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A Neural Network Based Collision Detection Engine for Multi-arm Robotic

Systems
A.S.Ranaand A. M. S Zalzala

Department of Automatic Control & Systems Lnginecring, University of Sheffield, Sheffield S1 3JD, UK.

SUMMARY

A neural network is proposed for collision detection among
multiple robotic arms sharing a common workspace, The
structure of the neural network is a hybrid between Guassian
Radial Basis Function (RBF) neural networks and Multi-layer
perceptron  back-propagation (BP) neura] networks. This
network is used to generate potential fields in the
configuration space of the robotic arms. A path planning
algorithm based on heuristics is presented. It is shown that
this algorithm works better than the conventional potential
field methods which carry out the planning in the operational
space of the robots. To show the effectiveness of the
algorithm, simulation results are presented for a single 2-DOF
roboic arm in presence of a static obstacle, and then for two
planar manipulator sharing a common workspace, The
algorithm is then extended o the case of two 3-DOF arms
moving in 3-D space.

KEYWORDS: Multi-arm robots, Neural Network, Collision
Free Motion planning,

1. INTRODUCTION

The problem of motion planning of robotic manipulators is
different from that of mobile robots, in which the motion fora
single rigid body has to be planned. Robotic manipulators
form open chains of connected links. The motion planning of
these links consists of motion planning of multiple rigid
bodies constrained by arm kinematics. The use of multi-arm
robotic systems can enhance the working capacity and
utilization of the robots, bul their motion planning becomes
€ven more complex, since one arm may act as a moving
obstacle in the path of another arm.

The potential field approach' is perhaps the simplest
approach to motion planning of robots in a dynamically
changing environment. It constructs an artificial force field
‘under which the robot has to move so that it is repelled by the
obstacles while being attracted towards the goal position. This
force field is termed as the potential field. Timing analysis of
the path planning algorithms in the operational space of the
robotic manipulators using potential field approach indicates*
that the generation of potential field forms a bottle-neck in the
algorithm. It is indicated that more than 80% of time is used
in calculating the potential field and in performing the
associated calculations. An alternative to this could be
planning the path of the manipulator in configuration space.

“unpublished work

Duffy and Slawek? presented a hardware based collision
detection engine for multi-arm robolic system. Lee and Park®
proposed a connectionist approach to the path planning
problem of robots by proposing a multi-layer perceptron
neural network for collision detection, and Meng and Picton?
extended this work by using back-propagation learning
technique to teach the neural network the location of the
obstacles. Tseng and Wuys Proposed neural networks for
collision detection of multi-arm robots. But they used the
neural networks to solve the forward kinematic model of the
robots, and the collision itself was determined seperately.
Moreover, they stopped short of proposing an actual
algorithm for the path planning of the robots.

Motion planning of robotic Mmanipulators in configuration
space has the advantage that the problem is reduced to that of
planning the path of a point object’, and hence complexities
arising from considering the motion of an articulated chain of
links are taken into account. The mapping of obstacles in the
path of the manipulators into conliguration space is quite
lime-consuming. In operational space, the obstacles can be
approximated by convenient geometric shapes, such as lines
and rectangles, and an analytical function found due to
potential field generated by charges distributed over these
geometric  shapes. Bul in casc of path planning  in
configuration space, formulation of an analytical function to
express the potential field ig quite difficult, since the obstacles
do not form regular shapes. Numerica] methods have been
suggested' for the construction of potential fields in
confliguration space, and hill climbing techniques have been
used to find a collision free path for the robot by following the
gradient of these potential fields. Nonetheless, these methods
deal with path planning in presence of stalic obstacles only,
where the field has to be calculated only once. They are not
applicable to moving obstacles, in which the field would
change with the motion of the obstacles. Tn case of
dynamically changing environment, these methods become
computationally quiie intensive, since the numerical potential
field would have to be calculated repeatedly to take into
account the changes in potential field due to the movement of
the obstacles. ‘

The main emphasis of this paper is the research done
lowards the development of a nerual-network based collision
detection engine for multi-arm robots. An associaled motion
planning algorithm based on heuristics is also presented.

This paper is organised as follows. Section 2 specifies the
problem for 2-DOF planar robots. Section 3 gives a brief
overview of two neural network paradigms. Section 4 briefly
discusses the generation of obstacles in configuration space,
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Figure 1. A 2-DOF planar robotic Mmanipulator with base at
(3,0) and each link of length 2 units. The circular obstacle is
located at (3.2.5).

y

Figure 2. Two robotic manipulators sharing a common
workspace.

Section 5 gives the application of neural networks to the
gencration of potential fields for the collision free motion
planning of the robots. Section 6 gives an associated heuristic
based path planning algorithm for 2-DOF planar robotic
manipulators. Section 7 discusses an extension of this
algorithm to the case of two 3-DOF manipulators moving in
three dimensional workspace. Finally, section § discusses the
conclusions.

2. PROBLEM SPECIFICATION

A 2-DOF planar arm js considered first with a stationary
circular obstacle in its operational space, as shown in Figure
1. The upper link on the roboic arm collides with the obstacle
only. The collision is determined first by approximating the
link with touching circles, and then by determining the
- distance between the centres of each circle and the centre of
the static obstacle. If this distance is less than the sum of the
radii of the two circles, collision is assumed to occur.,

For two robotic arms sharing a common workspace as
shown in Figure 2, the links on both the arms are
approximated by touching circles in the same way and
collision between them is detemined by considering the
distance between the centres of the circles.

3. NEURAL NETWORKS

Neural networks are massively parallel systems in which
processing clements are linked together by connecting
weights. Two frequently used paradigms in neural networks

are multi-layered perceptron (MLP) back-propagalion (BP)
networks and Guassian Radial Basis Function (RBF)
networks,

3.1 Multi-layer perceptron BP (Back Propagation)
Networks

These networks have one or more hidden layers of neurons in
addition to input and oulput layers, They demonstrate very
powerful capabilities to learp non-linear mappings. These
networks are called back-propagation networks because
during the training (or learning) phase of the network, the
weights are adjusted by Propagating error at (he oulput of the
network backwards through the hidden layers towards (he
input layer.

Learning consists of feedforward ang back-propagation
phases. During the feedforward calculations, the oulput of
each neuron in layer j recieving inputs from outputs of
neurons in layer / in the network is calculated as:

net-inputjzij:Zwﬁoi+9j (1)
¥

1

ou[pu[j=oj=f(ij)=ﬁ‘). 2)
I+exp —i;

The error at the output is calculated by comparing it to the
desired output as:

6j=f’(ij)(dj'_0j); 3)
where d; is the desired oulput, and the error in the
subsequent layers is calculated as:

8, =r (i)Y w,s, )

In case above mentioned sigmoidal activation function 7
is used, then:

f’(jj):f(ij)(]_f(ij))=Oj(l_—oj) (5)

If for the output nheuron, a linear activation function is
used. i.e.

o=j (6)

Inpud Hidden Hidden Output

layer layer #1 layer #2 layer

Figure 3, Back propagation Multi-layered Perceptrons
Neural Network



Figure 4. Radial Basis Function Neural Network
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Figure 5. Block Diagram of Context Sensitive Network

then

F=l (7

The weights are updated as:

wﬂ(nc—:w)z\Afj,.(old)ﬂ!-1](3}.0j (8)

, where 1 is a constant called the learning rate of the
network,

Once the network has learned through all possible values

on inputs and outputs of the mapping, the network calculates
the output simply by feedforward calculations.

3.2 Guassian RBF (Radial Basis Function) Networks
Gaussian Radial Basis Function Networks are a powerful
method for learning complex input/output mappings. These
networks are not very good at learning high frequency parts
in the mapping, but provide a very good approximation of the
mapping.

Radial Basis Function Networks are locally tuned ncurons
to learn a mapping. They have a single layer of hidden units
which do not just evaluate the weighted sum of inputs but
encode the inputs by computing how close they are to the
centres of receptive fields. Each hidden unit has an activation
function of the form: '

sllz-z) ©)

Output layer is linear, so:

F= Zw,.g(”,?-a,.”) (10)
£(.) is a guassian activation function given by:
1
~1+exp(—y) &4
where
y=[5-3 1)

The weights can be learned by using Hebb's activation
rule, i.e. the change in the wei ght associated with a neuron is
proportional to the error at the output and the activation of the
neuron,

3.3 Context Sensitive Networks

Sometimes it is difficult to train large networks. An approach
has been suggested® in which the input to the network is
divided into two groups. One group of variables determines
the basic mathematical function/mapping while the other
group determines context/setling in which the function is
determined. The output of context network determines the
weights of function network.

4. GENERATION OF CONFIGURATION SPACE
OBSTACLES

Several methods are available for the computation of the
configuration space obstacles®. The simplest of these is the
point evalvation method, in which the robot is placed in all
possible configurations and it is determined whether it
collides with the obstacles in those configurations or not. If it
does, then that configuration belongs to the C-space obstacle,
otherwise it constitutes free space. Hence a function JScan be
formed such that

If the robot collides
=) 1 with the obstacle in operational
7= space in that configuration
0 otherwise

(13)

5. NEURAL NETWORKS FOR C-SPACE OBSTACLES
Computation of artificial potential field intensity due to
obstacles forms a bottleneck in computation time in the path
planning algorithm. Since neural networks distribute the
computation on parallel precessing elements (neurons),
mapping of potential fields on neural networks would
decrease the overall computational time of the algorithm. The
function expressed in (13) can be taught to a neural network
lo obtain a potential field for the robot in configuration space.
Since the neural network has an inherent property of
interpolating in between the values of inputs that it is taught,
the output of the NN will vary continously in between 1 and 0
giving a continuous potential field for the robot in
configuration space. The application of NN parallelizes the
computation of the field at the same time, The only drawback
is that the output will only give the intensity of the potential
field, and does not provide any information about the gradient
of the field which the robot could follow in order to avoid
collision with the obstacle.



180 T T

160} 4

140+

120

c-space obslacle
100

&
80
60

a0k

20F

0 . s . . . . s
0 50 100 150 200 250 300 350
%

Figure 6. Circular obstacle in the operational space of the 2-
DOF robot mapped into the c-space.

5.1 Mapping of Potential Field in C-space of a 2-DOF
Planar Manipulator in the Presence of a Static Obstacle
Both MLP and RBF networks were used to map the potential
field for a single 2-DOF robotic manipulator in the presence
of a static circular obstacle shown in Figure 1. Back
propagation rule was used for the training of MLP networks
and Hebb's activation rule was used for the training of RBF
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Figure 7. Contour plot of the potential field mapped by the
MLP networks,

Patential Field

Figure 8. Mesh plot of the potential field mapped by the
MLP network.

network. A total of eight neurons were used in each of the
hidden layer of the MLP network. For RBF network, the
centres of the network were distributed evenly over the
configuration space of the manipulator. Both the networks
were trained over a grid distributed evenly over the entire
range of the c-space variables. The results were quite
satisfactory, even though some spurious minima were shown
al some places where the network did not Iearn very well.
Figure 6 shows the circular obstacle mapped in the c-space of
the manipulator. The results are shown in Figure 7 to Figure
10. It can be scen that the MLP networks show better results
at learning the field. For an equivalent learning, the RBF
networks require a much larger number of units (neurons),
but the actual learning time for the RBF network is much
smaller than that for BP networks.

5.2 Mapping of Potential Field for Two 2-DOF Planar
Manipulators Sharing a Common Workspace

For two 2-DOF manipulators sharing a common workspace,
the problem becomes more complex. In this case, one
manipulator acts as an obstacle in the path of the other
manipulator, In c-space, this obstacles changes not only in

position, but size as well, disappearing at certain
configurations altogether.
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Figure 9. Contour plot of the potential field mapped by a
‘Guassian RBF Network.
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Figure 10. Mesh plot of the potential field mapped by the
Guassian RBF network.
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5.2.1 MLP Network

The simplest option for two robotic manipulators is to use a
single MLP BP network. This was tried out for two 2-DOF
planar robots. A BP network with four inputs (o, o, 8, and
6,) with different sizes was tried, but it did not show good
results. The reason for this is that the four dimensional space
becomes quite large for the network. The network has 1o be
taught at the entire range of the joint angles. The range of
these angles is 0 to 180° for 6, 0 to 360° for 8,, 180° to 360°
for @, and 0° to 360° for o,. If a step angle of 5° is chosed for
each joint angle and the network is taught over a grid in the
space of input variables, then the number of data points to be
taught to the network becomes 36x72x36x72=6.718x10°,
which is quite large. The neural network was taught at 10°
steps, but it failed to show good results afler considerable
number of training epochs,

5.2.2 Context Sensitive Networks

Since a single MLP network did not show any good results,
context sensitive resulls were used instead. Two different
structures were tried. In the first structure, MLP networks
were used in both the funciton and the context stages of the
network. In the second structure, MLP nctworks were used in
the context stage and a Guassian RBF network was used in
the function stage of the network. The joint angles for robot
#1 were used as input to the function network, and joint
angoles of robot #2 were used as inputs to the context
network.

The usc of context sensitive networks give better results than
a single MPL network even for a fewer number of training
steps. Moreover, the context sensitive network allows the
training problem to be devided into independent sub-training
problems, which can be carried out on independent machines.
The training procedure is carried out in the following three
sleps:

1. Teach the function network the c-space obstacles at fixed
context inputs and store the weights of the function
network for each case.

2. From the stored sets of weights for different values of
context inpuls, generate a training set for each network in
the context stage by determining how each weight of the

funciton network would vary against the variation in
context inputs.

3. Teach each network in context stage the generated data
set in step 2.

MLP Networks used in Both Stages of the Network:

In the first instance, MLP networks were tried in both the
function stage and the context stage of the network., Even
though on the whole it showed good results at the
configurations for which it was trained for, it did not
interpolate at all in between these configurations. The reason
for this is that back propagation networks do not have a
unique solution of connection weights for a particular
mapping. For this reason, it is not necessary for the
connection weights in MLP networks in function network
stage to show smooth transition if the context is varied
smoothly. This can be seen from Figure 12, which shows
how a sample weight in the MLP function network varies if
the context inputs are varied and the function network is
trained independently from random inital weights.

MLP Networks in the Context Stage and Guassian RBF
Networks in the Function Stage of the Network:

RBF networks used in function network stage however
showed very good results even for configurations in between
the configurations for which the context networks were
trained.

ght

MLP natwork wa

-0.5

Figure 12. Variation of a sample weight with context
inputs in a MLP network.

T

RBl.«'cmmnri lgeighl
n o

Figure 13. Variation of a sample weight with context
inputs in a Guassian RBF network.



180

T T
 ST— the contres af ROF netwest.

160

€~ Apace chrtacle lies within this boundary

1401

120F

100

80

60+

.|

56 1(’)0 15'D ZCIIO 2."1!] 3(’)0 35
Figure 14. Distribution of centres of the RBF network for the
function stage of context sensitive network. :

BP Networks

(@]

Function
Oulput

9, 6,
il T

Caonfiguration of
robot #1

Configuration of
the arm acling as
an obstacle
Figure 15. Structure of the hybrid context sensitive network
for mapping the potential field for two 2-DOF robotic planar

manipulators.

In RBF networks, each neuron has a local receptive field
and hence they have a unique solution to the connection
weights for a particular set of inputs to the network if the
centres of the network are kept fixed. Connection weights in
RBF networks will therefore show a uniform variation with
variation i context, and hence the network on the whole will
show good interpolation in between the configurations for
which it is trained. Figure 13 shows the variation of a sample
weight in the RBF network against the context inputs.

The centres of RBF network were not spread over the
whole c-space, but a grid was formed only on all those regions
where the c-obstacle appeared for different configurations of
the robotic arm #2. A total of 46 neurons were used in

function stage and 46 independent MLP networks were used
as context networks. Each context network had two hidden
layers with 8 neurons each. Figure 14 shows the distribution
of these centres in configuration space. The Structure of the
neural network is shown in Figure 15,

The following learning rule was used for RBF networks:
If desired output =1, then

1oir Hciﬁpmﬂsg

wl‘ = 0 otherwise (12)
where

W= connection weight for ith neuron,

C,=  Centre of ith neuron,

B.= test input, which is varied over the whole of

c-space
D= minimum distance between centres.

Training step of 1° for the function network's inputs 6,
and 0, (robot #1), and a step of 22.5° was chosen for context
networks' inputs o, and o, (robot #2).

6. A HEURISTICS BASED PATH PLANNING
ALGORITHM

Working in c-space reduces the path planning problem into
planning the motion of a point robot between given initial and
final configurations while avoiding collisions with c-space
obstacle. Most of the algorithms based on potential field
approach use the gradient of the field. If the rabot follows the
negative gradient of the field, it can avoid collision with the
obstacles, while at the same time, moving towards the goal
position, which lics at the global minimum of the potential
ficld. However, if the obstacle is concave, or il the motion of
multiple connected rigid bodies s being planned
simultaneously, then there is a chance that the robot might get
stuck in the local minima formed in the potential field. In
configuration space of the robot, the obstacles form irregular
shapes, which would result in local minima being formed in
the potential field. Another problem with working in c-space
using neural networks is that the output of the network gives
only the intensity of the potential field, and does not provide
any information about the gradient of the field. So a heuristic
based algorithm was used to carry out the planning in c-space

of the robot. The following heuristics were used

® If the field intensity is lower than a certain value
mid_field, move towards the goal configuration in a
straight line,

* If the field intensity at any point becomes equal to or
larger than mid field, follow the conlour of the field
until the rovot goes around the obstacle, and then follow
the first heuristic.

*  If the value of the potential field intensity becomes larger
than or equal to a certain value jj _fleld, follow the
negative gradient of the field (by using a pseudo-gradient
descent method) until the field becomes less than or equal
to lo_field.

It may be noted that hi field>mid  field2lo_field. For the
given examples, these values have been chosen as 0.1, 0.2 and
0.3 for lo_field, mid field and hi_field, respectively.
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Figure 16. Results of a potential field based conventional
path planning algorithm for a single 2-DOF planar
manipulator in (a) operational space and (b) configuration
space.

6.1 Path Planning for a Single 2-DOF Planar Robotic
Manipulator in the Presence of a Static Obstacle

A path planning algorithm based on potential field approach
suffers from the drawback that the robot may get stuck in the
local minima of the potential field. For the sake of
comparison, a potential field based algorithm was developed
in which the static obstacle was approximated by a point
charge and the links of the 2-DOF planar manipulator by
uniformly distributed line charges, thus establishing a
repelling potential between the obstacle and the manipulator.
At the same time, an attractive potential is set up between the
robot and its final configuration, and the robot has to move
under the forces resulting from the potential field.

As an example, the a path was planned between the initial
and final configurations of (45°,225°) and (135°135°),
respectively, Figure 16 shows the results of the potential field
based path planning algorithm. Even though the path can be
planned easily if the obstacle is further away from the base of

the robot, in this particular case it can be seen that the robot
was unable to get to the final configuration and got stuck in
the local minimum. For the same initial and final
configuration, the heuristics-based algorithm was able to find
the path. Figure 17 shows the results this path planning
algorithm. It can be clearly seen that the planned path takes
the robot around the obstacle in c-space to its final
configuration,

At this point, it may be pointed out that if the final
configuration happens to lie at a point where the intensity of
the potenial field is higher than the value at which the robot
starts to follow the contour, then the planner fails to take the
robot to the final configuration. Additional heuristics may be
needed to avoid this situation. Moreover, at the moment the
algorithm does not incorporate the reporting of the fact that it
has failed to plan the path, and the path planning stops a
certain time after the instant at which the robot starts off from
the initial configuration,
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Figure 17. Results of the heuristics-based path planning
algorithm for a single 2-DOF planar manipulator in (a)
operational space and (b) configuration space.
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Figure 18. (a) to (r) show the results of the path planning
algorithm for two robotic manipulators at different timing
instants,
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Figure 19. The paths of the two robots in configuration space.

6.2 Path Planning for Two 2-DOF Planar Robotic
Manipulators

Figure 18 shows the collision free motion for two 2-DOF
planar robotic manipulators planned by using the heuristics
based algorithm. Figure 19 shows the paths in configuration
space. It may be pointed out here that different speeds for the
motion were chosen for robot #1 and robot #2. Robot #2 was
infact moving slower than robot #1. The reason for this is that
if the same speed was chosen in this particular example, the
robots get stuck due to the deadlock occuring from the robots
switching between the different heuristics. This happens
because of their motion being symmetric. The path was
planned for robot #1 from an initial configuration of (45°,225
“) 1o the final configuration of (135°,135°) and for robot #2
from an initial configuration (225°,225°) to the final
configuration (315°,135°).

7. EXTENSION TO TWO 3-DOF ROBOTS MOVING IN
THREE DIMENSIONAL SPACE

The path planning algorithm in Section 6 is extended to
the case of motion planning of two 3-DOF robots moving in
three dimensional space.

7.1 Problem Formulation

The acutal problem is similar to that given in Scction 2. The
two 3-DOF robots arc to work with their work cnvelops
overlapping. For the sake of simplicity, it is assumed that only
the third links of both robots may collide with each other.
Figure 20 (a) shows the two robots when value of all the joint
angles is zero. Figure 20 (b) shows the portion of c-space for
both robots where c-obstacles are likely to lie. Figure 20 (c)
and (d) show the work envelops of the robots from top and
side respectively. Shaded area indicates where the work
cnvelops overlap.

7.2 Generation of C-Obstacles

Point evaluation technique is again used to determine c-
obstacles. The robots are modelled by touching spheres. The
position of the centres of the spheres approximating the robots
is calculated by using forward kinematic model.

7.3 Simulation Results

The algorithm was adopted for two 3-DOF robots moving in
three dimensional workspace. The path was planned between
initial configurations of (15°,-15°,-30°) and (-150°,-15°,30°),
and the final configurations of (150°,-15°30°) and (-150°,-15
°.-30°) for robot #1 and robot #2. respectively.
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Figure 20. (a) Robots when all joint angles are zero (inset:
direction in which angles change positively or negatively). (b) -
part of configuration space where c-obstacles are likely to lie.
(c) top view of work envelops of the robots and (d) side view
of work envelops of the two robots.
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Figure 21. Motion of two 3-DOF robots in operational space.
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Figure 22. Minimum distance between the two 3-DOF robots
moving in three dimensional space against normalized time.

Figure 21 shows the motion of the two robots in
operational space. Figure 22 gives the minimum distance
between the two robots against normalized time.

8. CONCLUSIONS
A collision detection engine for two robotic manipulators
sharing a common workspace is presented. The structure of
teh neural network is a cotext sensitive hybrid Guassian
Radial Basis Function (RBF) network/ Multi-layered
perceptron (MLP) back propagation network. The network is
trained off-line to learn the collision detection among the
robots. Once trained, it servers two purposes: (i) It parallelizes
the computations involved in mapping the configuration
space obstacles and (ii) it provides a continuous transition at
the output of the neural network between the free space and
space occupied by c-space obstacles, thus forming a
continuous potential field in c-space. A path planning
algorithm based on heuristics ispresented, which uses the
output from the neural network to plan the paths in
configuration space. .
At the moment, the proposed algorithm has two
shortcomings. One is that if the final configuration to which
the robot has to go to lies withing the rigion where the

potential field intensity is higher than the value where the
robot starts following the contour of the field (mid _field), then
the planning algorithm fails to find the path. This
shortcoming can be overcome by introducing a new heuristic
whereby the robot moves towards the goal configuration
irrespective of the intensity of potential field when it reaches
within a certain distance of the goal configuraiton, but
incorporation of this heuristic would not guarantee that the
planned path is collision free or not. The second shortcoming
of the algorithm is that sometimes the two robots get stuck
due to deadlock because of switching between the heuristics
by using crisp values of potential field intensity (viz. hi field,
mid_field and lo_field). This suggests that the use of fuzzy
controller for path planning might give betier results. The
developement of this controller will be considered in future.
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