compliance, or

even lead to compound discontinuation.8 Conse-

quently, GADRs pose a genuine clinical issue and are

contributing to the escalating costs of developing new

drugs.9,10 Accurate and simple biomarkers of gastroin-

testinal (GI) function are therefore required to detect

potential GADRs earlier in the drug discovery pathway

and so maximize the opportunity to ‘design out’ this

undesirable characteristic, or to deselect compounds

from on-going development. Ultimately, this should

deliver new drugs that have improved patient compli-

ance and commercial attractiveness.

Presently, theGI tract is classified as a supplementary

organ system by the International Congress onHarmon-

isation (ICH) section 7A guidelines, the regulatory

requirement that must be fulfilled before testing novel

pharmaceuticals in humans. As a result, pharmaceutical

companies do not routinely assess the effect of new

chemical entities on the GI tract before clinical devel-

opment, and if they do, they are often not considered as

decisionmaking studies. However, the high incidence of

GADRs and their impact upon patient safety and com-

pliance, in addition to payer requirements and commer-

cial attractiveness, is now challenging this approach.

A number of in vivo and in vitromodels are available

to investigate GI function.11–14 In addition, newer

screening approaches have been proposed based on

zebrafish15,16 and more established rodent-based mod-

els.17 Recently, we described a novel in vitro bioassay

for use as a model of motility-related GADRs (diarrhea/

constipation). This bioassay employs segments of

mouse colon which generate robust and stereotypic

patterns of peristaltic motor complex activity when

mounted in an organ bath.18,19 Using a series of

compounds with well-validated GI motility-related

effects, we demonstrated that this model could poten-

tially aid GI safety pharmacology assessment. How-

ever, before routine use in a safety pharmacology

screening cascade, we wanted to investigate its utility

as an early hazard warning tool.

Therefore, the aim of this investigation was twofold:

(a) to determine the concordance, at clinically relevant

concentrations, between the in vitromouse bioassay and

phase I clinical outcome of compounds where the

molecular target was not necessarily associated with GI

motility and (b) to investigatewhether the invitromouse

bioassay performed any differently to the charcoal meal

test, the current method of choice for determining the

effects of compounds on GI transit in vivo in rodents.20

METHODS

Clinical studies

Fifteen compounds were used in this study, of which 13 were
proprietary AstraZeneca compounds, while the remaining two
were in clinical use (Table 1). Clinical data were gathered on these
compounds including GI symptoms, incidence, and plasma
exposure (Table 1).

Ethical approval for the assay development

All experimental procedures were conducted with local ethical
committee approval and in accordance with the UK Animals
(Scientific Procedures) Act, 1986 (National Archives, UK
Animals, Scientific Procedures Act, 1986) under the authority of
valid Home Office project licences.

In vitro colonic motility bioassay: experimental
protocol

These experiments were performed at the University of Sheffield.
Ninety-nine adult male mice (C57Bl/6J, bred in-house at the
University of Sheffield, Sheffield, UK), 6–8 weeks old and weigh-
ing ~24 g were used. Animals were housed under controlled

Table 1 Clinical data including type of GADRs, % of subjects affected,

and exposure range

Drug

Clinical

finding

% subjects

affected

Minimum and

maximum free

exposure range (lM)

B None 0 0.0024–0.6597
C Constipation 17 0.0010–0.0029
D None 0 0.0050–0.0352
E None 0 0.0060–2.6331
F Diarrhea 67 0.00007–0.6051
G* Diarrhea 53 6–12
H Diarrhea 17 0.0006–0.0710
I* Loose stools 25 0.7–18.9
J None 0 0.000008–0.0008
M Diarrhea 17 0.0017–0.0506
N* None 0 0.00014–0.0373
R None 0 0.000009–0.0837
S Nausea 13 0.000125––0.001
T Diarrhea 67 0.00935–0.1837
Z Loose watery

stools

100 0.00027–2

*Total plasma exposure. % affected is at the highest dose level. Free

exposure range refers to the mean exposure at the lowest and highest

dose tested clinically.

© 2014 The Authors.
Neurogastroenterology & Motility published by John Wiley & Sons Ltd.
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ambient temperature (21 � 2 °C) and light–dark cycle (12 : 12 h)
and were allowed free access to food and water.

The methodology has been described in detail previously.19

Briefly, animals were euthanized by cervical dislocation.
A midline laparotomy was immediately performed and the
exposed abdomen bathed in Krebs solution (in mM: 119 NaCl,
4.7 KCl, 1 NaH2PO4, 1.2 MgSO4, 25 NaHCO3, 2.5 CaCl2, 11
glucose) gassed with carbogen (95% O2, 5% CO2). The entire
colon was removed and immediately placed into a beaker of Krebs
solution. Using a syringe, the lumen was then cleared off any
contents by gentle flushing with Krebs solution. An adapted
standard organ bath procedure was used. Segments of colon (6 cm
length) were placed into the organ bath (20 mL volume) perfused
continuously (10 mL/min) with 37 °C Krebs solution, gassed with
carbogen, and equilibrated to pH 7.4. The oral and aboral ends of
the colon segment were securely attached to an input and output
port of the organ bath, respectively (Fig. 1A). The input port was
connected to a reservoir and syringe setup which allowed the
controlled perfusion of Krebs solution through the lumen of the
colonic segment, while the output port was attached in series to a
pressure transducer (BD DTXPlusTM, Oxford, UK). Motor activity
was initiated in the colon segments by an infusion of Krebs from
the syringe into the lumen of the colon until an intraluminal
pressure (IP) of ~5 mmHg had been reached. Under these condi-
tions, regular aborally propagating waves of contraction developed
spontaneously and persisted over time. These contractile waves
were recorded as changes in IP (Fig. 1B) and were termed colonic
peristaltic motor complexes (CPMCs), similar to the normal
peristaltic activity of the colon. After an equilibration period of
60 min, CPMC activity had reached a consistent pattern, in terms
of their amplitude and frequency, and experimental procedures
were then started. A very small number of tissues (~2% or less)
failed to show robust CPMC-like activity and these were
discarded from use before any experimental procedures took place.

In vitro bioassay: experimental procedure

Test compounds were bath applied using a cumulative concen-
tration-response protocol consisting of four successive 15-min
perfusion periods, starting with the vehicle and three incremental

concentrations of a drug, followed by a washout period to assess
the reversibility of effects. Compounds were tested at 0.3, 3, and
30 lM and their effects upon CPMC parameters were noted. If a
compound gave rise to significant excitatory or inhibitory effects
at the lowest concentration tested (0.3 lM), the concentration
range was reduced and experiments repeated using a cumulative
dosing procedure at the lower concentration range. This strategy
was repeated until a cumulative concentration-response effect for
each drug had been obtained. The concentration-range details for
these experiments are provided in Table 2 and Table S1. A series
of time-matched controls were also performed using serial
dilutions of DMSO in Krebs solution and the details of these are
also included in Table S1.

CPMC activity quantification

Colonic peristaltic motor complex activity was quantified using a
set of five parameters calculated for each 15-min experimental
phase of the cumulative concentration experiments. These were
as follows: CPMC frequency (number of CPMCs/15 min), the
average time interval between successive CPMCs (TI, s), the time
in quiescence (TIQ, s), which is a measurement of the total time
that the tissue is at baseline activity during the 15-min period of
drug or vehicle perfusion, the average CPMC amplitude (mmHg),
and the area under curve (AUC, mmHg/s) (Fig. 1B). The AUC and
amplitude reflected the mechanical activity of the tissue, whereas
the TIQ reflected the overall time with motor activity.

Data analysis

Changes in IP generated by CPMC activity were amplified
(Digitimer, NL108, Welwyn Garden City, UK) and subsequently
acquired to a computer through a CED 1401 interface and Spike2
software (Cambridge Electronic Design, Cambridge, UK). Intralu-
minal pressure was sampled at 100 Hz. Analysis was carried out
off-line using the software applications contained in the Spike2
software package. AUC was calculated using an in-built script in
the Spike2 software. Raw data are expressed as means � SEM and
compared by one-way ANOVA for repeated measures followed by
Dunnett’s test as appropriate. p < 0.05 was taken as significant.

100 s

20
mmHg

a
b

c1 c2 c3 c4 c5

c6

Krebs reservoir
Pressure
Transducer

Gassed Krebs 
Solution (37OC)Outflow from organ 

Bath to waste

Input port
Output portKrebs solution

colon

Oral Aboral

Carbogen input 

A

B

Figure 1 Representative trace of basal

murine colonic peristaltic motor complexes

(CPMCs). (A) Schematic diagram of the

in vitro organ bath experimental apparatus.

(B) The parameters used to evaluate changes

in motility are illustrated; a, interval

between successive CPMCs; b, amplitude of

individual CPMC; c1+c2+etc., time in

quiescence (TIQ). The AUC represents the

total area under the curve for the 15-min

analysis period, while the frequency

represents the number of CPMC measured

during this time period.

© 2014 The Authors.
Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

982

C. Keating et al. Neurogastroenterology and Motility



Data for TIQ and amplitude are also expressed as percentage
changes relative to their corresponding vehicles (relative changes),
and were compared to relative changes in TIQ and amplitude
calculated from time-matched vehicle control experiments. Com-
pounds which elicited relative changes in either CPMC amplitude
or TIQ that were >2 SD from the mean time-matched control
values were taken as positive responding compounds. Relative
changes above 2 SD were used as a decision criterion due to the
small range of TIQ and amplitude values observed in the
time-matched controls and compound experiments.

Drugs

All compounds were obtained from AstraZeneca in coded vials
and were tested in a blinded fashion (the number of experiments
conducted is indicated in parentheses in Tables 2 and 3). Stock
solutions of 1 or 10 mM were prepared by adding an appropriate
volume of either H2O or DMSO and were diluted to test
concentrations in Krebs solution. The maximum concentration
of DMSO used was 0.1%. Drugs were applied to the serosal
surface and while the bath concentrations of each compound were
not measured during the experiments, they were assumed to reach
a steady-state concentration equal to that of the perfusate.

Charcoal meal in vivo test: experimental protocol

These studies were performed at AstraZeneca R&DAlderley Park,
UK. Male Han Wistar rats weighing between 230 and 270 g
(AstraZeneca Breeding Unit, Alderley Park, UK or Harlan
Laboratories UK Ltd, Bicester, Oxon, UK) were housed in groups
of 4 with free access to food and water. Animals were housed
under ambient temperature (19–23 °C), relative humidity (40–
70%), and a 12-h light/dark cycle. At the start of the 6-h fasting
period, animals were placed in cages with a grid floor. The
measurements of GI function were performed in the afternoon
(~14:00 h) and the time of food removal was altered to fit the
designated fasting period accordingly.

Charcoal meal in vivo test: drugs and
experimental procedure

The methodology for the in vivo testing has been described
previously.17 All compounds were administered orally (dose
levels are indicated in Table S2). At the approximate Tmax of
each individual compound, animals were administered a charcoal
meal (activated charcoal; Sigma, Poole, Dorset, UK) formulated as
a suspension in 2% w/v carboxymethylcellulose (10 : 90). Fifteen
to 20 min later, they were killed by an overdose with halothane
followed by exsanguination. Following midline laparotomy, the
esophagogastric (cardia), gastroduodenal (pyloric sphincter), and
ileo-cecal junctions were ligated, and the stomach and small
intestine carefully removed from the esophagogastric to the ileo-
cecal junction. Each stomach, including contents, was weighed
and then cut open and rinsed with physiological saline. Excess
moisture was removed by gentle sponging with laboratory tissue
and the empty stomach weighed. Index of gastric emptying
(g) = full stomach weight (g) � empty stomach weight (g). The
entire small intestine was gently stretched out and the total
length measured. The distance traveled by the charcoal meal
from the pyloric sphincter to the ileo-cecal junction was
measured.

Intestinal transit quantification and data analysis

Intestinal transit was defined as the position of the leading edge of
the charcoal expressed as a percentage of the total length of the
small intestine, calculated as follows: Intestinal transit distance
(%) = [distance traveled by charcoal (cm)/length of small intestine
(cm)] 9 100.

The results from the charcoal meal were expressed as medians.
A non-parametric test (Wilcoxon Mann–Whitney test) was used to
compare the compound-treated groups with the vehicle-treated
group, as the distribution of the data was unknown. p < 0.05 was
taken as significant. Where possible, free plasma concentrations
were calculated, but for three compounds (G, I, and N), the plasma

Table 2 Summary data for test compounds examined in the in vitro

assay with comparison to clinical data

Drug

Drug

concentration

tested in

assay (lM)

Clinical

finding

Predictive

outcome

maximum

dose

Predictive

outcome

therapeutic

dose

B (N = 8) 0.3–30 NE FP FP

C (N = 6) 0.003–0.3 C TP TP

D (N = 6) 0.3–30 NE FP TN

E (N = 6) 0.3–30 NE FP FP

F (N = 6) 0.3–30 D TP TP

G (N = 7) 0.3–30 D FN FN

H (N = 7) 0.3–30 D TP TP

I (N = 7) 0.3–30 D FN FN

J (N = 6) 0.03–3 NE FP FP

M (N = 6) 0.3–30 D TP FN

N (N = 6) 0.3–30 NE FP TN

R (N = 6) 0.3–30 NE TN TN

S (N = 4) 0.3–30 NE FP* TN*

T (N = 6) 0.3–30 D TP TP

Z (N = 6) 0.3–30 D TP TP

*Minimum testing concentration was 9300-fold plasma exposure. C,

constipation; D, diarrhea; TN, true negative; TP, true positive; FP, false

positive; FN, false negative; NC, no change; NE, no effect.

Table 3 Summary data for test compounds examined in the charcoal

meal assay with comparison to clinical data

Drug

Drug

concentration

measured in

model (lM)

Charcoal

meal

effect*
Clinical

finding

Predictive

outcome

B (N = 10) 0.08–22 Decrease NE FP

C (N = 8) 0.06–0.58 NC C FN

D (N = 8) 0.196 NC NE TN

E (N = 8) 0.28–5.38 Decrease NE FP

F (N = 8) 0.072–0.183 Decrease D TP

G (N = 8) 1.67–468 Decrease D TP

H (N = 8) 0–0.0014 Decrease D TP

I (N = 8) 11.3–189 Decrease D TP

J (N = 8) 0.012–0.034 Decrease NE FP

M (N = 8) 69 Decrease† D FN

N (N = 8) 0.44 NC NE TN

R (N = 8) 0.06–10 NC NE TN

S (N = 8) 0–0.0000273 Increase NE FP

T (N = 10) 15–344 NC D FN

Z (N = 10) 0–23 NC D FN

*Data refer to the assay effects recorded at testing concentrations of

<50-fold the equivalent plasma exposure. †Only one dose tested at an

exposure of 69 lM (>1000-fold the equivalent plasma exposure).

Abbreviations are the same as for Table 2.

© 2014 The Authors.
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protein binding was not known (but thought to be negligible) and
therefore, the plasma exposure data are shown as a total value.

Assay quantification

The compounds tested in the two assays were assigned to the
following categories by comparing their experimental effects to
their clinical effects. To avoid any potential bias, the clinical
effects of these compounds were withheld from the investigators
until after the CPMC and intestinal transit quantification stages
were completed. The categories were as follows: true positives
(TP) were compounds which caused GADRs and elicited relative
changes to either CPMC amplitude or TIQ that were >2 SD from
their mean control values, or caused significant changes to
intestinal transit. False negatives (FN) were compounds which
caused GADRs and elicited relative changes in amplitude or TIQ
that were within 2 SD of their mean control values, or had no
significant effect on intestinal transit. True negative (TN)
compounds did not cause GADRs or elicit changes in either
relative CPMC activity or intestinal transit activity that indicated
positive compound effects. False positives (FP) are compounds
which possessed no clinically detected GADR activity, but
elicited changes in relative CPMC activity or intestinal transit
that were indicative of positive compound effects.

The predictive capacity (defined as the proportion of correctly
identified results) was calculated as follows: Predictive capac-
ity = (TP+TN)/total number of compounds tested.21,22

RESULTS

Clinical effects of the compounds

Clinical data were gathered on 15 compounds, includ-

ing 13 proprietary AstraZeneca compounds, and two

compounds currently used in clinical settings. Eight of

the compounds caused diarrhea or constipation affect-

ing between 17% and 100% of the patients, while

seven had no reported GADRs such as diarrhea or

constipation although one, rimonabant (Compound S),

was reported to cause nausea (Table 1).

CPMC activity

Baseline data on CPMC activity (collected over a 15-

min period from a total of 99 experiments) are

summarized as follows: frequency (the number of

CPMCs/900 s), 5.6 � 0.15; TI (the time between indi-

vidual CPMCs), 161.4 � 4 s; TIQ, 661 � 6 s;

amplitude (CPMC amplitude), 49 � 1.5 mmHg; AUC

(total activity during 900-s period, AUC),

6410 � 307 mmHg/s.

Compound effects upon CPMC activity

The 15 compounds were tested in a blinded fashion

for their effects upon CPMC activity. Two com-

pounds (C and J) elicited effects at the lowest dose

tested and were retested using a lower dosing strategy.

The remaining compounds were tested using the

standard dosing regimen. The raw data from these

experiments are summarized in Table S1 and an

illustrative example is shown in Fig. 2. The actions

of the test compounds upon CPMC amplitude and

TIQ were also plotted as percentage changes relative

to the vehicle response (relative change) and were

compared to appropriate time-matched controls

(Fig. 3).

Effect of drugs on relative changes in CPMC
parameters

At thehighest drug dose tested, nine compounds elicited

relative amplitude changes greater than �2 SD of the

mean amplitude change for time-matched controls

(Fig. 3A). A further three compounds elicited relative

amplitude changes greater than �1 SD of the mean

control amplitude change, while three compounds had

effects indistinguishable from control amplitude values

(Fig. 3A). A similar analysis of the TIQ data showed that

10 compounds gave rise to relative changes in TIQ > �2

SD of the mean TIQ change for time-matched controls

(Fig. 3B). Two compounds elicited effects that were

greater than �1 SD of the mean control amplitude

change, while three compounds had effects that were

indistinguishable from controls (Fig. 3B).

Effects of test compounds on relative changes at
therapeutic concentrations

Relative changes in TIQ and amplitude were also

assessed within clinically relevant concentrations

(defined as concentrations within 50-fold of the max-

imum plasma exposure recorded in the clinical trials).

When relative amplitude and TIQ changes were

assessed at the highest clinically relevant dose tested,

three compounds (B, F, and T) elicited relative ampli-

tude changes and seven compounds (B, C, E, F, H, J, and

Z) elicited relative TIQ changes that were greater than

�2 SD from their mean time-matched control changes.

Several of the remaining compounds (D, M, and S)

elicited relative changes in one of the parameters that

was greater than �1 SD amplitude of the mean time-

matched control data, while compounds G, I, N, and R

gave rise to responses that were indistinguishable from

time match control data.

CPMC assay translation

The compounds’ effects on relative changes to either

amplitude or TIQ were compared to their clinical

© 2014 The Authors.
Neurogastroenterology & Motility published by John Wiley & Sons Ltd.
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actions and the predictive capacity of the assay calcu-

lated. The assay was found to have a predictive

capacity of 47% at the maximum drug concentration

tested and where the effect of drug exceeded 2 SD of the

control. This reflected the identification of 6 TPs, 2

FNs, 1 TN, and 6 FPs (Table 2). However, at the

clinically relevant concentrations, the assay identified

5 TPs, 3 FNs, 4 TNs, and 3 FPs, which gave a predictive

capacity of 60% (Table 2). A contingency analysis of

these results revealed no significant differences

between the two data sets (p > 0.05).

Effects of compounds on the in vivo charcoal
meal model

Based on an internal AstraZeneca database, the base-

line median small intestinal transit time of rats

(n = 287) fasted for 6 h, and treated with a vehicle,

prior to a charcoal meal was 53.3 � 12.2%.23 Of the 15

compounds tested in the in vivo charcoal meal study,

eight compounds (B, E, F, G, H, I, J, and S) caused

significant changes in intestinal transit at clinically

relevant concentrations (defined as concentrations

within 50-fold of the maximum plasma exposure

recorded in the clinical trials) and these data are

recorded in Table 3 and Table S2. Only compound S

stimulated intestinal transit, while the remaining

A

B

Figure 3 (A) Colonic peristaltic motor complex (CPMC) amplitude for

test compounds plotted as relative changes in amplitude at their

maximum dose compared to vehicle. Compounds are plotted alongside

appropriate time-matched vehicle control data (N = 4). (B) Similar

analysis for time in quiescence (TIQ) in which relative TIQ values for

the test compounds are plotted alongside appropriate time-matched

control data. Red bars indicate compounds associated with GADRs.

Green bars represent compounds with no GADRs reported. Black

dashed line represents 2 SD difference from the mean value. Blue

dashed line represents 1 SD difference from the mean control value.

Vehicle 0.3 μM 3 μM 30 μM

10
mmHg

400 s

A

B

E F

C D

Figure 2 Effects of Compound H upon

colonic peristaltic motor complex (CPMC)

activity. (A) Representative recording

showing the effects of cumulative additions

of Compound H upon CPMC activity.

Downward arrow represents start of

washout period. CPMC activity is decreased

in a concentration-dependent fashion. (B–F)
Illustrate the concentration-dependent

effects of Compound H (n = 7) on the

frequency (B); the time between consecutive

CPMCs (C); time in quiescence (TIQ; D); the

amplitude of CPMCs (E); and the AUC

(F). Data are expressed as mean � SEM;

*p < 0.05; **p < 0.01 vs control by repeated

measures one-way ANOVA.

© 2014 The Authors.
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compounds were associated with inhibition (Table 3

and Table S2). Five compounds (D, N, R, T, and Z) had

no effect upon intestinal transit, while two compounds

(C and M) inhibited intestinal transit, but at doses >50-
fold the maximum plasma exposure (Table 3 and

Table S2). Several of these compounds were examined

for their effects upon gastric emptying and we found

that all the compounds tested in this group altered

gastric emptying (Table S2).

Charcoal meal assay translation

An analysis was performed for the charcoal meal test in

which 4 TPs (Compounds F, G, H, and I), 4 FNs

(Compounds C, M, T, and Z), 3 TNs (Compounds D, N,

and R), and 4 FPs (Compounds B, E, J, and S) were

identified, giving rise to a predictive capacity for this

model of 47% (Fig. 3, Table 3).

DISCUSSION

This study set out to determine the translational

potential of a mouse in vitro bioassay and evaluate

its potential as an early screen to detect GI liability in

novel compounds. We focused on analyzing relative

changes in either amplitude or TIQ to assess the

predictive capacity of the model during the course of

this study. Measuring amplitude gave an indication of

the effects of the compounds upon CPMC contractil-

ity, while TIQ assessed the pattern of CPMC activity.

We focused upon using TIQ as a metric as our previous

study showed that TIQ was a robust and stable marker

of CPMC frequency.19 In our initial screen in which

absolute changes in CPMC activity were determined,

it was revealed that all the compounds significantly

affected amplitude at the highest drug dose tested.

However, we were mindful of over interpreting these

data as time-matched control experiments also

revealed a small but significant time-dependent change

in amplitude. This led to concerns that these time-

dependent amplitude changes were confounding the

drug-induced effects on this parameter, and so by

plotting relative changes in CPMC amplitude and

comparing these to equivalent time-matched controls,

we were able to control for these confounding factors.

Initially, the predictivity of the assay was deter-

mined using relative changes observed at the highest

dose tested. This may seem counter intuitive as we

knew the plasma exposures measured in the phase I

studies, but this assay was designed as an early safety

screen in which the therapeutic exposures of test

compounds would not be known. Consequently, we

wished to observe whether the assay would be effective

at the upper limit of testing conditions. Under these

conditions, the assay was found to have a predictive

capacity of 47%, while at clinically relevant exposures,

the predictive capacity was 60%. The difference

between these two assessments reflected an increased

number of FPs detected at the high testing concentra-

tions, although no significance was found between the

two methods of analysis.

Overall the predictive capacity of the assay was

considered ‘insufficient’ according to the European

Centre for the Validation of Alternative Methods

criteria for validating in vitro toxicology screening

methods21 and most likely reflect the fact that the low

sensitivity and specificity of the assay (the relatively

high proportion of FNs and FPs detected) impacted

negatively upon its validity as an early screening

model.

In vitro assays have several advantages for screening

such as relatively low costs and a capacity for medium

to high throughput testing. However, their predictive

capacity may be limited by their incomplete physiolog-

ical nature. For example, the isolated colon lacks central

nervous system neuronal influences, in addition to

systemic hormonal or metabolic influences and as such

the in vitro assaymeasures direct actions of compounds

upon colonic motility. Therefore, compounds which

cause changes in motility through centrally mediated

pathways would have no effect in this model. This is

illustrated in the results of Compound Gwhich was the

drug metformin and was one of only two of the

compounds whose identity was revealed in this study.

Metformin is a hypoglycemic agent used to treat type 2

diabetes.24,25 Its clinical use is associated with dose

dependentGI disturbances including diarrhea,26 and the

mechanisms contributing to this GI dysfunction are

thought to involve metabolic and centrally mediated

effects.27

We found that metformin had no significant effect

upon CPMC activity, but caused diarrhea in 53% of the

subjects tested. Consequently, Compound G was

incorrectly identified as a FN. These findings highlight

an important limitation inherent in all in vitro assays

in that compounds which produce their effects via

centrally mediated mechanisms would have no effect

in these in vitro models, but they could be detected

using appropriate in vivo techniques. Interestingly,

when this same compound was tested in the charcoal

meal model, the correct phenotype was identified

demonstrating a need to employ complementary

screening strategies throughout the drug discovery

process.

Despite these limitations, we did find that the in

vitro assay detected ‘high-incidence’ compounds better
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than ‘low incidence’ compounds. Four of the eight

compounds associated with causing GADRs affected a

high percentage of the patients (>50% affected), while

the remaining compounds were associated with lower

incidences (<25% of the cohort affected). The assay

correctly identified three of these ‘high-incidence’

compounds, while in the ‘low incidence’ category,

only two compounds were correctly identified. It is

likely that other factors contribute toward these low

incidences of GADRs including stress, diet, or

environmental factors and these cannot be modeled

in vitro. Two of the compounds associated with high

incidence of GADRs (Compounds T and Z) were

withdrawn from development due to their side effects

and both these compounds were flagged by the assay as

having potential GI liabilities. Therefore, despite the

limitations associated with this assay, it appears that

this model does have the capacity to act as a hazard flag

in certain situations, and as such could form a useful

addition to a battery of GI-orientated safety screens.

This study showed that only Compound Z increased

CPMC activity, in accordance with its diarrheal phe-

notype, while for the remaining compounds, CPMC

activity was decreased, even if diarrhea was the clinical

response to exposure of these drugs. While we would

have expected compounds causing diarrhea to be

associated with increased CPMC activity, so to drive

increased propulsion, contractions can both propel and

impede flow. As such, we sought only to determine if a

quantifiable change in CPMC activity could be

detected, and the extent to which this was correlated

with GADRs irrespective of whether this was consti-

pation or diarrhea.

The concentration relationship between the clinical

settings and the assay is important in determining

safety margins. We used a 50-fold margin between the

minimum assay drug concentration required to elicit

significant responses and the maximum plasma con-

centration achieved in patients as a therapeutic win-

dow to ensure relevant safety margins and also limit

the risk of obtaining FPs. This range corresponds to

limits set in other, notably cardiovascular, safety

models that suggest a 30-fold margin between the

highest free plasma concentration of a drug and safety

assay responses were adequate for this purpose.1,23,28

Interestingly, Compound I was tested at a maximum

concentration that was only twofold greater than the

maximum therapeutic dose used, and it is conceivable

that this dose was too low to cause any significant

effects upon CPMC activity which may explain the FN

phenotype associated with this compound.

Seven of the compounds tested in this study had no

GADRs associated with them, and using our therapeu-

tic dosing limits the assay correctly identified four of

these compounds as TNs. It is important to note that

while these compounds did alter CPMC activity, these

effects were seen at dosing margins of above 100-fold,

and in some cases greater than 1000-fold. However,

three compounds (B, E, and J) elicited effects upon

CPMC activity at clinically relevant doses and were

designated as FPs. False positives are a major issue for a

safety screen as it can lead to the discontinuation of

safe compounds which could potentially be life-saving

medicines. Both models identified compounds B, E,

and J as FPs suggesting that physiological pathways

present in rodents, but absent in humans contribute to

this difference. In the absence of any pharmacological

knowledge of these compounds, we cannot speculate

on why these results occurred, but they reflect the

importance of designing safety screening systems to

counteract possible species-related differences in the

drug target biology.

The results from this study suggested that the in

vitro assay lacks the overall predictivity to be utilized

as a screening model. We were also able to test the

clinical compounds using the charcoal meal test,11 the

current gold standard in safety assessment testing, and

surprisingly we found that this assay was also a poor

predictor of GADRs in the clinic. Direct comparisons

of the two models were avoided as they were performed

in different species, but the charcoal meal test likely

possesses some inherent experimental advantages over

an in vitro technique such as being capable of detecting

compounds acting via central processes. However, the

in vitro assay also offers some experimental benefits.

For example, the in vitro assay allows a more thorough

physiological assessment of drug-induced changes in

motility (amplitude vs pattern of activity as opposed to

overall transit) than the in vivo method, and this could

provide valuable information to the mechanisms

through which compounds are affecting motility. This

was clearly demonstrated in our previous study in

which compounds could be discriminated by the in

vitro model as myogenic or neurogenic activators.19

Conclusion

Fifteen marketed drugs or drugs intended for market,

which are associated with or without GADRs, were

tested in a blinded manner in an in vitro bioassay

which we proposed as a biomarker for predicting the

GADR liability of new chemical entities. The in vitro

assay performed similarly to an in vivo model in

detecting compounds associated with GADRs in phase

1 trials, and while the in vitro assay shows some

promise in detecting high risk compounds, currently
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both techniques are unacceptable in terms of their

overall accuracy as stand-alone bioassays to detect

GADRs. Consequently, more efforts are needed to

develop suitable assays, or possibly a combination of

assays, to detect the GI motility liability of novel

compounds in development.
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