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Abstract
A new approach for estimating linear and nonlinear continuous-time models di-
rectly from noisy observations is introduced using wavelet decompositions. Results ~

using both simulated and experimental data are included to demonstrate the perfor-

mance of the new algorithm.

4 -1 Introduction

In many practical situations it is required that the description of dynamical processes is
given in terms of mathematical models so that proper analysis and design procedures can
be carried out. Situations where such models are required can occur in engineering and
a wide range of fields and cover a broad spectrum of applications including investigation
of system behaviour under various conditions, forecasting, implementation of automatic
control systems, simulation, failure detection and fault diagnosis.

Although most systems in the physical world are continuous and although the
study of such systems has triggered important developments in many fields, continuous-
time models are replaced by discrete approximations in many applications because these
are better suited for numerical implementation. However, in many applications, it is
desirable to use continuous-time models. The advantage of using such representations in
self tuning control for example has been highlighted by Gawthorp (1982).

Discrete time models, regarded as discretisations of continuous processes can present
difficulties because they are only valid for the selected sampling interval and the use of

such models for control can generate problems related to an excesive sensitivity to errors
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at high sampling rates. The sampling rate is critical especially in system identification,
where the system of interest is actually unknown, so that the use of a given sampling rate
gives rise to uncertainties with respect to the validity of the approximation.

The approaches followed in the past to obtain continuous-time models can be clas-
sified into two main categories. The first category includes the so called direct methods,
which attempt to estimate the system parameters directly from the data, while the second
category comprises all the indirect methods. Both approaches have been used in the past,
with few exceptions, for the case of linear systems.

A major difficulty of direct identification of continuous-time models is that the
derivatives of the system input-output signals are not measured directly and numerical
differentiation may accentuate the effects of noise. This is why in the past, methods
involving direct generation of time derivatives of the signals involved, either in a phisically
or computationally way have been regarded as reliable only in deterministic situations and
for low noise levels.

- Direct methods include the use of modulating functions (Shinbrot, 1957; Per-
dreauville and Goodson, 1966), digital filters (Sagara et al., 1991a,b) or the spectral
 representation of the signals which are expanded in terms of orthogonal functions such as
piecewise continuous functions or orthogonal polynomials (Paraskevopulous, 1985).

Indirect methods are usually performed in two steps. In the first instance a non-
parametric model is identified from the discrete samples of the continuous lumped dynam-
ical system. Most non-parametric representations of the system are based on the impulse
response, step response or the frequency response function. At the second stage, using
an appropriate inter-domain relation, the non-parametric model is transformed into an
equivalent continuous-time model.

Another possibility is that instead of a non-parametric model, at the first stage,
a discrete-time model of the system of interest is estimated initially. The discrete-time
model is then used in the second stage to obtain the continuous-time version of this
model. This is done by using for example the frequency response function of the discrete-
time model to estimate equivalent linear or nonlinear continuous-time models by fitting
parametric models to the frequency response data (Tsang and Billings, 1992; Swain and
Billings, 1995).

A more in depth presentation of existing techniques for continuous-time system




identification can be found in the book by Unbehauen and Rao(1987) or in the survey
papers by Young(1981), Unbehauen and Rao(1988).

In this paper, a new direct method of estimating linear or nonlinear continuous-
time representations of a dynamical process is presented. The continuous-time model
of the system under study is derived using the measured input-output signals and the
corresponding derivatives are estimated directly from the noisy observations using a mul-
tiresolution wavelet decomposition of the signals. The method has the advantage that it
can be applied in the more general context of nonlinear systems. The approach is tested

on a simulated example and using real data collected from an electronic circuit.

2 Dynamical systems

The notion of a dynamical system covers any system evolving in time which can be de-
scribed as a set of ordinary differential equations or by discrete mappings or difference
- equations. The actual notion of a dynamical system is actually larger and includes those
systems which can be modelled by partial differential equations. In this context dyna.fu-
ical systems described by ordinary differential equations are sometimes called lumped
dynamical systems. 7
Ordinary differential equations are used to model systems which evolve continu-

ously in time. Such systems occur frequently in practice and can be represented in general

by the following equations

X(t) = £(x(), u(t));

1)
y(t) = h(x(t), u(t));

with f : R™ x R™ — representing the vector field and h : IR™ x IR™ — IR” the observation
function. In equation (1) X represents the state variable, a vector of dimension n, u is the
input or control, a vector of dimension m, and Yy 1s the output, a vector of dimension p.

Equation (1) gives the so called state space representation of a continuous-time
dynamical system.




The state space representation of a system can be converted, subject to some

additional assumptions, into a set of nonlinear higher-order differential equations in the

inputs and outputs.

‘P{(y,}.f, il | y(k)) = Q‘i(uﬂ ﬁ’ R | u(k)) (2)

or alternatively by combining inputs and outputs into one vector of external variables the

system can be described as

Ri(u,1,..,u®,y, ¥, ..,y =0 (3)

where u(), y() denote the j-th time derivative of the input function u respectively output
function y and ¢ =1, ..., p. Equation (2) can be obtained practically by eliminating in (1)
the states x to obtain the direct relation between the inputs and outputs. Expression (2)
is sometimes called the input-output description or the external differential representation
of-a dynamical system.

The inverse problem of obtaining a state space model from an input-output repre-
sentation is known as the realisation problem. It should be noted here that the external
differential representation given in equation (2) is one of the possible input-output repre-
sentations of the dynamical system. Other input-output system descriptions include for
example the Wiener-Volterra and Fliess series representation.

From equation (2) me may conclude that a continuous-time model of a system can
be estimated from input-output data, collected experimentally from the system, provid-
‘ing the input and output derivatives involved can be accurately estimated and that an
ﬁppropria.te’ structure to approximate the input-output relation is used.

TR method i‘.o estimate the required deriva.tivesl directly from the measured signals
1s proposed in the next section.

The choice of the approximation method includes the use of polynomial repre-
sentations, widely used in system identification and control, neural networks or wavelet
- approximations. The choice as usual depends on the final application of the estimated
model since in fact system identification is just one of the phases of activity integrated
into a larger project and therefore cannot be considered as an isolated task. In this paper

however, the model structure is derived using a wavelet approximation technique which




provides a powerful tool for the local approximation of functions.

3 Derivative estimation from discrete noisy data

The task of numerlcaﬂy d1fferent1a.tmg discrete noisy data can prove to be difficult consid-
ering the fact that usua.lly a numencal differentiation process tends to amplify the effects of

noise so that higher-order derivatives can become strongly affected. The method proposed

here to estimate the derivatives directly from data involves the use of a multiresolution -

a.pproxzma.tlon of the signal of interest based on B-Spline wavelets. The resulting rep-
resentation of the 51gnal takes the form of a series expansion in terms of smooth basis
functions ._}v_h;ch ca.t_; be easily differentiated to obtain the desired derivatives. Prior to
this however the signal has to be smoothed so that the effects of noise are reduced ‘and

the signal and its derivatives can be determined with sufficient accuracy.

3.1 Wavelet approximations

A multiresolution decomposition of L? is a nested sequence of closed subspaces ...V_; C

Vo C Vi C V;... of L? having an empty intersection and a dense union and satisfying the

translation and scaling properties

f(z) eV & f(22) ey

(4)
fz)eVoe f(z—k) eV

for all j,k € Z.
_ Any function f from L? can be approximated at resolution j by its orthogonal
projection, denoted P; f, on V;. '
The importance of the scaling property arises from the fact that a multiresolution
approximation can be described by means of a single function ¢ and its translates and
dilates. In this way at resolution j the projection P; of a function f can be represented

as a series which converges in the L? norm,




Pif =) cixdin (5)
k

where ¢ = 27/2¢(27z — k).
The wavelet subspaces W; can be introduced in the context of multiresolution

analysis as the orthogonal complement of V; with respect to the next resolution subspace
Vini

Vir =V, D W; (6)
where € denotes the orthogonal sum of subspaces. Each wavelet subspace W; is generated
by a single function #(z) and its dilates and translates.

The projection @, f of a function f on the wavelet subspace W; also has a series

representation in terms of the dilates and translates of the wavelet function P(z) as follows

Qif =D dixhin (7)
k

From equation (6) it follows that

Pinf = Fif +Q;f (8)

This gives an alternative series representation of the projection of a function f € L? as it

was first introduced in (5) this time using both the scaling and wavelet functions

Pif=>"cicixdjorr + > i dix ik (9)
*

koi=j—1
The projection P;f should be understood as the approximation of the function f at
resolution j. The resolution controls in this case the degree of approximation. The higher
the resolution the better the approximation.

Equation (9) is the result of a multiresolution decomposition of the initial series (5)
expressed just in terms of scaling basis functions. This decomposition and the correspond-
ing reconstruction can be performed in a fast way using the pyramidal decomposition and
reconstruction algorithms (Mallat, 1989). These algorithms allow the computation of the

coefficients involved in equation (9) from the coefficients in (5) and vice versa using just
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simple algebraic operations as follows:

Decomposition algorithm

Ci-1k = 21 @1-2kCj
(10)
di—1e = L) bi—akc;y

Reconstruction algorithm
Gl = Z [_Pi-zkcj—l,k + qr-2kd;—1,x] (11)
k

Equations (10) aescribe a moving average process involving the scaling coefficients c; » at
resolution j and the decomposition sequences {ax} ez and {bi},cz. The resulting data
sequence has to be subsequently downsampled or decimated by a factor of two by taking
every second point in the sequence in order to obtain the desired coefficients.
- This decomposition can be continued by employing, at the next stage, the coeffi-
cients ¢;_jx to perform the moving average procedure. -
A similar moving average scheme is used in the reconstruction algorithm (11) this
time with the weighting sequences {px},cz, {gk}rcz. In this case upsampling (inserting
a zero between every two consecutive points in the input sequence {ci-14};rez and
{d5;1,k}5, kez 18 required before the moving average scheme is performed.
The use of both algorithms can be understood from the next section concerning

smoothing a discrete noisy data sequence.

3.2 Wavelet smoothing

It is well known that the problem of measurement is in most cases subject to errors. These
errors are partly of a systematic and partly of an accidental nature. While the systematic
errors may be due'to some miscalibrations of the instrument employed for taking the
measurements, accidental errors arise from interference effects, drift and several other
sources and are subject to uncontrolable fluctuations which can normally be described

by statistical laws. These accidental errors which occur during measurments are usually

referred to as the noise on the measurements.




3.2.1 Using mutual information to smooth the data

A model of a sampled signal affected by measurement errors can be described by the

equation

Ye(t:) = y(t:) + €(t:) (12)

where y is the function representing the signal of interest and y.(t;) is the set of noisy
observations obtained by uniformly sampling the analog signal. The random errors are

represented by €(t;) and are assumed to satisfy

Ele(t;)] =0

(13)
Ele(t:)e(t;)] = 6

with E denoting the mathematical expectation.
The noise content of the signal can be described by the noise to signal ratio defined

NSRy = £ x 100 (14)

Ty
where o, and o, are the standard deviation of the signal and noise respectively.

The discrete noisy signal can be approximated by a wavelet series at resolution j

leading to the following expression

J

ve(ti) = ; CipkBi—pi(t) + D, D dipthi(ts) (15)

k I=j-p
Although the noise signal does not belong to the space of square integrable functions
having infinite energy the right hand side series will converge in L? norm (Cambanis and
Masry, 1994) since stationary random processes are square integrable over every finite
interval.
Because of the presence of noise the coefficients of the wavelet series representa-

tion of the noisy signal will also be stochastic. The stochastic properties of the wavelet
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coefficients can be characterised by calculating the expected value and variance of the
coeficients (Coca and Billings, 1995).

The algorithm presented here makes use of the mutual information present in the
signal to minimise the noise contribution to the wavelet coefficients (Coca and Billings,
1995). Such a procedure is equivalent to a smoothing operation performed over the noisy
signal.

The noisy signal is in practice the result of a data acquisition procedure. At this
stage the continuous signal produced by“a physical process has to be sampled with a
sampling frequency f, which satisfies the Whittaker-Shannon condition f, > 2f, where
fn is the highest frequency present in the continuous signal which is co;lsidered to be band
limited. In most cases the performance of the data acquisition equipment can handle fairly
high sampling rates and this allows the user to oversample the continuous signal f, > 2k f;.

At the first stage the initial data set is separated into k different subsets

7 {ye (tk(i—1)+p) }‘.21"“ = {yf(ti)}£=1,n (16)
with k < f,/2fs, k € Z, p = 1,..,k. This is done in fact by downsampling by k

the original data sequence with k successive starting points y.(t1),...,y.(tx). As a result -
Ye(ts), .y 5(t:), i=1,..,n represent k successive samples of the original data record

stored in k different data sets. Because the sampling time 6t = 1/f, is sufficiently small,
Tk successive samples can be considered to have a linear variation since the Taylor series
expansion of the signal around the central value within the k samples interval can be
truncated to the first derivative. As a result the mean value of & successive samples of
the noise-free signal is the central value of the interval that is the (k+1)/2-th sample for
k odd. This can be expressed as

~ |
: > p(t) 2y (17)

p=0
for any 2 = 1,...,n. Each of the &k signals can be represented independently as a wavelet
series (15).
Consider the noisy wavelet coefficients of the p-th signal at scale j to be denoted

as {cifk} and consider the properties of the mean
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. I X
Gk = Izdﬁ,k: EZ‘{?,M‘*‘ Ezdfﬁ,k (18)

where {d’;k} are the noise-free wavelet coefficients and {de_f’k} represents the stochastic
part of the wavelet coefficients. Since the coefficients are the result of a linear transfor-

mation performed over the signal it follows that

1 EN kil
&= df 9

p=1

for k odd. As a result the expected value of the mean is given by

- k41

1] 1 K
Eldu| =B|g] |+ L E[e,] =4} (20)
p=1

and this provides an unbiased estimate of the wavelet coefficients corresponding to the

signal having the index p = (k +1)/2.. The variance of the same variable is given by

= k1 2 1 k 2 azﬁ‘k
S IS I
p= .

since the noise components affecting each of the k signals can be considered uncorrelated.
The results show that the effects of taking the mean, are that the variance deviation of
the stochastic part of the wavelet coefficients is reduced k times. The overall effect is that

the variance of the noise affecting the signal is also reduced by the same amount.

3.2.2 High frequency noise reduction

Another important property of the noisy wavelet coefficients is that the variance of the
coeficients is theoretically scale invariant (Coca and Billings, 1995). In practice the
variance decreases slightly with the scale due to the fact that in this case we are dealing
with finite length signals. However for all practical purposes the variance of the wavelet
coeflicients can be considered invariant for a given range of scale.

The above behaviour of the wavelet coefficients yields a very effective method for
separating the true signal y(t) from the observed signal which from equation (12) is the

true signal plus noise.
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If the noisy signal is approximated in terms of a wavelet series, as in the previous
section, it can be observed that above a certain scale j the wavelet coefficients do not
have any tendency to become smaller but remain within a certain band of fairly constant
amplitude. These coefficients will account for the high frequency components which are
caused purely by noise. This is because the deterministic signal is by definition a bandlim-
ited signal so the high frequency components of such a signal above the cut-off frequency
make a negligible contribution to the spectrum of the signal. This in turn means that the
wavelet coefficients of the noise-free signal coresponding to that frequency band should
be very small, nearly zero.

By simply setting to zero and thus omitting the corresponding wavelet functions
from the series representation, the signal will be sensibly smoothed. Because the genuine
signal components may not be perfectly zero above the frequency we have chosen to
define the noise band, it is anticipated that some errors will be introduced in estimating
the deterministic signal. However these errors will generally be very small considering the
fact that at higher scales the contibution of the signal is almost zero.

It is important to note that the above procedure has a global character since it
involves all the coefficients representing the signal at a given scale. This in turn means
that some nice properties of the wavelet functions are not yet fully exploited. The most
important is the time frequency localisation offered by a multiresolution decomposition.
This is a result of the time-frequency localisation of the wavelet function which acts as
a window function in both the time and frequency domain and provides a local Fourier
analysis which takes place at every single scale.

This feature is especially useful when dealing with deterministic signals with a
time-varying frequency behaviour, with local oscillations or discontinuities. In such cases
wavelets, due to the compact support (or at least spatial localisation) have the ability to
locally adapt to the feature of the signal. The amplitude of the wavelet coefficients in
this case reflects the contribution of each function to the approximation. A local high
frequency burst of the signal can in this way be identified and isolated from the noise.
In such cases instead of setting all the coefficients at the corresponding scale to zero, we
can choose to preserve the high magnitude coefficients which represent a feature of the
deterministic signal. However, if the multiresolution decomposition is not orthonormal,

it is more correct to say that the corresponding wavelet functions are preserved since the
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respective coefficients have to be re-estimated under the additional constraint that all
other coefficients at the same scale are zero.

If high frequency smoothing is performed over the signal smoothed using the pre-
vious algorithm it will be more obvious which coefficients represent just noise since the
reduction in the magnitude of the coefficients after the first algorithm has been performed
will affect just the stochastic part of the coefficients.

The difference between the two algorithms described above is that while the first
will reduce the noise at all frequency bands including the noise superimposed over the sig-
nal band the second algorithm removes the noise above the local characteristic frequency

content of the signal.

3.3 Construction of B-spline multiresolution approximations

To smooth the discrete noisy data and estimate the derivatives a nonorthogonal multires-
olution aj)proximation was constructed using B-spline functions. A complete theory of
B:spline multiresolution approximations can be found in (Chui, 1992). Only the basic
- properties will be presented below for completness.
A B-spline multiresolution approximation is constructed by taking as a scaling
function the m-th order cardinal B-spline function f™(z) with m € Z which is defined

recursively by the integral convolution

co

@)= [ B (o - t)' (et (22)

where 5'(z) is the characteristic function of the interval (called also the indicator function)
x(z).
1 ifze(0,1)

0 otherwise

(23)

Bt)=x(t) = {

In practice the B-spline basis functions of higher order can be defined starting with the

first order basis function (of degree zero) given explicitly in (23) by the following recursive
algorithm

"z - 1) (24)

() = ——B" () +
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B ——————

Using this formula it is easy to see that the scaled and translated version of a B-spline

function can be calculated using a similar recurrence relation

2z m+k—2z

~1
i)+
where BT = 2//2f™(2z — k). The B-spline function ™ (of order m) consists in fact of
m nontrivial polynomial pieces of degree m — 1 so that

Bli(z) = o (z—1) (25)

=1 1.k

ﬁm l[k-l,k)= Pm—-l,k: k= - (26)

where Pn_;x is a polynomial of degree m — 1. Denoting II, as the collection of all
polynomials of degree at most n and with C™ the space of continuous functions having up
to n continuous derivatives, allows us to define the subspace V, generated by ¢(z) = f™(z)
as the subspace of all functions f € C™2 L2 (IR)such that the restriction of f to any
interval [k — 1,k] is a polynomial with degree at most m — 1. Each polynomial piece
can be computed analytically which gives an alternative way to compute the value of the
- B-spline functions at any point. -

The counterpart of the scarfing function, namely the wavelet function can be con-
structed (Chui, 1992) as a linear combination of the B- spline scaling functions. It can
be shown that the compactly supported wavelets with minimum support that correspond
to the m-th order cardinal B- spline are unique up to multiplication by a constant. The
support of the m-th order B-spline wavelet is an interval of length 2m —1 and all wavelets
are symmetric for m even and anti symmetric for m odd.

It is interesting to note that in fact scaling functions and wavelets can be considered
as filter functions. The difference between them is that while the scaling function acts as a
low pass filter, the corresponding wavelet function behaves like a bandpass filter.If a signal
1s represented using the multiresolution approximation approach, such as a wavelet series,
the reconstructed signal is nothing other than the result of a linear filtering process. A
usual requirement in such cases, to avoid distortions, is that the filter should bave linear
or at least generalised linear phase. It can be shown (Chui, 1992) that both the B-spline

scaling and wavelet functions satisfy this requirement.
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3.3.1 Estimation of the derivatives of a B-spline series

The derivatives of the signal can be determined, after smoothing has been performed,
by simply differentiating the reconstructed B-spline series. Following de Boor (de Boor,

1978) The derivatives of a B-spline series at scale j = 0 can be written as

D [Zki Ckﬁl’:‘] = ek — ck1)B7" (27)

k
This shows that the first derivative of a B-spline series can be found simply by differencing
its B-spline coefficients, to obtain the coefficients of a B-spline series of one order lower
which represents this derivative. Since formula (27) applies for infinite length signals, the
derivatives of a finite B-spline series are obtained by making the series bi-infinite through

adding B-spline functions with zero coefficients.

The formula to compute the derivatives of a B-spline series at any resolution j is

as follows

D [Z Cik }f‘k] =273 (cjk — Cik-1)BT ! (28)
k k

and can be derived easily from (27). By repeating the application of (28), the following

formula of the ¢-th derivative of a spline series can be written:

D[S ewsn| = een ()
k k
where
Cin fori=0
gf = (30)
24 (c;-,k ~ ;",k-l) fori>0

The whole procedure of obtaining the derivatives of a signal from discrete noisy

observations can be summarised as follows:

o The noisy signal of interest is separated into k signals following the procedure de-
scribed in (16) with k selected according to the oversampling factor: k < f,/2f;.

¢ Each signal is approximated by an m-th order B-spline series at resolution j. The

15




order of the B-spline series is chosen so that the signals resulting from subsequent
differentiations are at least C? while the resolution j is selected in order that the

discrete signal is approximated with very good accuracy.

o For each signal a wavelet deéomposition algorithm is perforﬁ}ed p times. Here p

depends on the length of the data sequence and on the initial resolution level j-

\o/érform a high frequency smoothing by setting to zero the wavelet coefficients at
higher scales which reflect high frequency components above the characteristic fre-

quency band of the noise-free signal.

o The signal is then reconstructed using the mean values of the wavelet coefficients

corresponding to the k signals computed as in (18).

o Compute the derivatives of the reconstructed B-spline series using relation (30).

4 Numerical and experimental results

This section is devoted to numerical and experimental implementation of the proposed
method. The simulated example uses the Duffing equation as a benchtest to assess the
performance of the approach. Having estimated the derivatives from the simulated noisy
input-output discrete observations the problem becomes a parameter estimation task if
the structure of the input-output relation is considered known. The accuracy of the
method can be then judged by comparing the estimated parameters with the ones used
in the simulation.

The experimental example involves the use of a real data set recorded by sampling

the signals from an electronic implementation of Chua’s circuit.

4.1 Duffing-Ueda oscillator

Consider the Duffing-Ueda oscillator (Ueda, 1985) described by the following ordinary

differential equation

dzy dy 3
E;%—O.lgt—-l—y —'U'(t) (31)
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which is an example of a periodically driven nonlinear oscillator with

u(t) = A cos(wt). (32)

Usually when such nonlinear oscillators are driven by periodic forces a variety of
phenomena can occur depending both on the type of oscillator and the frequency and
amplitude of the driving force. Such a periodic force applied to a passive oscillator can
yield for example hysteresis, harmonic and subharmonic oscillations or chaotic motjon.

The Duffing equation which can be used to mode] the hardening spring effect
observed in many mechanical systems has emerged as one of the most important paradigms
in the study of chaos.

Equation (31) driven by an Input as described in (32) with w = 1 rad/sec and
A = 11 was simulated using a fourth-order Runge-Kutta algorithm with an integration
step equal to 7/300 s. In this way 10000 data points of the output y were generated.
White noise was then added to the simulated output signal so that the noise-to-signal
ratio of the resulting signal ., defined as in (14), is NSRy = 10%.

To estimate a continuous time model in the form of (31) the first step 1s to estimate
smooth versions of y, ¥ and y directly from the noisy observations y,.

For the example chosen the smoothing procedure, summarised in the previous

section, was performed with ) =10,p=8, m =6 and k = 9. The smoothness of the

5
Time [s]

Figure 1: The simulated noisy output of the Duffing-Ueda oscillator
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wavelet approximation is given by the order of the polynomial pieces (quintic for
m = 6) which make up the B-spline scaling and wavelet functions.
One of the k = 9 signals resulting from downsampling the original signal is repre-
sented in Fig.(1).
Using the smoothed output and the corresponding first and second order derivatives
{ represented in Fig.(2, 3, 4), the parameters of the continuous-time model in the form (31)
| can be estimated using a least-squares algorithm, leading to the following equation
d’y

0.9627—dz~ + 0.1017% + 0.9687y° = 11 cos(t) (33)

The coefficients in equation (33) show a very good agreement with the real coeffi-

cents used in simulation giving an absolute approximation error which is less than 4% of

the real coefficient value.

4.2 Chua’s circuit

In ;he last few years, a large number of papers have been devoted to the numerical,
experimental and analytical aspects of the third order electrical circuit illustrated in
Fig.(5a). This circuit, now widely known as the Double-Scroll or Chua’s circuit, exhibits
a great variety of nonlinear and chaotic dynamics which have been simulated, observed
and mathematically proven (Chua, 1992; Matsumoto et al., 1993). This circuit consists of
only one inductor (L), two capacitors (C1, C), one linear resistor (@), and one nonlinear

resistor (NVg) which has the picewise linear characteristic g(vc,) depicted in Fig.(6).

G
1 1R -
+ - +
Vo ——C: ML . Vc1:|: C, | [N:
i

(2) (b)

Figure 5: Chua’s circuit(a). Nonlinear resistor implemented using op-amps(b
gu
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The dynamical behaviour of the circuit is governed by the following system of three

first order ordinary differential equations, derived using elementary laws from electric

circuit theory

dv
Cigit = Glve, = ve,) - g(vey)
dvg, .
C, ot = G(‘Uc, - 'ng) + 17 (34)
dz :
Ig = —v
where
myvg,, lve,| < B,
g('vcl) = Move, + Bp(ml - mD); Ve, 2 Bp (35)
p move, — By(my — my), ve, £ —B,

The circuit can be realized practmally in a variety of ways using standard com-
ponents. A single-chip 1ntegra.ted circuit (IC) is also available. The simple and robust
implementation of Chua’s circuit, described in Kennedy(1993b), and which makes use of
com_mercia.lly available components to realize the nonlinear resistor Ng using operational

amplifiers (see Fig.(5b )) was used in the present study.

irR=g(Vcp)

B Ve

Figure 6: Nonlinear resistor characteristics.
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Equations (34) can be transformed by rescalling (Matsumoto et al., 1993)

T ='UCl/Bp: y=vc2/B,,, Z=‘iL/(.BPG), T =tG/02,

(36)
azm]_/G, b=mo/G, a:Cz/C’h ﬁ=02/(LG2),
to yield the following form
dz
7 = oy—h(z))
dy
B T -y (37)
dz
= = =i
with
az, |Z’| <1
h(z)=4 bz+a—b, =z>1 _ (38)

bz — a + b, z< -1

A data set consisting of 50,000 samples, obtained by sampling and recording the
the three state variables from the circuit with a sampling time dt = 2us, (Dedieu and
Ogorzalek, 1994) was used for the estimation of nonlinear continuous-time models.

Two continuous-time models were estimated, one involving all three state variables
which requires only the estimation of the first derivatives of each signal and a second
using just a single measured state variable namely the current i;, through the inductor,
in which the derivatives of the signal up to third order have to be estimated.

The derivatives of all the signals were estimated using a multiresolution decompo-
sition of the signals as in the previous example. 10,000 data points of the measured time
series were used to perform wavelet smoothing and to estimate the first order derivatives
of each signal plus the second and third order derivatives of the signal current iy,

A state space continuous-time model taking the form of a third order system of

differential equations
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dv .
djl = Fl(UGnvCﬂzL);
dv )
df: = F2(v01 ) vC‘z?“’:)? (39)
di ]
-(Etﬁ = F3(v5'1:v6'211'L);

can be estimated by approximating the three dimensional vector field F(vc,,ve,,iL) in
equation (39) using the measured signals and the corresponding first order derivatives.
Usually, when the order of the systém is not known apriori, this parameter has to be
selected iteratively. However when the system is proven to be chaotic the initial model
order has to be three, a necessary condition for the existence of chaos in a system governed
by ordinary differential equations.

In this example the vector field was approximated using a wavelet approximation

approach. Each component of the vector field was approximated as a linear combination

~ of three dimensional B-spline scaling and wavelet functions formed as a tensor product

of the one dimensional basis functions. The number of parameters to be estimated,
which is equal with the number of basis functions, is chosen iteratively. Starting with a
resolution level j which gives the initial number of basis functions needed (scaling basis
functions), more basis functions (wavelet basis functions) can be added subsequently to
improve the degree of approximation. The order of the basis functions, m = 4 for this
example, can also be selected iteratively starting with a low order which is later increased
if the approximation error does not decrease significantly with the addition of new basis
functions.

More explicitly, the continuous-time model takes the form

dvc
1 " 1 . . .
= Z (ST 10 SO §11 yeeada ky .---.ka(vch 1 UCa» ""L)
dt
klsk‘)lk3
231 Iy,lz,l3

+ X 2, Y d:;,:.,ia.kl revaks Ly csia s sosks (V012 VG20 L)

m=1 11,%2,43=71,72.73 k1,k2,ka
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dve .
2 2 , ) ,
T = 2o Chrisikirerks Bt s eaks (V615 VG 81) (40)
ki ,ka ks
2%-1 Iila,ls
2,m m :
+ Z . Z E dil,...,t'3,k1,....k3 ‘I’ig,...,is,k1 yeenrke3 (vcl 1‘002! 3L)
m=1 13,92 ,43=71,72,73 k1.k2,k3 :
dig,
- 3 . . .
a3t Z P S T L Z R T (UC& 1 UCs) ZL)
ky,kg k3
22-1 Lilals :
k: B,m m -
+ Z Z Z di; ..... i3,k1 00 k3 lI’-;, - ....,k,(”c'z yVes) zL)
m=1 13 42,93=71,72.72 k1,k2,k3
with i

¢>jl:"'l.?.:‘l|ki|.!'"|k3(ml’mz’13) = ¢Jlrk1($1)¢12:k2($2)¢’33-k3($3)
Ues ks (8522, 2°) = iy 1 (27) i o (22 Wi s (2°)
ql?]_ ..... ‘is,kl ..... }Ea(:‘ElJ mzima) = ¢i1|k1(m1)¢i2|k2(22)¢£3'k3(m3)

sy s (B E) = iy b (21 )i o (22 i 1 (2°)
(41)

11,...03 ,kl,...,ka(ml! m2, ms) = 1,1)1'1,):1 (I1)¢{2,k2($2)¢£3.k3($3)
lI’f]_,...,ﬁ,kl,...,kg(ml ) zzT mB) = ¢‘i1,k1 (ml)qsf:z ,kg(mz )1Ib£3,k3($3)
‘I’?, ,...,i;,k;,...,k3($13zzrms) = "!binh(ml)¢iz.k2($2)¢fa.ka($3)

‘I’z,...,ia,kl....,k3(m15 32, I3) = ¢{1‘k1(m1 )tpi?:k?(mz)’()bialk-'!(wa)

The coefficients in expression (40) were estimated by means of a least-squares
algorithm and the resulting model simulated using a fourth order Runge-Kutta integration

routine with an integration step dt;n,; = 0.001 which due to time rescaling is equivalent to

23




the initial sampling time dt = 2us.
The well known Double-Scroll chaotic attractor represented in Fig.(7a) using the
noisy measured time series compares very well (if the noise affecting the measured signals

is ignored) with the attractor produced by simulating the estimated continuous time model
plotted in Fig.(7b).

(b)

Figure 7: Double-Scroll attractor plotted using the measured signals () and

the signals resulting from the simulation of the continuous-time model (b).

A second model was estimated using just a single time series. In many practical
situations just a single output can be recorded from the observed system in which case
the external differential representation has to be estimated.

To estimate a continuous time model in this form, the current signal i, was used
to generate the higher order derivatives.

. Usually the input-output relation describing the dynamical system is more complex
and therefore more difficult to approximate. In this particular case it is easy to see that
by rewriting the sy-stem’s equations (37) in the input-output form

Lt @+hZ tap h(——%i—j—%j—j—z);

the picewise linear characteristic g(vg;) of the nonlinear resistor Nﬁ, that is h(z) as in

(42)

(38) after rescaling, becomes a function which depends on three variables with the break
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points confined in two planes of equations

: o1&z 1d:
VB Tpg el
(43)
1d%z  1dz
7. -—-'—1,

Ba—;+‘ﬁ—g+z

Using a wavelet approximation a continuous time model was estimated in the form

dzL szL

= 2 Cityenndaky e ka@h' 1J33.Kk1 40 ka( Ly )

dt3 " de?
kilkZukS

(44)
231 11,12,13 . dz d_2
+ Z Z Z ..... ls,k; 1. , ‘Ilf:,...,ﬁ,kj_ - ( L! dL ZL )

2
m=141,12,83=11,72,73 k1 ,k2,k3 dt

where the basis functions are defined in (41).

004—
0.03—"
0.02 7 1
0.01-] i

o 1.

d2i/dt2

001" G
-2

—003—" .7

-0.04
04

Figure 8: The current signal and the corresponding first and second order derivatives
resulting from simulation of the estimated external differential representation of Chua’s

circuit.
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The resulting model was then simulated using a fourth order Runge-Kutta algo-
rithm with the integration step dt;,; = 0.001. In Fig.(8) the resulting trajectory was
plotted using the output and the corresponding first and second order derivatives of the

output.

0.6F osr

.45 0.4+

g g
202 3 02
=1 =1
or of

02t -02r

04 " . . . i 04 1 . . L .

- 04 02 0 02 04 06 08 0.4 -02 0 02 04 06 08

L) ik

(a) - (b)
Figure 9: Double-Scroll attractor obtained by embedding the measured cur-
: rent signal i (a) and the associated simulated signal using the estimated

" continuous-time model eqn.(44) (b).

Using an embedding method both the measured current signal and the simulated-
signal were used to plot the Double-Scroll shown in Figs.(92) and (9b) which illustrate

excellent agreement between the embedded trajectories..

5 Conclusion

A new approach to estimate continuous-time nonlinear models directly from discrete noisy
observations has been introduced based on an application of wavelet theory.

Using a nonorthogonal multiresolution wavelet decomposition based on B-spline
wavelets the observed noisy signals are smoothed and then differentiated to provide the
information ﬁt;eded to approximate the continuous-time description of the system of inter-

est as a set of ordinary differential equations. The method was tested on both simulated
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and experimental data produced by nonlinear systems and was shown to perform very

well even in the presence of noise
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