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1 Introduction

Modelling and identification is one of the major areas of control engineering, and the
theory and practice of linear system identification is now well established [1],[2]. During
the past decade, efforts have been focused on developing coherent and concise methods of
nonlinear system modelling and identification [3]-[7], and more recently artificial neural
networks have been applied to complex nonlinear dynamic systems [8]-[12]. There are two
basic components in any system identification problem: determining the model structure
and estimating or fitting the model parameters. These two tasks are critically influenced
by the kind of model employed. Parameter estimation is relatively straightforward if the
model structure is known a priori but this information is rarely available in practice and
has to be learnt.

A general principle of system modelling is that the model should be no more complex
than is required to capture the underlying system dynamics. This concept known as the
parsimonious principle is particularly relevant in nonlinear model building because the
size of a nonlinear model can easily become explosively large. An over complicated model
may simply fit to the noise in the training data, resulting in overfitting. An overfitted
model does not capture the underlying system structure well and will perform badly on
new data. In neural network terminology, the model is said to have a poor generalisa-
tion property. The NARMAX (Nonlinear AutoRegressive Moving Average model with
eXogenous inputs) methodology, developed by the authors and others, is based around
the philosophy that determining the model structure is a critical part of the identification

process. Many of the NARMAX techniques can readily he applied to neural network
modelling.

During the resurgence in artificial neural network research in the 1980s, there was a
tendency in neural network modelling to simply fit a large network model to data and to
disregard structure information. Often models consisting of hundreds of parameters were
used. It was thought that since neural networks had excellent representation capabilities
and coded information into neuron connection weights, there was less need for physical
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insight into the underlying functional relationship and dependencies, and model structure
determination became less critical. Soon people realized that a huge network model not
only requires a very long training time and has poor generalisation performance but also
has little value in system analysis and design. The parsimonious principle is therefore just
as important in neural network modelling.

Many techniques have been developed to improve the generalisation properties of
neural network models. These include: pruning to reduce the size of a complex net-
work model [13]-[15], automatic construction algorithms to build parsimonious models for
certain types of neural networks [16]-[19], regularisation [20}-[22], and combining regu-
larisation with construction algorithms [18],[23]-[26]. Selection of the best and smallest
nonlinear model from the set of all possible candidates is a hard optimisation problem
which is generally intractable or computationally too expensive. Rather than insisting on
the true optimal solution, a pragmatic approach is usually adopted in practice to find a
suboptimal solution. In fact all of the successful construction algorithms attempt to find
a sufficiently good suboptimal nonlinear model structure in this sense.

In a nonlinear model, the relationship between model outputs and model inputs is
nonlinear by definition. But the relationship between the model outputs and the free
adjustable model parameters can be either nonlinear or linear. Identification schemes
can therefore be classified into two categories, nonlinear-in-the-parameters or linear-in-
the-parameters. Neural networks are generally nonlinear-in-the-parameters. A typical
example is the multilayer perceptron (MLP) model. Some basis function neural networks
such as the radial basis function (RBF) network, B-spline networks and neural-fuzzy
models can be configured in a linear-in-the-parameters structure.

The nonlinear-in-the-parameters neural network models are generally more compact
and require less parameters compared with the linear-in-the-parameters models. In this
sense the latter are often said to suffer from the “curse of dimensionality”. But this
problem arises largely because no attempt has been made to determine a parsimonious
representation from the data. Learning for a nonlinear-in-the-parameters neural network
1s generally much more difficult than that for a linear-in-the-parameters neural network.
More importantly, structure determination or the selection of a parsimonious model is
extremely complex when the model is nonlinear-in-the-parameters and few results are
available. Several powerful construction algorithms which antomatically seek parsimo-
nious models have been reported for basis function neural networks.

The remainder of this chapter is organized as follows. Section 2 introduces the NAR-
MAX system representation which provides a framework for nonlinear system modelling
and identification. Conventional or non-neural NARMAX modelling approaches are sum-
marized in section 3, where the similarity between the conventional approach and neu-
ral network modelling is emphasized. Section 4 discusses a few popular neural network
models employed in nonlinear system identification and classifies these models into the
nonlinear-in-the-parameters and linear-in-the-parameters categories. Section 5 presents a
gradient-based identification technique for neural network models that are nonlinear-in-
the-parameters while section 6 discusses construction algorithms for building parsimonious
neural network models that are linear-in-the-parameters. Issues of identifiability and the
implications for nonlinear system modelling together with a scheme for constructing local
models are treated in section 7. Some concluding remarks and further reserach topics are
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given in section 8. Throughout this chapter, simulated and real data are used to illustrate
the concepts and techniques discussed.

2 The nonlinear system representation

For the class of discrete-time multivariable nonlinear dynamic systems, depicted in figure 1,
the general input-output relationship can be written as

y(k) = fo(y(k=1),---,y(k—ny),u(k=1), -, u(k—ny),e(k=1), -+, e(k—n.)) +e(k) (1)

where
yi(k) ui (k) e1(k)

y(k)y=| ¢ |, uk)=] : |, e(k)=] : (2)
ym (k) u, (k) em (k)

are the system m-dimensional output, r-dimensional input and m-dimensional noise vec-
tors respectively; ny, n, and n. are lags in the output, input and noise respectively;
and f,() is some m-dimensional vector-valued nonlinear function. The noise e(k) is a
zero mean independent sequence. This nonlinear system representation is known as the
NARMAX model [3],[6]. Nonlinear time-series can be viewed as a specical case of this
general nonlinear system and can be represented by the NARMA model [27]

y(k) = fi(y(E = 1), y(k —ny),e(k — 1), -+, e(k — ne)) + e(k) (3)

The NARMAX model provides a general basis for the development of nonlinear system
identification techniques.

The functional form f,(-) for a real-world system is generally very complex and un-
known. Any practical modelling must be based on a chosen model set of known functions.
Obviously, this model set should be capable of approximating the underlying process to
within an acceptable accuracy, and neural networks are just a class of such “functional ap-
proximators” [28]-[31]. Secondly, an efficient identification procedure must be developed
for the selection of a parsimonious model structure because the dimension of a nonlinear

model can easily become extremely large. Without efficient subset selection, the resulting
mode] often has little practical value.

In general recurrent or feedback neural networks are required to model the general

NARMAX system. In some approximations, it may be possible to reduce the NARMAX
model to a simplified form

y(k) - f,;(y(k = 1)’ Ty y(k - ny):u(k - 1)1 T ,'U,(k S nu)) + 8(k) (4)
For autonomous systems or time series, the model (4) can be further reduced to
y(k) = fo(y(k = 1), -, y(k — ny)) + e(k) (5)

The model in (4) is obviously less general than the model in (1). Identification schemes and
system analysis are however simpler when based on the model (4), and many feedforward
neural networks are sufficient to identify this simplified NARMAX model.
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A main assumption for the NARMAX system is that the “system state space” has a

finite dimension. This agrees with a basic result of dynamical systems theory [32], which

¢ states that if the attractor of a dynamical system is contained within a finite-dimensional

\ manifold, then an embedding of the manifold can be constructed from time series observa-

tions of the dynamics on the manifold. The dynamical system induced by the embedding

is differentiably equivalent to the one being observed. In fact, the lag n, in (5) corresponds

to the embedding vector dimension. Dynamical systems theory provides a firm basis for

nonlinear time series modelling and many nonlinear signal processing applications, and it
has strong connections with nonlinear system modelling and identification.

The choice of identification scheme is critically influenced by the chosen model form.
Consider a general nonlinear model

J(k) = Fum(x(k); 0) ®

where © is the vector of adjustable model parameters. If the model is used to identify
the NARMAX system (1), the model input vector x(k) is

x(k) =Ty"(k— 1)y (k —ny) wT(k = 1) uT(k—ny) F(k—1)---T(k—n.)]T (7)

where
; e(k) = y(k) — (k) (8)
is the prediction error. If the model is used to identify the simpliied NARMAX system

\ @),

x(k) = [y" (k= 1) yT(k = ny) wT(k=1) - uT(k — n,)]” (9)

According to the relationship between the model output and adjustable model parameters,
various models can be classified into two categories, namely nonlinear-in-the-parameters
and linear-in-the-parameters models.

3 The conventional NARMAX methodology

The NARMAX modelling methodology, developed by the authors and others, is centred
around the belief that the determination of model struciure is a crucial part of the iden-
tification process. The NARMAX methodology attempts to break a system identification
problem down into the following aspects:

Nonlinearity detection determine whether a nonlinear model is needed
! Structure determination select which terms to include in the model
4 Parameter estimation estimate the values of the model parameters
Model validation test whether the model is adequate
Model application use the model for prediction and system analysis

These components form an identification toolkit which allows the user to build a concise
mathematical description of the system from data. A crucial component of this iteractive

identification procedure is the determination of the model structure. This ensures that a
parsimonious model is obtained.
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Several conventional or non-neural nonlinear models have been developed for the
NARMAX modelling approach. These typically include the polynomial model [7], the
rational model [33] and the extended model set [34]. The polynomial model is derived by
a polynomial expansion of x(k)

i(k) = pi(x(k); ©;), 1<i<m (10)

where p;(-) is a polynomial function of x(£), and ©; denotes the parameter vector con-
sisting of the coefficients to be identified. The rational model is given as the quotient of
two polynomial expansions of x(k)

1<i<m (11)

The extended model set refers to a general modelling approach which first forms some
fixed nonlinear expansions to obtain various nonlinear model terms and then linearly
combines the resulting terms. The same idea was given a neural network interpretation
in [35] and the resulting model was called the functional-link network (FLN).

3.1 Structure determination and parameter estimation

When identifying nonlinear systems with unknown structure, it is important to avoid
losing significant terms that must be included in the final model. Consequently, the
experimenter is forced to start with a large model set. The key to the NARMAX modelling
approach is an efficient procedure for subset model selection which aims to select only
the significant model terms to form a parsimonious subset model. Which subset selection
scheme to use will depend on the particular model form employed.

3.1.1 Nonlinear-in-the-parameters models

A class of parameter estimation algorithms widely used for nonlinear models is the predic-

tion error algorithms [5],[33]. This is a class of gradient based algorithms that minimize
the cost function

J1(©) = log (det (Q(O))) (12)

where det(-) denotes the determinant,

N
Q(0) = %}_: (k; ©)é(k; ©) (13)

and N is the number of data samples. Here we have made the dependency of the prediction
error on the model parameters explicit by using the notation e(k; ©). Let the dimension
of © be ng, that is, ©@ = [61--0ne]". The parameter estimate which minimizes the

performance criterion J; (@) can be obtained using the Gauss-Newton algorithm based on
the gradient of J1(©)

s ™ 14
06, 08 )

ne

T
VJi(0) = [%]

aJ, a1t
90
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and the Hessian

H,(©)

2 T
_Bh 0 [ajl}_ o -

~ %6 T "6 |50
where p is a small positive constant and I is the identity matrix of appropriate dimension.

The addition of pI to the Hessian matrix avoids.the possibility of ill-conditioning. The
gradient and the Hessian can be computed as follows [1]

o, 2 . 1 De(k; ©) .
ok L Al : il ¥ <
50 = L ¢ Q@)= 1i<ng (16)

P oy Ly DEH0) s PR 1 o5 an)
~ a7 \ ) =ty = e
96.:09, ° N 96, 96,

The Hessian H,(©) also plays an important role in subset model selection. In fact,
H1(©) contains sufficient information regarding the significance of each parameter. Delect-
ing a parameter corresponds to removing a row and a column in the Hessian matrix. This
is because subset model selection can be formulated as an optimisation problem with the
performance criterion [4]

C = Nlog(det(Q(0O))) + ngxa(1) (18)

where © is the parameter vector of the particular model and ng its dimension, Xol(1)
is the critical value of the chi-squared distribution with 1 degree of freedom and a given
significance level a. The best model selected from all the competing models is the one that
minimizes the C-criterion (18). The first term in (18) indicates the model performance
and the second term is a complexity measure that penalizes large models. An appropriate
value for x,(1) can be shown to be 4.0 [4]. The Hessian of the C-criterion (18), which is
the same as H,(©) except for a scalar N, is what is actually needed to efficiently evaluate
the C-criterion value of a candidate model [4],[36].

For a full model size of ne, the number of competing models is 2"®. The true optimal
model that minimizes (18) must be selected from all these 2" models. It is obvious that
this is computationally impossible to do even for a moderate ng. A practical method for
selecting parsimonious models is based on backward elimination, which eliminates some
parameters of a large model according to information provided by H;(®). This method is
similar to the stepwise backward elimination scheme in the statistical literature [37], and
can generally find a suboptimal subset model. The details of a numerical algorithm, which
implements this backward elimination algorithm using H;(©) to compute the values of the
C-criterion, can be found in [36]. We use the following simulated system taken from [33]
to illustrate the combined approach of structure determination and parameter estimation.

Example 1.
The data was generated from the simulated single-input single-output system

(k) = y(k— 1) +ulk— 1)+ y(k — Du(k — 1)+ y(k = De(k — 1)

4 T+ 92(k — 1) + u(k — e(k— 1)

+ e(k) (19)

The input u(k) was an independent and uniformly distributed sequence with mean zero
and variance 1.0 and the noise e(k) is a Gaussian white sequence with mean zero and
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variance 0.01. Notice that if the system is nonlinear the possibility of nonlinear noise
terms has to be accommodated in the model. 600 points of the input-output data were
used in the identification. A rational model with the lags Ny =ny =n. = 1 and a
quadratic numerator and denominator were used. The full model had 20 terms shown in
table 1.

The prediction error algorithm was first used to obtain the parameter estimate © for
the full model. The full model Hessian, evaluated at ©, was then used in the backward
elimination procedure to eliminate redundant parameters in the model. The elimination
process is shown in table 2, where it is seen that the process stopped after stage 13 because
the C'-criterion reached a minimum value, giving rise to a subset model of 7 parameters.
The prediction error algorithm was again used to fine tune the subset model parameters.
The final subset model given in table 3 is obviously a good estimate.

The combined approach of structure determination and parameter estimation based
on the prediction error estimation method, discussed above, is very general and can be
applied to any nonlinear model. An alternative cost function for the prediction error
estimation method is

12(8) = trace(Q(0)) = %; I (k; ©)e(k; ) (20)

A similar algorithm which combines structure determination and parameter estimation
can be derived based on this cost function. In the case of single-output systems, that is,
m = 1, the two cost functions (12) and (20) become identical. A drawback of the approach
discussed here is that, when the full model size ng is very large, the computation of the
full model Hessian can be expensive.

A multilayered neural network model is usually nonlinear-in-the-parameters. There-
fore it is not surprising that the prediction error estimation method can readily be applied
for constructing neural network models [9],[11],[38]. In fact, the famous backpropagation
learning method [39] for neural networks can be viewed as a special case of the predic-
tion error algorithm [38]. The importance of the parsimonious principle is now widely
recognized in the neural network community. Weight elimination has been suggested as
a method for reducing the size of large network models, and the process is known as the
pruning. Approaches adopted in pruning often have their root in more traditional meth-
ods for subset model selection. For example, the so-called optimal brain damage method
(13] uses the diagonal elements of the cost function Hessian in weight elimination.

3.1.2 Linear-in-the-parameters models

The polynomial model and the extended model set are examples of linear-in-the-parameters
models. A linear-in-the-parameters model can generally be obtained by performing some
fized nonlinear functional transforms or expansions of the inputs before combining the
resulting terms linearly. Specifically, a set of given functional expansions map the input
space onto a new space of increased dimension ny,

x(k) — [S1(x(k)) - - n (x(E))]" (21)

The model outputs are obtained as linear combinations of the new bases éi(x(k)),
1 S 1 S nr,
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(k) = Yo 05:85(x(K), 1<i<m (22)

To qualify for a linear-in-the-parameters model, the value of each given basis function must
-« depend only on the input x(k) so that ¢;(x(k)) contains no other adjustable parameters.

An advantage of the model (22) is that the standard least squares identification method
can readily be applied to estimate the parameters 6;;. In practice, the model dimension
ny can become excessively large. Consider, for example, the polynomial model, which
uses the set of monomials of x(k) as bases. If the dimension of x(k) is 8, a degree-5
polynomial expansion will produce a model basis set of dimension n; = 1286. Other
choices of model bases [34] can also induce the problem of excessive model dimension.
Subset selection is therefore essential, and an efficient subset selection procedure has been
derived based on the orthogonal least squares (OLS) method [7]. Given the full set of
ny candidate bases, the OLS algorithm selects significant model bases one by one in a
forward regression manner until an adequate subset model is constructed. The selection
procedure is made simple and efficient by exploiting an orthogonal property.

Specifically, the cost function (20) is adopted for a combined subset model selection
and parameter estimation. The system outputs, the model outputs and the prediction
errors for 1 < k < N can be collected together in the matrix form

Y=%0+E (23)
where .
yi(1) - ym(1)
Y=[yiyml= : : : (24)
_yl(N) o Ym(N)
i 61(1) Em(l)
E=le; -e,)= : : : (25)
| &a(N) - ex(NV)
$1(x(1)) -+ ¢ay(x(1))
& =[d;--0,,]= : : : (26)
$1(x(N)) -+ ¢n, (X(N))
911 gl,m
@=| : i (27)
BnLl Ban

Let an orthogonal decomposition of the regression matrix ® be ® = WA. The system
(23) can be rewritten as

Y=WG+E (28)
where
gi1 " im
G — . . .

A® (29)

gnL,l e gnL,m
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It can be shown that

NJ,(®) = trace (ETE) = trace (YTY) - i (i 9?,;) W;IWJ' (30)

7=1 \i=1

where the new bases w; are columns of W. Define the error reduction ratio due to w; as

[err]; = (fj gfi) wi wi/trace (YTY) (31)

1=1

Based on this ratio, significant model terms can be selected in a forward-selection proce-
dure. At the [-th stage, a model term is selected among the ny — [ + 1 candidates if it
produces the largest value of [err]; to add to the previously selected (I — 1)-term model.
The selection procedure can be terminated at the ng stage when

ng
1-lerrli<q (32)
=1
where 0 < 7 < 1 is a pre-set desired tolerance, giving rise to an ns-term subset model.
Alternatively, the procedure can be terminated when the criterion

Nlog(.1o(®)) + nsxa(1) (33)

reaches a minimum, where x,(1) is as defined previously at (18).

The details of the OLS algorithm for forward subset selection can be found in [7]. It
should be emphasized that the OLS algorithm is an efficient way of implementing forward
subset selection and, like any forward subset selection method, it does not guarantee to
find the best ng-term model from the ny-term full model. This however is not a serious
deficiency because the subset model found is usually very good. Furthermore the optimal
solution will certainly be too expensive to compute since ny, is often very large.

Notice that the aim here is to select a subset model consisting of a set of the original
model bases, say, {®;,, 1 << ng}. The set of the selected orthogonal bases {w;, 1 < I <
ns} corresponds precisely to a subset of the original model bases {®;, 1 <1< ngs}, that
is, the subspace spanned by {w;, 1 <1< ng} is the same space spanned by {®,,1<1<
ns}. This is reflected in the fact that A is an upper triangular matrix with unit diagonal
elements. In many signal processing applications, the ob jectiveis to transform the original
signal space @ onto a new space by some orthogonal transformation and to tackle the
problem on a transformed subspace. This can be achieved, for example, using singular
value decomposition (SVD) [40]. A subset of the orthonormal bases {vi, 1 £1 < ng},
which correspond to the first ns largest eigenvalues, is selected to form the required
subspace. Since each v; is a linear combination of all the original bases ®;, 1 < 7 < np,
1t is not known which subset {®;,, 1 <1< ng} represents exactly the subspace spanned
by {vi, 1 <1< ng}. When a subset model consisting of a subset of the original model
bases is required, the OLS algorithm has clear advantages.

If the stopping criterion (32) is employed, the chosen tolerance 7 will influence both
the modelling accuracy and the complexity of the final subset model. It is obvious that
ideally n should be larger than but very close to the ratio trace(ETE)/trace(YTY). Since
trace(ETE) is not known a priori, an appropriate value of n usually needs to be found,
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and this can be achieved by the following iterative learning procedure. An initial guess
is assigned to 7. Once a model is selected, an estimate for trace(ETE) can be computed
and since trace(YTY) is known from the data, an improved 7 can be chosen. We use
the following simulated system taken from [34] to illustrate this learning strategy and to
demonstrate OLS subset selection.

Example 2.

The data was ge;:lerated from the simulated single-input single-output system
y(k) = 0.5y(k— 1)+u(k—2)+D.1u2(k_1)+0.53(k— 1)+0.2u(k—1)e(k—2)+e(k) (34)

where the system noise e(k) was a Gaussian white noise with mean zero and variance
o2 = 0.04 and the system input u(k) was a uniformly distributed independent sequence
with mean zero and variance 1.0. A data set of 500 input-output pairs was used in
identification. A polynomial model with input

x(k) = [y(k—1) y(k—2) y(k—3) u(k—1) u(k—2) u(k—3) e(k—1) e(k—2) (k—3)]T (35)

and degree-3 polynomial expansion was used to fit the data. The full model set contained
ng = 220 terms. The iterative procedure for the subset model selection using the OLS
algorithm is summarized in table 4.

Initially, we did not have the residual sequence and could not use the residual variance
o? as an estimate of the noise variance o2. We also could not form any model terms
containing €(k — j). Thus, at the initial iteration, the model input was assumed to be

x(k) = [y(k—1) y(k —2) y(k - 3) u(k — 1) u(k - 2) u(k - 3)]" (36)

An initial guess was given to the desired tolarence as = 0.032, and the OLS algorithm
selected a subset model with an estimate 0. This initial iteration generated a residual
sequence and allowed the assignment of a new tolarence n = 0.03. The iterative procedure
was completed after the 5th iteration since the subset models selected at the 4th and 5th

iterations were identical, and the variances of the resulting residual sequences were hardly
changing.

For the class of linear-in-the-parameters models, automatic construction algorithms
that are capable of building parsimonious models from daia are crucial for overcoming
the curse of dimensionality. The OLS algorithm described here is one such algorithm. On-
line versions of these procedures are now available to provide adaptive model selection
and estimation for nonlinear systems [41],[42]. Certain neural network learning problems
can also be formulated within the linear-in-the-parameters framework. An example is the
RBF network. When the centres and widths of a RBF network are fixed, learning becomes
a linear-in-the-parameter problem [43]. The OLS algorithm can readily be applied to
construct parsimonious RBF networks [16].

3.2 Model validation

Model validation is an important step in any identification or modelling procedure. For
linear system identification, if the model structure and parameter values are correct, the
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residual e(k) will be uncorrelated with past inputs and outputs. In the case of single-input
single-output (r = m = 1) systems, therefore, an identified linear model is regarded as
adequate if the autocorrelation function of ¢(k) and the cross-correlation function of (k)

and u(k) satisfy
Re(r) =0, 7#0
Ralt)=0, for all 1

For validating single-input single-output nonlinear models, (37) is clearly insufficient. The
known principle of nonlinear model validation is to test if the residuals are unpredictable
from all the linear and nonlinear combinations of past inputs and outputs. Three higher-
order correlation tests have been suggested in addition to the tests (37) to validate Whether
a nonlinear model is correct [44],[33].

(37)

These correlation-based tests can also be applied to validate multi-input multi-output
nonlinear models but a large number of correlation plots will be required. A more compact
validation procedure has been developed for multivariable nonlinear models using the
following tests [45]

Rea(t) =0, 7#£0
Rup(t) =0, for all 7
Rauslr)=0; w0 (38)
ReulT) =0, for all 7
where
B(k) = e1(k) + e2(k) + -+ + €n () \
v(k) = wa(k) + uz(k) + -+ + ur(k)
v(k) = €l(k) + €(k) + -+ + e (k) (39)
w(k) = y1(k)e(k) + ya(k)ea(k) + - - + ym (k) em (k)
C(k) = ui(k) +u3(k) + - + ui(k)

Alternatively, model validation can be performed based on chi-squared tests [46],[4] but
the correlation tests discussed here are much easier to implement.

In practice, the correlation tests are computed in normalized form and confidence limits
are used to interpret if the tests have been violated or not. Experience has shown that if
these tests are used in conjunction with a combined approach of structure determination
and parameter estimation, they often give the experimenter a great deal of information
regarding deficiencies in the fitted model and help to indicate which terms should be
included in the model to improve the fit. Some examples of real-data identification coupled
with the model validity tests using various models including neural networks can be found

n [9},(33],[47], [48].

4 Neural network models

Generally, artificial neural networks refer to a computational paradigm in which a large
number of simple computational units known as “neurons” or simply nodes, intercon-
nected to form a network, perform complex computational tasks. Such a computational
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model was inspired by neurobiological systems. A key feature of neural networks is learn-
ing, and this refers to the fact that a neural network is trained to perform a task using
examples of data. Such a learning process has clear connections with system identifi-
cation and parameter estimation. A variety of neural network architectures or models
have been employed for constructing representations of complex nonlinear systems from
data and several of these models will be discussed below. From the viewpoint of infor-
mation flow, there are two classes of neural networks, namely feedforward and recurrent
networks. In the former case, the input signal is propagated forward through the network
to produce the network output. In the latter case, node outputs can be fed back as node
inputs. From the viewpoint of parameter estimation, neural networks can be classified as
nonlinear-in-the-parameters or linear-in-the-parameters.

4.1 Multilayer perceptrons

A feedforward multilayer perceptron, MLP, is a layered network made up of one or more
hidden layers between the input and output layers. Each layer consists of computing
nodes, and the nodes in a layer are connected to the nodes in adjacent layers but there is
no connection between the nodes within the same layer and no bridging layer connections.
The input layer acts as an input data holder which distributes the inputs to the first hidden
layer. The output from the first layer nodes then become inputs to the second layer and
so on. The last layer acts as the network output layer. The architecture of an MLP can
conveniently be summarized as ng —ny; — - -+ — n;, where ng is the number of the network
inputs, n; is the number of the network outputs and ni, 1 <: <l—1, are the numbers of

nodes in the respective hidden layers. Figure 2(a) depicts the topology of a4 —5—6 —3
MLP.

The input-output relationship of a generic node is shown in figure 2(b). The node
computes the weighted sum of the node inputs z;, 1 < i < n, adds a bias weight and
passes the result through a nonlinear activation function fa to produce the node output
Yi

n
Yi=fa (Z wj‘,-z,-) (40)
1=0
where w;; are the node weights and zo = 1 indicates that w;o 18 a bias term. A typical
choice of the activation function is the sigmoid function defined as

1

falv) = 1 + exp(—v)

(41)
For the purpose of function approximation, the output nodes usually do not contain a
bias term and the associated activation functions are linear.

An MLP realizes an overall input-output mapping: furp : R — R™. The MLP
is a general function approximator and theoretical works [28],[29] have shown that MLPs
with one hidden layer are sufficient to approximate any continuous functions provided
that there are enough hidden nodes. In applications to identifying nonlinear dynamic
systems, the number of the output nodes is equal to the number of the system outputs
and the number of the network input is equal to the dimension of x(k). Collect all the
wieghts of the network model into a vector form ©. The network input-output mapping
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fmrp(x(k); ©) is obviously highly nonlinear in © and training an MLP is equivalent to
estimating this parameter vector. After learning, the network mapping can be used as a
model of the system dynamics f,. :

4.2 Radial basis function networks

The RBF network is a processing structure consisting of an input layer, a hidden layer
and an output layer. The hidden layer of a RBF network consists of an array of nodes and
each node contains a parameter vector called a centre. The node calculates the Euclidean
distance between the centre and the network input vector, and passes the result through
a radially symmetric nonlinear function. The output layer is essentially a set of linear
combiners. An example of the RBF network and the model of the Gaussian RBF node
are shown in figure 3. The overall input-output response of an nz-input no-output RBF
network is a mapping frpr : " — R™. Specifically,

ny ny
frer =) _05i¢i = 3 05:8(llx — ;i p5), 1<i<no (42)
i=1 i=1
where f;; are the weights of the linear combiners, || - || denotes the Euclidean norm, p;

are some positive scalars called the widths, c; are the RBF centres, ¢(-; p) is a function
from R* — R, and ny is the number of hidden nodes.

The RBF method is a traditional technique for strict interpolation in multidimensional
space [49]. On the other hand, using a feedforward neural network to model complex
data can also be considered as performing a curve fitting operation in a multidimensional
space. Broomhead and Lowe [43] adopted this viewpoint and revealed explicitly the
connection between feedforward neural networks and RBF models. The topology of the
RBF network is similar to that of the one-hidden-layer perceptron, and the difference lies
in the characteristics of the hidden nodes. Two typical choices of ¢(-) for RBF networks
are the Gaussian function

8(v/p) = exp(~v*/p) (43)
and the thin-plate-spline function

$(v) = v*log(v) (44)

The Gaussian function represents a class of node nonlinearity having the property that
$(v/p) — 0 as v — oco. The thin-plate-spline function represents another class of node
nonlinearity having the property that ¢(v/p) — oo as v —» co. These two very different
classes of nonlinearities may be referred to as class one and class two respectively.

Most of the applications of RBF networks can be included in the following framework:
use the network input-output mapping frpr to learn or to approximate some nonlinear
mapping from R —— R". The RBF network is known to be a general function ap-
proximator and theoretical investigations have concluded that the choice of é(-) is not
crucial for network approximation capabilities [50],(51],[30]. RBF models based on either
class-one or class-two nonlinearities all have excellent approximation capabilities. Never-
therless, choosing the nonlinearity of the hidden nodes according to the application can
often improve performance. Athough each hidden node may have a different width p;, a
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uniform width is sufficient for universal approximation [30]. All the widths in the net-
work can therefore be fixed to a value p and this p can be derived using some heuristic
rules [52]. For classification applications, however, adjusting individual widths can often
improve the generalisation properties [53]. Some choices of the nonlinearity such as (44)
do not involve a width.

An extension to the standard RBF network is to replace the Euclidean distance by the
Mahalanobis distance in hidden nodes [53],[54]. In this case, the hidden nodes become

¢i=¢((x—c)"V (x—¢;)), 1<) <ny (45)

where V; is an ny x ng positive definite matrix. Hartman and Keeler [55] proposed a
Gaussian-bar network in which each input dimension is treated differently. In the multi-
output case, the hidden nodes are defined by

ny
B3 =2 Oiexp (—(zi— a;)/ps), 1<i<ng, 1<i<no (46)
=1

The ith output node is the sum of ¢;; for 1 < j < ny. Hartman and Keeler [55] reported
better performance of this Gaussian-bar network over the standard Gaussian network.

In general, the RBF network is nonlinear in the parameters. However, learning can
be performed in two phases. Firstly, some learning mechanism is employed to select a
suitable set of RBF centres and widths. This effectively determines the hidden layer of the
RBF network. Since the output layer is a set of linear combiners, learning the remaining
output-layer weights becomes a linear problem. In this sense, the RBF network is often
said to have a “linear-in-the-parameters” structure. This is only true after the hidden
layer has been fixed separately. Because of this property, learning procedures for the
RBF network are simple and reliable.

4.3 Fuzzy basis function networks

The architecture of a general n;-input no-output fuzzy system is depicted in figure 4. A
fuzzy system consists of four basic elements: a fuzzifier, a fuzzy rule base, a fuzzy inference
engine and a defuzzifier. The fuzzifier maps the crisp input space onto the fuzzy sets
defined in the input space. The fuzzy rule base consists of a set of ny linguistic rules in the
forms of IF-THEN. The fuzzy inference engine is a decision making logic which employs
fuzzy rules from the rule base to determine a mapping from the fuzzy sets in the input
space onto the fuzzy sets in the output space. The defuzzifier performs a mapping from
the fuzzy sets in R"© to the crisp outputs y € R"°. A class of fuzzy systems commonly
used in practice are constructed based on singleton fuzzification, product inference and
centroid or weighted average defuzzification. Such fuzzy systems can be represented as

series expansions of fuzzy basis functions known as fuzzy basis function (FBF) networks
or models [31],[56].

An n-input np-output fuzzy system can be expressed as ngp single-output fuzzy sub-
systems. The rule base of the :th fuzzy subsystem consists of nr rules in the following
forms

RB;: IF a1 is Ay; AND -« AND z,, is A,,; THEN y; is B (47)
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where 1 < j < np, z; for 1 <1 < ny are the inputs to the fuzzy system, y; is the sth
output of the fuzzy system, 1 < ¢ < np, and 4;; and B; are the fuzzy sets characterised by
fuzzy membership functions p4,,(z:) and p Bi(Y:), respectively. Under the assumptions of
singleton fuzzifier, product inference and centroid defuzzifier, the input-output mapping
of such a fuzzy system, frpp : R"7 — R"0, can be shown to have the form [31],[56],[57]

235 0 (T2 o, (1)) 1<i<no (48)
Z;ZI (H?:I]. KA, (ml)) MR

frBR(x) =

where 7 is the point at which KB (y:) achieves its maximum value. Define

H?il HA (3"1)
¢i(X) = ———"
Zjil (HI=II HFA; (mf)

which are referred to as FBFs [31],[56]. Then the fuzzy system (48) is equivalent to an
FBF expansion

), 1<j<np (49)

Ermn(x) =S ey, 1 i g (50)

Jj=1
where 0;; are coefficients or parameters of the FBF model.

Fuzzy systems are universal approximators and theoretical studies have proved that
the FBF network (50) can approximate any continuous functions to within any degree of
accuracy provided that a sufficient number of fuzzy rules are used [31],[56],[57]. Although
the FBF network is derived within the framework of fuzzy logic, it obviously has many
similarities to neural networks such as the RBF network. An advantage of the FBF
network is that linguistic information from human experts in the form of the fuzzy IF-
THEN rules can be directly incorporated into the model.

Currently fuzzy systems are mainly applied to engineering problems where the number
of inputs and outputs is small. This is because the number of rules or FBFs Zrows expo-
nentially as the number of inputs and outputs increases. This curse of “rule explosion”
limits further applications of fuzzy systems to complex large systems. Research has been
directed towards determining the best shape for fuzzy sets which will result in a significant
reduction in the number of rules required [58]. Notice that the FBF network (50) has a
linear-in-the-parameters structure once the rules have been specificied. Given observed
input-output data, the problem of constructing a parsimonious FBF model can be formu-
lated as one of subset model selection. This is the approach adopted in [31], where the
OLS algorithm was used to select significant FBFs from a large set of candidate FBFs.

4.4 Recurrent neural networks

Architectures of recurrent neural networks are extremely rich and it is impossible to give
a comprehensive discussion in a short section. For recent advances in the theory and ap-
plications of recurrent neural networks, see for example [59]. A straightforward way of ob-
taining a recurrent neural network is to feed back the network output to the network input.
The structure of such feedback or recurrent networks is shown in figure 5. Notice that the
feedback signal can consist of either the delayed network outputs J(k—1),---,9(k —nq)
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or the delayed prediction errors €(k — 1),---,e(k — ng), where €(k) = y(k) — 7(k) and

y(k) is the desired output. The “feedforward network” part of this structure can be a
& multilayer perceptron, a RBF network or a FBF network. Although this structure may
appear to be similar to the feedforward network except for an “expanded” network input,
the design and analysis of such a feedback network is considerably more complex than
for feedforward networks. Advantages gained by using this structure are richer dynamic
behaviours and improved representation capabilities. An example where this approach
works well is in adaptive noise cancellation [60].

In a general recurrent network, node outputs can be fed back to node inputs. A class
of 3-layer recurrent networks with internal feedback is illustrated in figure 6(a). As in the
case of feedforward networks, the input layer simply distributes the network inputs to the
hidden-layer nodes and the output layer is a set of linear combiners. The outputs of the
hidden nodes are however fed back as part of the inputs to the hidden nodes, and the
models of the two kinds of connections for hidden-layer neurons are depicted in figure 6(b).
The topology of this 3-layer recurrent network can be summarised as ng — ny — n,, where
ng is the number of network inputs, n; the number of hidden nodes and n, the number
of network outputs. The output of the jth hidden node is computed as

ra k) = I (i wr, 1, (k) + nzlw}gj,!a:gt(k - 1)) , 1€73<m (51)
=0

=1

where z7,(k) for 1 <1 < ng are the network inputs, zj,(k) = 1 indicates that WF,, 18 a
bias weight, zo,(k) are the hidden layer outputs, wr,, and wp;, are the feedforward and
feedback connection weights respectively. The single-hidden-layer feedforward network
can be viewed as a special case of this recurrent network with all the feedback connection
weights being zeros.

More generally, a recurrent network can include more than one hidden layer, and the
network output can also be fed back as part of the network input. A smaller recurrent
network with fewer hidden nodes can often achieve the same modelling accuracy as a large
feedforward network. In this sense, recurrent networks have better representation capabil-
ities. The learning and analysis for recurrent networks is however much more difficult. A
recurrent network is a highly nonlinear-in-the-parameters and complex dynamic system.
Theoretical investigation and practical application of recurrent networks will provide an
interesting and challenging research area for many years to come.

5 Nonlinear-in-the-parameters approach

For artificial neural networks that are nonlinear in the parameters, learning must be
based on nonlinear optimisation techniques. The optimisation criterion is typically chosen
to be the mean square error defined in (20), and gradient learning methods remain as
the most popular techniques for learning despite the possible pitfalls that learning can
become trapped at a local minimum of the optimisation criterion. Global optimisation
techniques, such as genetic algorithms [61] and simulated annealing [62], although capable
of achieving a global minimum, require extensive computation. We describe an efficient
gradient learning algorithm called the parallel prediction error algorithm (PPEA) [38].
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5.1 Parallel prediction error algorithm

The prediction error algorithm [33] discussed previously in section 3 is a general parameter
estimation algorithm and can readily be applied to neural networks [9]. Compared with
the popular backpropagation algorithm (BPA) [39] which is a steepest-descent gradient
algorithm, the prediction error algorithm achieves significantly better performance at a
much faster convergence rate since the Hessian information is utilized in the search. The
BPA however has computational advantages. Consider a generic neural network with a
total of p neurons, and let the number of parameters of each node be ng ;o where 1 < 7 <p.
The total number of parameters in the network is therefore

p
ne =) ne, (52)
=1

The computational complexity of the BPA is of the order of ng while the complexity of the
prediction error algorithm can be shown to be of the order of (ne)?. Another important
advantage of the BPA is that the algorithm is a distributed learning procedure and weight
updating is carried out locally. This is coherent with the massively distributed computing
nature and parallel structure of neural networks.

The PPEA is also a distributed learning procedure that is a trade-off between the high
performance of the full prediction error algorithm and the low complexity of the BPA.
The recursive version of the PPEA is described here. For the generic network of P neurons
and np outputs, local learning is achieved using

e(k) = y(k) — 9(k)

%(0) = 3]
Bi(k) =} [Bi(k = 1) = Bk = DW(0) (A + WE0B, (6 ~ D, (8) ™ W7 (A (k — )]
©;(k) = 0;(k — 1) + P;(k)¥;(k)e(k)

(53)

where 1 < j < p, (k) is the network output vector computed given the previous parame-
ter estimate, ©; is the parameter vector of the jth node, I is the no x ng identity matrix,
and A is the forgetting factor. Essentially, the PPEA consists of many sub-algorithms,
each one associated with a neuron in the network. The BPA can be derived from this
PPEA by replacing all the P; matrices with appropriate diagonal matrices [38].

By utilizing “local” or approximate Hessian information contained in the P;(k) matri-
ces, the PPEA offers significant performance improvements over the BPA. Computational
complexity of the PPEA is of the order of fig where

ng = i: (n@J)z (54)

Although this is more complex than the BPA, the increase in computational requirements
per iteration can often be offset by a faster convergence rate so that overall the PPEA
is computationally more efficient. We demonstrate better performance and faster conver-

gence of the PPEA over the BPA by considering a real system identification application
taken from [11].
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Example 3.

The data was generated from a single-input single-output nonlinear liquid level system.
The system consists of a DC pump feeding a conical flask which in turn feeds a square
tank. The system input u(k), the voltage to the pump motor, and the system output y(k),
the water level in the conical flask, are plotted in figure 7. A one-hidden-layer feedforward
network with 5 hidden neurons was employed to model this real process and the network
input vector was chosen to be

x(k) = [y(k=1) y(k—2) y(k —3) u(k —1)---u(k —5)] (55)

The network structure was thus specified as 8-5-1, giving rise to ng = 50. The hidden node
activation function was the sigmoid function (41) and initial weights were set randomly
between -0.3 to 0.3. For the PPEA, all the P; matrices were initialized to 100.07 with [
being identity matrices of appropriate dimensions. A variable forgetting factor

A(k) = 2oA(k = 1) + (1.0 = Xo) (56)

was used with A(0) = 0.95 and Ao = 0.99. For the BPA, an adaptive gain of 0.01 and a
momentum coefficient of 0.9 were found to be appropriate. The evolutions of the mean
square error in dB’s obtained by the BPA and the PPEA are depicted in figure 8.

5.2 Pruning oversized network models

Choosing a proper network size is critical for dynamic system modelling using neural
networks. If the network is too small, it will not be able to capture the underlying
structure of the dynamic system. On the other hand, if the network is too big, it may
simply fit to the noise in the training data, resulting in a poor generalisation capability.
According to the parsimonious principle, the smallest network that fits the data should
be chosen in order to obtain good generalisation performance. If no prior knowledge is
available, a proper network size has to be determined by trial and error. In the training of
feedforward networks, one can start with a small network and gradually increase the size
by adding more hidden and/or input nodes until the performance stops improving. Using
a separate validation data set to test the model performance can often help to determine
an appropriate network size.

Even when such a systematic approach is adopted, the final fully connected network
model may still contain a large number of “redundant” weights which can be eliminated
without affecting the network modelling capability. Prunning refers to the process of delet-
ing redundant or insignificant weights in an oversized network model and is an effective
technique to improve generalisation properties. The algorithm based on the C-criterion
(18), discussed in section 3, is a powerful tool to prune oversized networks. The algorithm
belongs to the approach utilizing complexity regularisation since (18) contains a measure
of model complexity. A drawback of this algorithm is its computational cost. When the
size of the full network is very large, the computation of the Hessian matrix is expensive
and the stepwise elimination procedure further adds a considerable computational bur-
den. A popular and computationally much simpler method for pruning is known as the
“optimal brain damage” (OBD) method [13].
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In the OBD method, pruning is based on the saliency measure of network weights.

Let J be the cost function used for network learning and 6; be a generic network weight.
The saliency of 8; defined by the OBD method is

Notice that -g%% is a diagonal element of the Hessian matrix. The pruning process of the
OBD method is as follows. The network is first trained and the saliencies of all the weights
are computed using (57). The weights with the smallest saliency are then deleted and the
reduced-size network is retrained. The procedure may need to be repeated several times
before a final pruned network model is obtained. ‘

If the standard BPA is used for training, the second derivations g—;‘% need to be calcu-

lated separately in order to compute the saliencies of the weights. Notice however that if
the batch version of the PPEA [38] is employed as the training algorithm, the diagonal
elements of the (approximated) Hessian matrix are readily available and the computa-
tion of saliency (57) requires little extra cost. The detailed batch PPEA can be found
in [11],[38] and will not be repeated here. We use the following example to demonstrate
the combined approach of the batch PPEA training and pruning based on the saliency
measure.

Example 4.

This is the same liquid level system which was studied in Example 3. The same 8-5-1
feedforward network was employed and all the 1000 data points were ued as the training
data. This fully connected 8-5-1 network had a total of 50 weights or parameters. The
batch PPEA [38] was used to train the network model with the performance criterion

N
J(@)=5108(Q(@), Q(O)= 5> (K e) (58)

After the training, the mean square error Q(©) of the fully connected network model
over the training data set was -26.74 dB. Table 5 summarizes the weight values and the
corresponding saliencies of this fully connected network model.

By inspecting the saliency values given in table 9, 1t was concluded that any saliency
smaller than 1.0 could obviously be regarded as insignificant and the corresponding weight
could be deleted. The saliency threshold was therefore set to 1.0 and this resulted in 11
weights (underlined in table 5) being eliminated. After retraining, the mean square error
of the pruned network model over the training data set was -26.67 dB. To compare the

generalisation performance of the two network models, we examined the iterative network
model output defined as

Ja(k) = farp(xa(k)) (59)
where

Xa(k) = [Ja(k — 1) Ja(k —2) Ju(k ~ 3) u(k —1)---u(k - 5)]" (60)

Notice that during learning, the network input x(k) contained past system inputs and
outputs. In generating ga(k), the network was purely driven by the system inputs. If the
trained model fp really captured the system structure, 74(k) should be able to follow
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the system output y(k) closely. The iterative network outputs of the fully connected and
pruned network models are plotted in figure 9. The results shown in figure 9 clearly
demonstrate that the pruned smaller network has superior generalisation performance
over the fully connected network model.

6 Linear-in-the-parameters approach

Neural networks are never truly linear-in-the-parameters. The class of basis-function neu-
ral networks, such as the RBF and FBF networks, only become linear-in-the-parameters
after a separate mechanism has been used to fix or to select the basis functions. For this
class of neural networks, learning can be “decomposed” into two phases. In the first phase,
the hidden layer which is a set of basis functions is determined. Often this is done using
some simple and efficient unsupervised method. The second phase of learning is a pure
linear learning problem and can easily be solved. The linear-in-the-parameters approach
for neural network learning really refers to this two-stage approach. The main advantage
of this approach is that it avoids complicated nonlinear gradient-based learning. We will
use the RBF network as an example to illustrate this learning approach. The techniques
discussed can be applied to other basis-function networks such as the FBF network.

For the RBF network, there are two basic methods to avoid learning based on complex
nonlinear optimisation. The first method chooses the RBF centres from the training
inputs. Learning is formulated as a problem of linear subset model selection, and the OLS
algorithm discussed in section 3 provides an efficient tool for constructing parsimonious
RBF networks [16]. Other variants on this theme include the use of mutual information
[63] and genetic algorithms [64] to configure the RBF netowrks. In the second method,
RBF centres are first obtained using the unsupervised x-means clustering algorithm and
linear RBF weights are then learnt using the standard least squares or least mean square
algorithm [52],[65]. If a width parameter is required, it is estimated using some heuristic
rules [52]. We discuss these two methods here with an emphasis on recent improvements.

6.1 Regularised orthogonal least squares learning

Assume that we have a training set of N samples {y(k),x(k)},. If each input vector
x(k) is used as a RBF centre, we have a total of ngy = N basis functions. The desired out-
puts y(k), the RBF network model outputs and the errors can be collected together in the
matrix form (23). The OLS algorithm can readily be applied to construct a parsimonious
subset network model from this full model [16]. A well constructed parsimonious model
often has better generalisation properties and suffers less from overfitting in a noisy en-
vironment. A technique to improve generalisation of over-parameterised neural networks
is regularisation [21],[22]. For practical purposes, it is highly advantageous to combine
regularisation techniques with parsimonious construction algorithms, and a regularised
OLS (ROLS) algorithm has recently been derived [24],[25].

The usual least squares criterion in certain circumstances is prone to overfitting. When
the data are highly noisy and the model size is large, the problem can be serious. The
regularisation method improves generalisation by adding a penalty function to the cost
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function. Thus, the cost function NJ>(@®) = trace (ETE) of (30) is modified into

Jr(®;€) = trace (ETE) + £(penalty function) (61)

where £ is a regularisation parameter. The simplest penalty function, known as the
zero-order regularisation, is trace (@TG)). The zero-order regularisation is a technique

equivalent to the weight-decaying in gradient descent methods for the MLP [66]. It is also
known as the ridge regression in the statistical literature [67].

In the derivation of the ROLS algorithm, the following zero-order regularised error
criterion is actually used

Jr(G;€) = trace (E7E + ¢GTG) (62)

where G is the orthogonal weight matrix related to ® by (29). Notice that the use of
trace (GTG) as the penalty is equivalent to the use of trace (@T@). The choice of the

regularised error criterion (62) however has considerable computational advantages. This
is because this cost function can be decomposed into

trace (ETE + Z;'GTG) = trace (YTY) Z (i g; 1) (W}"Wj + {) (63)

=1 Ni=1

where w; are the orthogonal basis vectors. Similar to the case of the OLS algorithm, we
can define the regularised error reduction ratio due to w; as

[rerr]; = (il gﬁ,—) (W;‘rw; - 5) [trace (YTY) (64)

Based on this ratio, significant basis functions can be selected in a forward-selection
procedure exactly as in the case of the OLS algorithm [24],[25].

The appropriate value of the regularisation parameter ¢ depends on the underlying
system that generates the training data and the choice of basis function ¢(-). How to
choose a good value of ¢ has been addressed in the statistical literature [67],[68]. The
optimal value of ¢ can be determined based on the Bayesian evidence procedure [23].
Applying this Bayesian approach to the ROLS algorithm results in the following iterative
procedure for estimating £. Given an initial guess of £, the algorithm constructs a network
model. This in turn allows an updating of ¢ by the formula

‘= 4  trace (ETE)
N —~ trace (GTG)’

(65)

where
ng
e
IZ \:Avi'"‘;’vt —i— £
is known as the number of good parameter measurements [23], and ng is the number of
basis functions in the selected network model. After a few iterations, an appropriate £
value can be found. We use two examples taken from [25] to demonstrate the effectiveness

of the ROLS algorithm.

(66)
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Example 5.

This simple example was designed to illustrate the problem of overfitting and the power
of the regularisation technique. In this example, the RBF network with Gaussian basis
function and a width p = 0.2 was used to approximate the scalar function

f(z)=sin(27rz), 0 <z <1 (67)

One hundred training data were generated from f(z) + e, where z was uniformly dis-
tributed in (0, 1) and the noise e had a Gaussian distribution with zero mean and standard
deviation 0.4. A separated test data set was also generated for z = 0,0.01,---,0.99, 1.00.
The training data and the function f(z) are plotted in figure 10. The training data set
was very noisy and highly ill-conditioned.

The ROLS algorithm selected 15 centres from the training set. Figure 11 depicts the
mean square error as a function of log;,(¢) for the both training and testing data sets.
The optimal value of £ for this example was approximately 1.0. However, for a large range
of £ values, the mean square error over the testing set was quite flat, indicating that the
performance of the ROLS algorithm was fairly insensitive to the precise value of ¢ in
this large region. When the evidence formula (65) was used to estimate &, £ converged
approximately to 1.0. Figure 12 shows the network mapping constructed by the ROLS
algorithm with A = 1.0. As a comparison, the network mapping constructed by the
OLS algorithm is given in figure 13, where overfitting can be clearly seen. This example
demonstrates that subset selection alone is not immune to overfitting when data is highly
noisy, and a combined regularisation and subset selection approach is often desirable.

Example 6.

This was the time series of annual sunspot numbers. The sunspot time series over the
years 1700-1979 is depicted in figure 14. The data from 1700 to 1920 were used for
training, and the multi-step preditions were then computed over the years 1921-1955 and
the years 1921-1979 respectively. In a previous study [69], the OLS algorithm was used
to construct a RBF network predictor with thin-plate-spline basis function (44). The
algorithm selected 25 centres, and the predictive accuracy of the resulting RBF model is
shown in figure 15. It should be emphasized that the performance of this RBF network
constructed using the OLS algorithm is better than some other nonlinear models fitted
to the time series [27],[70].

To demonstrate that regularisation can further improve performance, the ROLS algo-
rithm was used to construct a RBF network of 25 centres based on the same full network
model with £ = 107. This value of regularisation parameter was found using the evidence
procedure. The predictive accuracy of the network model obtained using the ROLS al-

gorithm is also shown in figure 15, where it is clearly seen that the ROLS algorithm has
better generalisation properties.

6.2 Enhanced clustering and least squares learning

A popular learning method for RBF networks is the clustering and least squares learning
[52],(65]. The RBF centres are obtained by means of a k-means clustering algorithm
while the network weights are learnt using the least squares algorithm. The s-means
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clustering algorithm is an unsupervised learning method based only on input training
samples. It partitions the input data set into ny clusters and obtains the cluster centres
by attempting to minimize the total squared error incurred in representing the data set
by the ng cluster centres [71]. The traditional x-means clustering algorithm can only
achieve a local optimal solution, which depends on the initial locations of cluster centres.
A consequence of this local optimality is that some initial centres can get stuck in regions
of the input domain with few or no input patterns, and never move to where they are
needed. This wastes resources and results in an unnecessarily large network.

An improved k-means clustering algorithm was recently proposed [72], which over-
comes the above-mentioned drawback. By using a cluster variation-weighted measure,
the enhanced k-means partitioning process always achieves an optimal centre configura-
tion in the sense that after convergence all clusters have an equal cluster variance. This
property ensures that centre resources are not wasted and performance does not depend
on the initial centre locations. This enhanced x-means clustering algorithm can readily
be combined with the least squares algorithm to provide a powerful learning method for
constructing RBF networks [73]. We describe this combined learning method here.

The RBF network structure considered is the normalized Gaussian RBF network

Frmr(x(R) = Y- 0545(8), 1< < no (63)
where
(1) = 2l = /o) -

- T exp(—|x(k) — ci[2/a?)
A normalized Gaussian basis function features either localized behaviour similar to that
of a Gaussian function or nonlocalized behaviour similar to that of a sigmoid function,
depending on the location of the centre [74]. This is often a desired property.

The RBF centres are learnt using the following enhanced k-means clustering algorithm
cj(k+1) = e;(k) + M;(x(k)) (ne(x(k) — ¢;(k))) (70)

where 0 < 7. < 1.0 is a learning rate, the membership function M;(x(k)) is defined as

if v;]|x —c¢j||® < —ol2 :
Mj(X) — { 17 if 'UJ”x CJ” = 'UJHX C[” for all [ % g (71)

0, otherwise

and v; is the variation or “variance” of the Jth cluster. To estimate variation v, the
following updating rule is used

o3k +1) = av; (k) + (1 = @) (M; (x(k)) [x(k) — ¢;(k)1?) (72)

The initial variations, v;(0), 1 £ j < ng, are set to the same small number, and « is a
constant slightly less than 1.0. '

The learning rate 7, can either be fixed to a small constant or self-adjusting based on
an “entropy” formula [72]

Ne = I_H(ﬁlv"'aﬁnﬁ)/log(nk’) (73)

R
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where
5 ny

ny
H(’t_)l,"',l_?nH) zz—ﬁjlog(ﬁj) with ‘I_)J' = Uj/Z'U( (74)
g=1 =1
The widths, 0%, 1 < j < ng, can be calculated, after the clustering process has converged,
from the variances of the clusters. Since the optimal x-means clustering distributes the
total variation equally among the clusters, a universal width can be used for all the nodes.
The network weights, 6;;, are then learnt using the usual least squares algorithm.

Example 7.

This was a simulated two-dimensional autonomous system taken from [73]. The data were
generated using

y(k) = (0.8—0.5exp(—y*(k—1))) y(k—1)— (0.3 +0.9exp(—y*(k — 1)) y(k - 2)
+0.1sin(my(k— 1)) + e(k) (75)

where the Gaussian white noise e(k) had a zero mean and variance 0.01. 2000 samples of
the time series are depicted in figure 16. The first 1000 points were used as the training
set and the last 1000 points as the test set. The enhanced clustering and recursive least
squares algorithm was used to construct a RBF network model. Figure 17 shows the
mean square error as a function of the centre number.

The results of figure 17 indicated that 8 centres were sufficient to model this time series.
The noise-free system is a limit cycle depicted in figure 18, where the 8 centre locations
obtained by the enhanced x-means clustering algorithm from noisy data are also plotted.
From figure 18, it can be seen that an optimal centre configuration was obtained. When
the network model output was fed back to the input, the iterative network model output

9a(k) = frer(fa(k — 1), 94(k — 2)) (76)

generated a limit cycle which was indistinguishable from the system limit cycle. The errors
between the noise-free system outputs and the iterative network model outputs are given in
figure 19. The results obtained using the enhanced clustering and least squares algorithm

are better than some previous results [65],(75]. Furthermore, the present method requires
a smaller network size.

There are several alternatives to the x-means based clustering algorithms including
the mean-tracking algorithm [76] and fuzzy clustering schemes [77]. All of these provide
excellent results and avoid the disadvantages of the basic k-means method.

6.3 Adaptive on-line learning

Recursive versions of the OLS algorithm have been derived which update both the model
structures and the parameters of nonlinear models on-line. These have been applied to
both NARMAX model identification and the training of RBF networks [41],[42],[78],[79].
The new algorithms operate on a window of data and employ a Givens routine to minimise
the loss function at every selection step by selecting significant regression variables and
computing the parameter estimates in a way which maintains the orthogonality of the
vector space. These algorithms can be used as part of an efficient adaptive procedure to
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track the variations of both model structure [41],[79] or network topology [42],[79] and
update the associated parameters or weights on-line.

7 Identifiability and local model fitting

Experiment design for linear system identification is well established [1]. Basically, the
input signal chosen for a linear identification experiments should be persistently exciting
to ensure identifiability. Persistent excitation in the context of linear system identification
means that the input should excite all the frequencies of interest in the system, and this can
be shown to relate to the second-order statistics of the input signal. For nonlinear system
identification, however, the second-order statistics of the input are no longer sufficient to
determine identifiability and in general the input probability density function or higher-
order statistics are needed. Thus the design of inputs for nonlinear system identification
is a very complex problem.

Some useful results have been given in [80]. Roughly speaking, the definition of per-
sistent excitation in the context of nonlinear system identification should be modified as:
an input signal is persistently exciting if the input excites all the frequencies of interest
in the system and also excites the system over the whole amplitude range of operation.
We use a simple example taken from [81] to illustrate the relationship between persistent
excitation and identifiability.

Example 8.

A nonlinear digital communication channel can be represented by
y(k) = fo(u(k), -, u(k — ny)) + e(k) (77)

where the input u(k) is a white sequence taking values from the set {#1}, and the noise
e(k) is uncorrelated with u(k). Since u(k) is white, it contains all frequency components,
and is an ideal input signal for identifying the linear model of any order n,

Nu
g(k) =3 Ou(k — 1) (78)
1=0
For nonlinear identification, the input should also excite a sufficient range of amplitudes.
The binary nature of u(k) therefore represents a worst scenario and, as a consequence,
parameters in some nonlinear models may not be identifiable. For example, consider the
following channel model

§(k) = Z{;Eiu(k—fi)ﬁ-ii:Bi,ju(k—i)u(k—j)—{—i:iiGi‘j,;u(k-i)u(k—j)u(kml) (79)

1=0 j=1i 1=0 j=1 [=;

The rank of the 19 x 19 autocorrelation matrix of the estimator input vector is only 8. It
is therefore impossible to identify all the 19 parameters in (79).

The requirement of exciting a sufficient range of amplitudes is difficult to meet in
practice. Normal operation of an industrial plant is often concerned with controlling the
plant close to some operating points. Perturbing signals that the experimenter injects
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into the plant can only have a small amplitude in order not to cause large disturbances to
the operation of the plant. Such a small perturbing data set is bad for nonlinear system
identification. If normal operation of the plant includes several operating levels, several
sets of small perturbing data records can be obtained without violating the amplitude
constraints for normal operation. These data records together may cover a sufficient
range of amplitudes. This is illustrated in figure 20. A “global-model” fitting procedure
[34] can then be applied to obtain a nonlinear model that is valid in the whole operating
region of interest.

Using a single nonlinear model to represent a nonlinear system obviously has many
advantages. But this depends on whether the system under investigation can be rep-
resented by a single “global” model. Typically, many nonlinear systems require more
than one model to capture different dynamic behaviour over different operating regions.
Fitting several local models [82] to a system may be particularly useful for modelling
such systems, and this can be included in the framework of the threshold NARMAX
(TNARMAX) model [34]. A general TNARMAX model is given by

§(k) = fO(x(k); ©)), if x(k) e RV, 1<1< M (80)

where R(") are given regions of the model input space X, f)(-) are some nonlinear map-
pings on R, and ©; are the parameter vectors of local models f()(.) respectively.

A key step in TNARMAX modelling is a proper partition of the model input space X
into M, regions. A simple and effective way is to use the enhanced x-means clustering
algorithm. The data set is divided into M clusters as illustrated in figure 21. Each
data cluster is then modelled. Various models and identification schemes such as those
discussed previously can be employed in this local model fitting. In order to provide a
smooth transition from one local model to another, regularisation techniques should be
adopted in local model identification, and the second-order regularisation or curvature-
driven smoothing schemes [21] are particularly useful. But care needs to be exercised if
local models are to provide a representative model of a nonlinear system [82].

8 Conclusions

An artificial neural network which has the ability to learn sophisticated nonlinear rela-
tionships provides an ideal means of modelling complex nonlinear systems. In this chapter
we have summarised several important results relating to nonlinear dynamic system mod-
elling using neural networks and highlighted the connections between the traditional sys-
tem identification approach and the neural network modelling approach. Neural network
research has matured considerably during the past decade and two areas, constructing
parsimonious networks and improving generalisation properties, have attracted exten-
sive interest. The results of this research are particularly relevant to dynamic system
modelling, since what really counts is how well a model captures the underlying system
dynamics not how good it fits to the (noisy) observed data.

It is the authors belief that model structure determination will remain a key future
research topic. A crucial issue is finding relevant model inputs. Often inputs to a neural
network model

X =[x Tp - 2y, )7 (81)
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are over complicated in the sense that only a subset of these inputs

Xs = [z, Tp, -+ 27:,,3]T (82)
are significant and should only be considered as inputs. Development of efficient and
reliable methods to detect relevant model inputs is of fundamental importance because
a small reduction in the network input dimension can descrease the network complexity
considerably. A ‘useful scheme for determining important inputs is presented in [83]. A
second important issue is that many systems are naturally composed of subsystems and
ideally neural network models should be able to reflect this structural information. For
example, a nonlinear system of inputs z,z,, z3, 24 may simply consist of two additive
subsystems

flzisoam,m) = fi(zy,z4) + fa(za, z3) (83)

If this structure information can be captured, a significant reduction in the network com-
plexity can be achieved. Some neural network models may be inherently better in deal-
ing with this kind of system identification problem than others, and previous research
[17],[55],[19] provides a useful starting point for further investigation.

In view of past research results, we can confidently say that both the theory and
practice of nonlinear system identification has advanced considerably during the past
decade. Future research will involve multi-disciplinary approaches, including traditional
control engineering, nonlinear dynamical systems theory and neural networks.
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Numerator py constant Denominator pp constant
y(k—1) y(k—1)
u(k —1) u(k —1)
e(k—1) e(k—1)
y*(k—1) ' y*(k—1)
y(k = u(k — 1) y(k - Lu(k —1)
y(k—1)e(k —1) y(k—1)e(k —1)
ul(k—1) u?(k —1)
u(k—1)e(k—1) u(k — 1)e(k — 1)
e(k—1) e(k—1)

Table 1: Full Rational Model Set for Example 1.

Elimination step Eliminated parameter C-criterion value

full model -2678.4
1 u(k —1)e(k —1) -2682.4
2 yi(k—1) -2686.3
3 u?(k - 1) -2690.0
4 constant -2693.5
5 u(k —1)* -2697.3
6 e(k—1) -2700.6
7 e(k—1)* . -2703.3
8 y(k—1)" -2705.7
9 y(k—1)e(k — 1) -2708.2
10 y(k—1u(k - 1) -2710.3
i u?(k —1)* -2712.0
12 e(k—1) -2714.2
i3 e(k—1)" -2715.4
14 y(k—1)e(k —1) -2695.5

Table 2: Model Reduction Using Stepwise Backward Elimination for Example 1. The
underline indicates where the procedure stops and * denotes a denominator parameter.

Model terms Parameter estimates

Numerator y(k—1) 0.61074
u(k —1) 0.61245

y(k—1u(k—1) 0.60968

y(k—1)e(k —1) 0.58427

Denominator " constant 0.60820
yi(k—1) 0.61379

u(k —1)e(k —1) 0.55981

Table 3: Final Subset Rational Model for Example 1.
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Model terms selected  Parameter estimates [err];

Initial iteration u(k — 2) 0.10110E+1 0.67104E+0
n = 0.032 y(k—1) 0.63448E+0 0.28703E+0
u?(k —1) 0.86768E-1 0.85520E-2
y(k — 3)u(k —2) -0.20542E-1 0.63062E-3
u(k —3) -0.64772E-1 0.55407E-3
y(k —2) -0.68662E-1 0.15841E-2

o? 0.50169E-1

olla? 0.30603E-1
1st iteration u(k — 2) 0.10073E+1 0.67104E+0
n = 0.03 y(k—1) 0.50464E+0 0.28703E4-0
u?(k —1) 0.92469E-1 0.85520E-2
e(k—1) 0.40841E+0 0.49355E-2

o? 0.44924E-1

atjed 0.27404E-1
2nd iteration u(k — 2) 0.10052E+1 0.67103E+0
n = 0.027 y(k=1) 0.50226 E+0 0.28703E+0
u?(k—1) 0.90645E-1 0.85520E-2
e(k —1) 0.49454E4+0 0.61062E-2
u(k — 1)e(k —2) 0.22055E+0 0.14793E-2

o? 0.40719E-1

ol/al 0.24839E-1
3rd iteration u(k — 2) 0.10045E+1 0.67104E4-0
n = 0.025 y(k—1) 0.50171E+0 0.28703E4-0
u?(k —1) 0.90395E-1 0.85520E-2
e(k—1) 0.54986E+0 0.68936E-2
u(k — 1)e(k — 2) 0.25074E+0 0.17351E-2

o2 0.40230E-1

o?/ 0'5 0.24540E-1
4th iteration u(k — 2) 0.10033E+1 0.67047E+0
7 =0.025 y(k—1) 0.50289E+0 0.28735E+40
u?(k—1) 0.90966E-1 0.855640E-2
e(k—1) 0.54796E+0 0.69244E-2
u(k — e(k — 2) 0.23848E+0 0.16174E-2

o? 0.41020E-1

ol/ol 0.25073E-1
5th iteration u(k —2) 0.10032E+1 0.67047TE+0
n = 0.0251 y(k—1) 0.50281E+0 0.28735E+0
w2 (k = 1) 0.91097E-1 0.85640E-2
e(k—1) 0.54843E+0 0.69317E-2
w(k—1je(k—2) 0.23785E+0 0.16098E-2

o2 0.41019E-1

o?/o? 0.25072E-1

Table 4: Iterative Procedure of Subset Model Selection for Example 2.




To appear in Advances in Control and Dynamic Systems, 1996

S e ]

35

node |link | weight | saliency | node [link | weight ] saliency
output 1 -11.66116 | 63595.75425 || hidden 3 | 0 5.20112 6.10191
2 16.42509 657.95127 1 3.69828 3.66240

3 0.28607 33.88771 2 | -0.30648 0.02250

4 1-28.59449 | 1152.50990 3 [-0.39791 0.03398

5 | 26.22748 | 58284.29225 4 9.21591 3.19361

5 |-8.45146 2.39434

6 4.75899 0.70737

7 1-3.67219 0.40132

8 1.65329 0.07686

hidden 1 0 7.81765 881.21335 || hidden 4 | 0 |-5.39978 | 10370.91985
1 -4.33839 872.64808 1 1.96907 | 3646.88325

2 -6.75760 | 2511.20255 2 2.99032 | 9345.46625

3 12.57424 | 9719.85827 3 | -6.47447 | 45683.86413

4 5.54735 100.48206 4 | -0.64769 22.94355

5 -1.23030 4.72108 5 |-1.65110 158.83720

6 8.51095 246.69947 6 | -3.42483 901.78776

7 -5.88247 150.03042 7 2.20655 471.78389

8 1.35375 6.89820 8 [-0.17182 2.75034

hidden 2| 0 -5.08538 | 5593.24296 || hidden 5| 0 |-0.26397 | 1342.97186
1 1.69406 1548.08633 1 0.10828 88.46429

2 2.72633 | 4352.99617 2 0.04182 13.22511

3 -6.10927 | 22012.26445 3 | -0.00407 0.12590

4 0.13381 0.54297 4 0.04258 3.49782

5 -2.33698 187.10634 5 | -0.00018 0.00006

6 -2.94343 399.16156 6 |-0.01648 0.52305

7 2.00734 224.53101 1 0.01038 0.20746

8 -0.17158 1.60094 8 |-0.00493 0.04687

Table 5: Fully Connected 8-5-1 Feedforward Network Model Obtained Using Batch PPEA

for Example 4. The underlined weights are to be eliminated.
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noise | e(k) = [ey(k) - - - em(k)]T

(unobservable)
u(k) = [u1(k) - - u- (k)" Nonlinear y(k) = [y (k) -+ ym (R)]"
] dynamic e
input system output

Figure 1: Block Diagram of Multivariable Nonlinear Dynamic System.
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Figure 2: Multilayer Perceptron (a) and Model of A Neuron (b).
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Figure 3: Radial Basis Function Network (a) and Model of A Basis Function (b).
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Figure 4: MIMO Fuzzy System Architecture.
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feedback input

Figure 5: Recurrent Network Obtained by Feeding Back the Network Qutput to the Input.
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Figure 6: Recurrent Network with Internal Feedback (a) and Two Kinds of Connections

(b).
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Figure 7: Inputs and Outputs of A Liquid Level System.
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Figure 8: Evolution of Mean Square Error (Liquid Level System).
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Figure 9: Iterative Model Ouput (Dashed) Superimposed on Liquid Level System Output
(Solid). (a) Full network model; (b) Pruned network model.
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Figure 11: Mean Square Error as A Function of the Regularisation Parameter for Exam-
ple 5.
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Figure 13: Network Mapping Constructed by the OLS Algorithm for Example 5.

I




To appear in Advances in Control and Dynamic Systems, 1996 43

200 - - . " -
150 | i
100 |

50 4

sunspot number

o . A A s
1700 1750 1800 1850 1900 1950 2000
year

Figure 14: Time Series of Annual Sunspot Numbers.
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Figure 15: Normalised Variances of Multi-Step Prediction Errors for Sunspot Time Series.
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y(k-1)
o

-1.5-1-0.50 0.5 1 1.5
v (k)

Figure 16: Noisy Observations of the Two-Dimensional Time Series Example.
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Figure 17: Mean Square Error as A Function of Centre Number for the Two-Dimensional
Time Series Example.
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Figure 18: Noise-Free Two-Dimensional System (Limit Cycle) and RBF Centre Locations
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Figure 19: Iterative Network Model Errors for the Two-Dimensional Time Series Example.
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Figure 20: Input Design for Nonlinear System Identification. Perturbing data sets A to
D collected together excite the amplitude range of interest.

Figure 21: Model Input Space Partition Using Clustering.




