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Abstract: Problems related to nonlinear model validation are addressed and properties
associated with nonlinear detection, diagnostic power, and asymptotic correction are
analysed.
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1. INTRODUCTION

An important step in system identification involves validating the estimated model. For
parametric models this should include both the parameter estimates and the model structure.
Many authors have studied statistical validation procedures based on correlation analysis
including Bohlin (1971, 1978), Box and Jenkins (1976), Billings and Voon (1983, 1986),
Hjalmarsson (1993), Billings and Zhu (1994, 1995) and these methods have been used to
validate both linear and nonlinear parametric models.

There are three problems associated with traditional correlation based model validity tests.
The first is the need to check the whiteness of the model residuals. Conventional model based
correlation tests can give a false outcome when used to test nonlinear models (Billings and
Voon 1983, 1986). The second is the power of diagnosis. It has been noticed that some
correlation functions exhibit less power when the noise and input variances are small
(Billings and Zhu 1994). Thirdly the tests are based on the assumption that infinite data is
available. This has been studied by Hjalmarsson (1993) who showed that this can cause bias
in the asymptotic cross-covariance estimate.

The present study presents an extension of the work of Hjalmarsson (1993) and to the tests
developed by Billings and Zhu (1994, 1995) and relates to the validation of nonlinear models
including neural networks.



2. BACKGROUND
Consider a generalised single input single output (SISO) parametric mode]

_ =1 =1 _r-1
y(r) _AF(y U :8 ,9)+E(f) (21)
=y(1)+ &)

where t =1, 2, ... is a time index, F (.) represents either a linear or a nonlinear function and
(1) is the one step ahead predicted output. In system identification the delayed output, input,
and residual vectors, and parameter vector are defined as

y7=[ye-1 o ye-1,)]
wl=lu@=1) - ur-1,)]
e =[e(t-1) - e(t-1,)]
6=16,-6,]

(2.2)

The parameter vector 6 is unknown and is to be estimated from data. Ideally the estimate
should be unbiased with finite covariance so that the model residuals can be reduced to a
zero mean unpredictable sequence with finite variance and

By =0 as N-ow (2.3)
where 8, denotes the estimated parameter vector based on N data.

A common routine to test whether two signals z(z, 8y), which represents a scalar valued
process, and Z(z,6,), which represents a vector valued process, are dependent is to use the

sample covariance I'(8y) = [71(9~) o v.(By )]T which is computed by

M=

I'(6y)= 2(1,6,)2(,6y) 7=0--N-1 (24)
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Typically tests based on two statistics of this test are formulated as follows

Tz(eﬂ)

P-.-r(eN)
is called the Gaussian test, where p_.(6,) is the product of the variance of z(t, 6,) and the
variance of the T' th element of Z(z,8,,) and

S(7.6y)= 7=0--N-1 (2.5

1(6,)=T"(8,)P"(6,)T(6,) (26)



is called the x* test, where P(6,)= {p‘.j(BN)}is the covariance matrix of T'(6,) under the
null hypothesis (Hjalmarsson 1993). That is

S R(DRe(7) @)

isa consistént estimate of
P(6)=Y R, (1)Rz(7) (2.8)
=0

where Ru( 7) and R, (7) are the cova.nancc functions of z(r,8) and Z(r, 8) respectively. For

linear. model validation, the residual auto correlation test is performed by setting
z(t, 6y )— £(t,8,) (the residuals) and Z(r) =[e(t) &(t—1) ---] and the cross correlation test
between the input and residuals can be obtained by setting z(r,6y)=¢€(t,6,) and

Z(t)=[u(z) u(t—1) ---]. Under the hypothesis that the residuals are zero mean white noise
(null hypothesis H,) the statistics introduced will exhibit certain well defined asymptotic

distributions, which are given as follows

S(7,6y)~ AsN(0,1) T(8y)~Asx*(n) N-—oe (2.9)

where N(0,1) denotes the standard Gaussian distribution and xz(n) denotes the x2
distribution with n degrees of freedom.

The risk of rejecting H, when H,, holds (which is called a type 1 risk) is equal to ¢, which is
the confidence level or equivalently the value of the test threshold and the risk of accepting
H, when it is not true (which is called a type 2 risk) depends on the properties of the tested
model (Soderstrom and Stoica 1989).

3. NONLINEARITY EXAMINATION

In this and the following sections a set of infinite data will be assumed for analytical
convenience, but it should be made clear that all the results presented are also applicable to
the case with finite data length. An asymptotic correction mechanism is proposed in section
four. Throughout all the stochastic processes will be assumed to be ergodic.

Nonlinear components in the residuals may not always be diagnosed when linear model
based tests are applied. For example consider a situation where an inadequate model has been
estimated to leave the residuals

e(t)=e(t—2)e(t—=5)+e(r) (3.1)



where e(r) is a white noise sequence with zero mean and finite variance. Applying traditional
linear model validity tests to the residual of (3.1) by setting

z2(t,6y)=€e(t) Z(1,8,)=[e@) et-1) -] (3.2

and substituting (3.2) into (2.5) gives

S.mo)=C 0 @33
BONEl lg -

which incorrectly indicates that the residuals are white. To deal with nonlinear elements in
the reéilduals a general approach has been developed by Billings and Zhu (1994), which is
formulated by defining

2(1,6y) = €7(1) - E[£°(2)]

(3.4)
Z(1,6y)=[}() - E[e*(1)] € (-1)-E[E()] -]

which }eprcsent higher order correlation functions. Applying the test to the example above by
substituting (3.4) into (2.5) gives

1 7=0
c Tl
Sezé(r,BN)= c r=5 (3.5
0 orherwise
where

= Ap—p’
A +4pP+A-pt-p?
A =E[e*()] (fourth order moment) (3.6)

p=E[e*(t)] (second order moment)

and this now correctly indicates that the residual has not been reduced to a white noise

sequence.

In summary the traditional first order correlation functions can only be used to test linear
models. Higher order correlation functions can test both linear and nonlinear models.

4. DIAGNOSTIC POWER



The nonlinear model validity test discussed in the last section works well when the noise and
input have
large variances. However it can sometimes exhibit less power when the noise and input
variances are small because the fourth and higher order moments become small (Billings and
Zhu 1994).

To explain this problem, consider again the example given in the last section, when the
variance of the noise sequence e(f) is much smaller and the constant ¢ in (3.6) becomes

" O(4p)—0(p°)
0(A*)+0(4p*)+ A - 0(p*) - p?

where O(.) is the notation of infinitesimals (Soderstrom and Stoica 1989). The higher order
correlation function discussed in the last section has less power to deal with this case.
Accordingly Billings and Zhu (1994, 1995) suggested an alternative solution by introducing
output' terms combined with the input and residuals to form more powerful higher order
correlation functions defined as

z(1,8y) = y()e(r) — E[y(t)e(1)]
2 2 2 2 (4'2)
Z(1,6,)=[e"()-E[e°()] € (-1)-E[e*()] -]

The corresponding test of (2.5) therefore becomes
S()‘E)EI(T’ GN) = S(}E)EI(T’BN).}.SLJEI(T!BN) (43)

Inspection of (4.3) shows that S(ie) 81(1', 6) should still contribute even when § 2a2(7,0y) is

small due to a smaller variance of noise. S(j"s) 2

reduced to a zero mean white noise, so that Sm) 2(7,0y)=5..(7,6y).

(7,68,) will go to zero when the residual is

In summary the introduction of output terms can enhance the power of model validity tests
while maintaining the computational simplicity.

5. ASYMPTOTIC CORRECTION

The asymptotic problem can be addressed by following Hjalmarsson (1993) who showed that
for finite length of data

1) the cross-covariance may not be a consistent estimate,

11) the auto-covariance is a consistent estimate,



Therefore both Guassian and x? tests may not give asymptotic outcomes and may cause an
incorrect diagnosis of the residuals.

Hjalmarsson's solution (1993) is the same as that presented in section two, comparing the two
studies Billings and Zhu (1994) emphasised the possibility of diagnosing nonlinear elements
in the residuals and Hjalmarsson (1993) emphasised asymptotically correct correlation tests
for linear model validation. Therefore the approach can be extended for asymptotically
correct correlation tests for nonlinear model validation.

The condition for asymptotically correct correlation tests was derived by Hjalmarsson ( 1993)
as below

i
E{dr(e,\,)

a6) jl =0 (5.1

The test with output terms introduced in (4.3) can be proved to satisfy the above condition
when substituting (4.3) into (5.1)

E[dr(eh,)} _ E|:dE[z(t, 6,)Z(t, 9,,)]}

do de
—E[z2£+ Z E}
do de

+EH82(I,9N)—E[EZ(I,BN)]][IZ(-)]]
=[ct 0 - 0O

where all the elements are zero except the first element (constant ¢1) corresponding to T = 0
and x1(.) and x2(.) are remaining terms. In the proof E[e(r—1i,6,)]was used to replace
E[e(r,6y)] att=i.

Following the above statement the higher order correlation functions including delayed
output terms as presented in section three also produce asymptotically correct correlation
tests for nonlinear model validation with higher diagnostic power. For cross correlation tests
between input and residual and all forms of corresponding y* tests see Billings and Zhu

(1994, 1995).

6. CONCLUSIONS



The properties of higher order correlation function tests for nonlinear model validation have
been analysed to provide a comprehensive understanding of nonlinear model validation to
show that the nonlinearity detection and asymptotic correction can be implemented by
introducing higher order statistic tests and that the diagnostic power of the tests can be
improved by introducing delayed output terms.
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