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Abstract

This paper presents a comparative investigation into the dynamic characterisation of
flexible manipulators on the basis of accuracy, computational efficiency and computational
requirements using finite difference (FD) and finite element (FE) methods. A constrained
planar single-link flexible manipulator is considered. finite-dimensional simulations of the
manipulator are developed using FD and FE methods. The simulation algorithms thus
developed a;e implemented on two computing domains and their performances on the
basis of accuracy in characterising the behaviour of the manipulator and computational

efficiency are assessed.

Key words: Discrete simulation, finite difference method, finite element method, flexible

| manipulators.
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1 Introduction

Flexible manipulator systems offer several advantages over their traditional counterparts.
These include light weight, faster system response, less power consumption, requiring
smaller actuators, more manoeuvrable, more transportable, reduced non-linearity owing to
elimination of gearing, safer operation due to reduced inertia and in general less overall cost
(Azad, 1995; Meng and Chen, 1988). However, the control of flexible manipulators is
made complicated by the highly non-linear dynamics of the system which involve complex
processes. Therefore, flexible robots have not been much favoured, in the past, in
production industries as the manipulator is required to have a reasonable end-point
accuracy in response to input commands. If the advantages associated with lightweight are
not to be sacrificed, efficient controls have to be studied and developed.

In order to control flexible manipulators efficiently, they must be modelled accurately.
A further requirement is the efficiency in obtaining the model. An accurate model will result
in a satisfactory and good control. Various approaches have previously been developed for
modelling of flexible manipulators (Azad, 1995). These can be divided into two categories.
The first approach looks at obtaining approximate modes by solving the partial differential
equation (PDE) characterising the dynamic behaviour of a flexible manipulator system.
Previous investigations at utilisation of a linear state-space model for a single-link flexible
manipulator have shown that the model eigen values agree well with experimentally
determined frequencies of the vibratory model (Cannon and Schmitz, 1984; Hastings and
Book, 1987). The second approach uses numerical analysis methods to solve the PDE.
These include the finite difference (FD) method (Tokhi and Azad, 1995) and the finite
element (FE) method (Meng and Chen, 1988; Usoro et.al, 1986). In this investigation the
FD and FE methods are considered. These methods allow the development of suitable
simulation environments that can be utilised for real-time dynamic characterisation of the
system and for test and verification of controller designs.

The FD method has previously been utilised in the dynamic characterisation of flexible

beam and flexible manipulator systems (Azad, 1995; Kourmoulis, 1990; Tokhi and Azad,

1995). The method involves discretising the system into several sections (segments) and
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developing a linear relation for the deflection of end of each segment using FD
approximations. This method is simple in mathematical terms and is found to be more
suitable for uniform structures.

The FE method has been successfully used to solve many material and structural
problems (Meng and Chen, 1988; Usoro et.al, 1986). The method involves discretising the
actual system into a number of elements whose elastic and inertia properties are obtained
from the system. This provides approximate static and dynamic properties of the actual
system. the FE method is found to be more suitable for structures of irregular nature with
mixed boundary conditions.

The aim of this work is to investigate the performance of the FD and FE methods in
the simulation of flexible manipulators on the basis of accuracy, computational efficiency
and computational requirements. Not much work has been done on such a comparative
study of the FD and FE methods in the dynamic characterisation of flexible manipulator
systems. A constrained planar single-link flexible manipulator is considered. A finite-
dimensional simulation of the manipulator is developed using FD and FE methods. The
simulation algorithms are implemented on two computing domains and their performances,

on the basis of accuracy and computational efficiency, are assessed.

2  The flexible manipulator systems

The single-link flexible manipulator considered in this paper is described in Figure 1, where,

I, represents the hub inertia of the manipulator. A payload mass M, with its associated

inertia /, is attached to the end-point. A control torque () is applied at the hub by an

actuator motor. The angular displacement of the manipulator, in moving in the
POQ —plane, is denoted by 6(¢). The manipulator is assumed to be stiff in vertical bending
and torsion, thus, allowing it to vibrate (be flexible) dominantly in the horizontal direction.
The shear deformation and rotary inertia effects are also ignored.

For an angular displacement 6 and an elastic deflection u the total (net) displacement

y(x, t) of a point along the manipulator at a distance x from the hub can be described as a

2/21
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function of both the rigid body motion 6(r) and elastic deflection u(x,t) measured from the

line OX;

O™1 P

Figure 1: Description of the flexible manipulator system.

y(x1) = xB(1) + u(x, 1) (1)

The dynamic equations of motion of the manipulator can be obtained using the
Hamilton's extended principle (Meirovitch, 1967) with the associated kinetic, potential and
dissipated energies of the system. The governing equation of motion of the manipulator can

thus be obtained as (Tokhi and Azad, 1996)

4 2
I a°y(x,t) +5 o y(x,1) ()

ox* ot @)

with the corresponding boundary and initial conditions as

#0.9=0 , 1.3¥00 5 8309

" or? o
*y(Lt *y(L t WLt
M, i )'EI g(rs )=0' el ;(rz )=

yx0)=0 , 2&0_,

ox
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where E, p, I and L represent the Young modulus, mass density, area moment of

inertia and length of the manipulator respectively. Equation (2) gives the fourth-order PDE
which represents the dynamic equation describing the motion of the flexible manipulator

with no structural damping.

3  Simulation algorithms

In this section the FD and FE based simulation algorithms of the manipulator are
developed. '

\

3.1 Finite difference algorithm

|

The PDE in equation (2) describing the dynamics of the flexible manipulator system is of a
hyperbolic type and can be classified as a boundary value problem. This can be solved using
‘ an FD method. This involves dividing the manipulator length and movement time each into
suitable number of sections of equal length represented by Ax (x =iAx) and At
(t= jAt), where i and j are non-negative integer numbers, respectivc;ly. For end of each

section (grid-point) a Taylor series expansion is used to generate the central difference

formulae for the partial derivative terms of the response y(x,t) of the manipulator at points

x =iAx, t = jAt (Burden and Faires, 1989; Lapidus, 1982). This gives

9%y(x,1) _ Y =2+ Vi

! or* Ar*
} B’y(x,r) = Yy =2y, + Vi,
1 ox? Ax?
i 84Y(X, t) _ Yisa,j —4)’,41.,' + 63’;'\3' . 4)’f-1,; +Yia,
i 4 4 3)
ox Ax
| BBy(x,t) . Yiva,j — 2yi+l.j-_2yi-].j +¥ia; | :
ox’ 2Ax°
9°y(x,1) = Yottt = 2Yne1i F Yoerjor = Yujr + 2¥nj = Ynjr
ot’ox 2AxAL

where, y; ; represents the response y(x,z) at x = jAx and ¢ = jAt. Note that, a time-space

discretisation is adopted in the evaluation of the response of the manipulator.
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To solve the PDE in equation (2), a set of equivalent difference equations defined by
the central FD quotients to replace the PDE are obtained. The manipulator is divided into a
suitable number of sections of equal lengths and a difference equation, corresponding to
each point of the grid is developed. The known boundary conditions are utilised to

eliminate the displacements of the fictitious points outside the defined interval.
2 4

Substituting for Q—-X and Q from equation (3) into equation (2) and simplifying

or ox*
yields
A
Yigd = _C[yi-z,j + Vi ]"' b[yi—l,j + ¥ ]+ ay,; = Yija T "‘p_'T(b J) 4
where, ¢ =AEl/pAx*, a=2-6¢ and b=4c.

Equation (4) gives the displacement of section i of the manipulator at time step j+1.

Using matrix notation, this can be written as

Yi.j+1 = AYi.j - Yu'.j-l + BF (5)
where,
Yij+ M.j N.j-1
Y2 i1 Y2, Y2, i1
Yu=| : | Y| o Ya=|
yn,j+1 ya,j yn,j—l
m m, my 0 0 0 0 0 0 07
b a -b - 0 0 0 0 0 0
-« b a b -c 0 o 0 0 0
A._: --~ S =
0O 0 0 0 o0 -c b a b -
0 0 0 0 O 0 m, m, m; m,
0O 0 0 0 O 0 my my my my |
i, j)
0 Ar?
F= = ] B=-_
- P
0

The values of m, to m, and m, to m,, in matrix A are determined from the boundary

and initial conditions related to the dynamic equation of the flexible manipulator system

5/21
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(Tokhi and Azad, 1995). Equation (5) is the general solution of the PDE, giving the

displacement of section i of the manipulator at time step j+1, which can easily be

implemented on a digital processor.

It follows from equation (5) that, to obtain the displacements y, ja1> Yaerjur @nd y, o

the displacements of the fictitious points y_, ;, y,,,; and y,,,; are required. These are

obtained using the boundary and initial conditions related to the dynamic equation of the
flexible manipulator system (Tokhi and Azad, 1995). The stability of the algorithm can be
examined by ensuring that the iterative scheme described in equation (5) converges to a
solution. The necessary and sufficient condition for stability satisfying this convergence

requirement is given by 0 < ¢ <0.25 (Kourmoulis, 1990; Tokhi and Azad, 1995).

3.2 Finite element algorithm

Since its introduction in the 1950s, the FE method has been continually developed and
improved (Fagan, 1992; Rao, 1989). The FE method involves decomposing the mechanical
structure into several simple pieces or elements. The elements are assumed to be
interconnected at certain points known as nodes. For each element, an equation describing
the behaviour of the element is obtained through an approximation technique. The
elemental equations are then assembled together to form the system equation. It is found
that by reducing the element size of the structure, that is, increasing the number of
elements, the overall solution of the system equation can be made to converge to the
exact solution.

The main steps in an FE analysis include (1) discretisation of the structure into
elements, (2) selection of an approximating function to interpolate the result, (3) derivation
of the basic element equation, (4) calculation of the system equation, (5) incorporation of
the boundary conditions and (6) solving the system equation with the inclusion of the
boundary conditions. In this manner, the flexible manipulator is treated as an assemblage of

n elements and the development of the algorithm can be divided into three main parts: the

6/21
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FE analysis, state-space representation and obtaining the system outputs. A brief outline of
this process is given below.
Using the FE method to solve dynamic problems leads to the well-known equation

(Rao, 1989)
u(x,1)= N(x)Q(r) (6)
where O(t) and N(x) represent the nodal displacement and shape function respectively.
For the flexible manipulator under consideration, u(x,t) in equation (6) represents the
residual motion.
Substituting for u(x,7) from equation (6) into equation (1) and simplifying yields
y(x.1)=N(x)"Q(1)" )
where

o)’ =[6(t) 0t)]", N(x)'=[x N(x)]

Using the above, the element mass matrix M° and stiffness matrix K can be obtained as
(Mohamed, 1995)

L
M =pA[(N")(N")dx
0

L
K¢ =EI j (B')"B"dx
0

where A and L are the cross-sectional area and length of the manipulator respectively and
B =d*N"[dx*.

The new shape function N° and nodal displacement vector Q° in equation (7)
incorporate local and global variables. Among these, the angle 6(¢) and the distance x are

global variables while N(x) and Q(¢) are local variables when the link is divided into n

n-1
elements. Defining s=x—2!,-, where [, is the length of the ith element, as a local

i=1

variable of the nth element, the new element mass matrix and stiffness matrix can be

obtained for the n elements as (Mohamed, 1995)
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[m(11) m(12) m(13) m(1,4) m(15)]
m(12) 156  22i 54 =131
M" 2% m(13) 221 4 131 =37
m(1,4) 54 13 156 =221
| m(15) =131 =31 221 4" |

0 0 0 0 07
0 12 6 -12 6l
0 6 4P -6 2P
0 -12 -6 12 -6l
0 ol 21> -6l 41 |

where [ is the elemental length and

m(1,1) = 140(pAl* )(3n> —3n+1)
m(1,2) = m(2,1) = 21(pAl)(10n-17)
m(1,3) = m(3,1) = 71(pAl* )(5n - 3)
“m(L,4) = m(4,1) = 21(pAl)(10n - 3)
m(1,5) = m(5,1) = =7(pAl* (5n-2)

Note in the above that, the element mass matrix depends on the element number, whereas
the element stiffness matrix has the same value regardless of the element number. The
element mass and stiffness matrices from above are assembled to obtain system mass and
stiffness matrices, M and K, and used in the Lagrange equation to obtain the dynamic

equation of the flexible manipulator as
MO(1)+ KQ(r) = F(r) ®)

where F(t) is the vector of applied forces and torques and
Qo(t)= [9 u 6 . .. Ui Gpu

The M and K matrices in equation (8) are of size mxm and F(t) is of size mx1,

m = 2n+1. For the manipulator, considered as a pinned-free arm, with the applied torque

T at the hub, the flexural and rotational displacement, velocity and acceleration at the hub

are zero at r= 0 and the extemal force is F(r)=[t 0 --- 0] . Moreover, in this work

it is assumed that Q(0) = 0.

8/21
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The matrix differential equation in equation (8) can be represented in a state-space

form as
v=Av+Bu
y=Cv+Du
where
A Om 1' Im B Omxl
=|===-="= 4=== =|=-==
_M7K 10, M~
c=[0,11].  D=[0ml

0, isan mXm null matrix, 7, is an mXxXm identity matrix, 0, is an mx1 null vector,
u=[t 0 - O]
V":[e u, 6, - Upi 0, .
é Uz é: Urm én+1]
Solving the state-space representation gives the vector of states v, that is, the angular,

nodal flexural and rotational displacements and velocities.

4 Implementations and results

To implement the FD and FE algorithms an aluminium type flexible manipulator of

dimensions 960 x19.23x3.2 mm?, mass density 2710 kg/m®, inertia 0.0495 kgm’ and
[=51924 x10™ m? is considered. The first three modes of vibration of the manipulator,
obtained analytically, are at 12.73 Hz, 36.98 Hz and 89.65 Hz (Azad, 1995). For simplicity
purposes, the effects of hub inertia and payload are ignored. The simulation algorithms thus
developed are coded within MATLAB (The Math Works, 1995) and implementsd on two
general purpose computing domains, namely a 486DX (33 MHz) PC and a Sun 4-ELC (33
MHz) SPARC station. A bang-bang input of amplitude 0.1 Nm, shown in Figure 2, is used

as input torque and the system response is obtained and analysed over a period of 12 sec.

9/21
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Figure 2: Input torque applied at the hub of the manipulator. 3

4.1 Finite difference simulation

To investigate the accuracy of the FD simulation in characterising the behaviour of the
system, the algorithm was implemented on the basis of varying number of sections along
the link from 5 to 20. Figure 3 shows the simulated time-domain and corresponding
spectral density of the system response at the end-point using 20 sections. It is noted that
the first three modes of vibration of the system occur at 12.4352 Hz, 41.3472 Hz and
81.7417 Hz respectively. These are reasonably close to the corresponding analytical values.
Table 1 shows the first three resonance modes of the system and the corresponding percent
errors relative to the analytical values with the algorithm using various number of sections.
These were obtained, in a similar manner as Figure 3, through spectral analysis of the
response of the system at the end-point. It is noted that the resonance frequency
corresponding to the first mode of vibration of the system converges to a reasonably stable
value with the algorithm using 10 sections or more and for the second and third modes with

15 and 20 sections or more respectively. It was noted that, although the responses of the

10/21
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0.2
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(b)

Figure 3: FD simulated response of the system at the end-point using 20 sections;
(a) Time-domain.
(b) Spectral density.
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Table 1: Modes of vibration of the system with number of FD sections.
Number of Mode 1 Mode 2 Mode 3
seglions (H) (Hz) (Hz)

(12.73) | % Error | (36.98) | % Error | (89.65) % Error

5 11.1917 12.084 33.5751 9.207 60.3109 32.727

10 12.4352 2.316 37.9275 2.562 77.4093 13.654

15 12.4352 2.316 39.5337 6.906 81.6062 8.972

20 12.4352 2.316 41.3472 11.81 81.7617 8.799

Table 2: Execution times of the computing
domains with number of FD sections.
Number of 486DX SPARC
secti_ons (sec) (sec)
5 1.4100 1.2600
10 6.9767 3.6400
15 29.9800 21.0433
20 60.7750 42.9000

system at the end-point using 5 and 20 sections were similar in character, with 20 sections a
steady-state level was reached within 0.6 sec, whereas, with 5 sections the response did
not fully reach a steady-state level over the 1.2 sec measurement period. It was also noted
that a reasonable accuracy in characterising the behaviour of the flexible manipulator was
achieved with at least 10 sections. These are evidenced in Table 1 with the errors in the
resonance frequencies in comparison to the corresponding analytical values.

Table 2 and Figure 4 show the corresponding execution times achieved with the two
processing domains in implementing the FD algorithm with various number of sections. As
expected, the execution time increases with increasing number of sections. Moreover, it is
noted that the two computing platforms appear to perform at a similar speed with lower
number of sections. However, as the number of sections increase the SPARC processor
outperforms the 486DX processor significantly. This, as demonstrated by the change of

gradients in Figure 4, is mainly due to the run-time memory management and relatively

12/21
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achieved with the SPARC processor in comparison to the 486DX in implementing the
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algorithm with various sections.
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Figure 5: Speedup with SPARC relative to 486DX in implementing the FD algorithm.
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4.2 Finite element simulation

To investigate the accuracy of the FE simulation in characterising the behaviour of the
system, the algorithm was implemented on the basis of varying number of elements from 1
to 20. It was noted that the response of the system at the end-point due to the bang-bang
torque input reached a steady-state level within 0.6 sec with the algorithm using one or
more elements. Moreover, the residual motion was found to be predominantly characterised
by the first mode of vibration with one element, whereas, with more elements higher modes
of vibration were also apparent. This is evidenced in Figure 6 which shows the time-domain
and corresponding spectral density of the response of the system at the end-point using one
element and in Table 3 which shows the resonance modes of the system in relation to the
number of elements used. Although, the error in the resonance frequency of the second
mode in comparison to the corresponding analytical value is relatively large with one
element, this has not affeéted the general character of the system response as the first mode

is the dominant one.

Table 3: Modes of vibration of the system with number of FE elements.
Number of Mode 1 Mode 2 Mode 3 Mode 4
s (Hz) (Hz) (Hz) (Hz)
(12.73) | % Error | (36.98) | % Error | (89.65) | % Error -
1 14.509 | 13.975 | 57.306 | 54.965 - - -
2 11.9689 | 5.979 | 44974 | 21.617 | 109.896 | 22.583 -
3 11.969 | 5978 |40.622 | 9.849 | 93.575 | 4.378 -
5 11.969 | 5.978 | 40.259 8.867 | 86.684 | 3.308 | 112.798
10 11.969 | 5.978 | 40.259 8.867 | 85.596 | 4.522 | 132.383
15 11.969 | 5.978 | 40.259 8.867 | 85.321 | 4.829 | 135.448
20 11.969 | 5.978 | 40.259 8.867 | 85.232 | 4.928 | 135.285

It is noted in Table 3 that the number of resonance modes identified increases with

increasing number of elements. Moreover, the resonance frequency corresponding to the

first mode of vibration of the system converges to a reasonably steady value with the
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Figure 6: FE simulated response of the system at the end-point using one element;

(a) Time-domain.
(b) Spectral density.
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algorithm using two elements or more, for the second mode with three elements or more,
for the third mode with five elements or more and for the fourth mode with 10 elements or
more. The corresponding execution times achieved with the two processing domains in
implementing the FE algorithm with various number of elements is shown in Table 4 and
Figure 7. As expected, the execution time increases with increasing number of sections.
Moreover, it is noted that the SPARC processor outperforms the 486DX processor
significantly. This, as demonstrated by the change of gradients in Figure 7, is mainly due to
the run-time memory management and relatively limited cache in the 486DX processor.
This is further shown in Figure 8 by the speedup achieved with the SPARC processor in

comparison to the 486DX in implementing the algorithm with various number of elements.

Table 4. Execution times of the computing
~ domains with number of FE elements.
Number of 486DX SPARC
elements (sec) (sec)
| 1.9067 0.8278
2 2.1933 0.9389
3 22733 1.0833
5 3.6667 1.4833
10 11.7333 3.9944
15 20.3800 0.3834
20 37.9000 18.7722

4.3 Comparative performance of the algorithms

It follows from the simulated results that a reasonable general characterisation of the
flexible manipulator is achieved with the FD and FE methods using at least 10 sections and
one element respectively. The corresponding execution times achieved in implementing the
algorithms are 6.9767 and 1.9067 sec on the 486DX and 3.64 and 0.8273 sec on the
SPARC processor respectively. These give execution time speedups of 3.659 and 4.4 on

the 486DX and the SPARC processors respectively in implementing the FE algorithm in
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Figure 7: Execution times of the computing domains with number of FE elements.
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Figure 8: Speedup with SPARC relative to 486DX in implementing the FE algorithm.
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comparison to the FD algorithm. Similarly, comparing the results in Tables 1 and 3 reveals
that reasonable convergence in the resonance frequency corresponding to the first
resonance mode of the manipulator is achieved with the FD and FE algorithms using at
Jeast 10 sections and 2 elements respectively. With the inclusion of the second resonance
mode, similar level of convergence is achieved with the FD and FE algorithms using at least
15 sections and 3 elements respectively. With the inclusion, further, of the third resonance
mode, similar level of convergence is achieved with the FD and FE algorithms using at least
20 sections and 5 elements respectively. The corresponding eﬁecution times in
implementing the algorithms on the 486DX and the SPARC processor achieving
convergence for the first, second and third modes of vibration of the system, as extracted
from Tables 2 and 4, are shown in Figure 9. The corresponding execution time speedups at
achieving convergence of the resonance modes with the FE algorithm in comparison to the
FD algorithm are shown in Figure 10. These results demonstrate that a more accurate and
more efficient performance is achieved with the FE algorithm as compared to the FD

algorithm.

5 Conclusion

A comparative performance evaluation of the FD and FE methods on the basis of accuracy
and computational efficiency in the simulation of a flexible manipulator system has been
presented. Simulation environments characterising the dynamic behaviour of a single-link
flexible manipulator have been developed using FD and FE methods. The algorithms thus
developed have been implemented on two general purpose computing domains and their
performances on the basis of accuracy and computational speed have been investigated. It
has been demonstrated that although the FE method is mathematically more complex than
the FD method, better accuracy and efficient performance is achieved with the FE method

in comparison to the FD method.
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Figure 9:  Execution times in implementing the algorithms characterising the
system modes;

(a) on the 486DX processor.
(b) on the SPARC processor.
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Figure 10: Execution time speedup with the FE algorithm in comparison to the
FD algorithm.
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