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Abstract

This paper presents research into the application of the fuzzy ARTMAP neural network model
to the diagnosis of cancer from fine-needle aspirates of the breast. Trained fuzzy ARTMAP
networks are differently pruned so as to maximize accuracy, sensitivity and specificity. The
differently pruned networks are then employed in a “cascade” of networks intended to separate
cases into “certain” and “suspicious” classes. This mimics the predictive behaviour of a human
pathologist. The fuzzy ARTMAP model also provides symbolic rule extraction facilities and
the validity of the derived rules for this domain is discussed. Additionally, results are provided
showing the effects upon network performance of different input features and different
observers. The implications of the findings are discussed.
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1 Introduction

Neural networks potentially have great value in medical decision-support applications. Unlike
expert systems, they bypass the difficult and time-consuming knowledge acquisition process
(Hayes-Roth, Waterman and Lenat, 1983) by learning complex associations directly from
domain examples. This provides the opportunity for a neural network decision-support tool to
adapt to perform the same task under varying conditions. This occurs, for example, because of
differing demographic conditions or clinical procedures from region to region, or because
procedures may vary over time owing to advances in medical knowledge or technology.

A large and ever-growing body of work now exists on applying neural networks to various
medical classification tasks, e.g. the diagnosis of epilepsy (Apolloni et al., 1990), diagnosis of
low back disorders (Bounds, Lloyd and Mathew, 1990), early diagnosis of myocardial
infarction (Harrison, Marshall and Kennedy, 1991), classification of thyroid disorders
(Egmont-Peterson et al., 1994), identification of Alzheimer’s diseased tissue (Pizz et al.,
1995). For a general introduction to artificial neural network applications in medicine, see
Cross, Harrison and Kennedy (1995), Baxt (1995) and Dybowski and Gant (1995).

The main thrust of this work has been in the use of feedforward networks to learn the
association between evidence and outcome. Primarily, the Multi-Layer Perceptron (MLP) and
Radial Basis Function (RBF) network classes have been employed. (See Rumelhart, Hinton
and Williams, 1986, and Moody and Darken, 1989, respectively.) Both the MLP and the RBF
have been shown to be rich enough in structure so as to be able to approximate any (sufficiently
smooth) function with arbitrary accuracy (Cybenko, 1989; Park and Sandberg, 1991). In
addition, it can be shown that, for one-from-many classification problems, attainment of the
minimal value of a variety of cost functions with respect to the weights yields an estimate of
the posterior (class conditional) probabilities required for the implementation of a Bayesian
classifier (e.g. Richard and Lippmann, 1991). Thus, given sufficient data, computational
resources (the MLP, in particular, does not scale well with problem size) and time (non-linear
optimization which is non-linear in the parameters may be time consuming to perform,
numerically), it is possible to estimate the Bayes-optimal classifier to any desired degree of
accuracy, directly and with no prior assumptions on the probabilistic structure of the data.
However, despite this attractive property, there are two serious drawbacks with these classes
of feedforward networks in addition to the caveats given above.

First, these networks require artificial termination of training, since they are susceptible to new
but irrelevant data over-writing useful existing associations and thus degrading general
classification performance. However, this requirement seriously compromises the adaptability
of a neural network. New data is not always irrelevant, sometimes it reflects significant
changes in the classification domain which requires new associations to be learned. This is
termed the stability-plasticity dilemma: “How can a learning system be designed to remain
plastic, or adaptive, in response to significant events, and yet remain stable in response to
irrelevant events?” (Carpenter and Grossberg, 1988, p.77).

The MLP and RBF networks do not cope well with this dilemma. The termination of learning
once a pre-determined level of performance has been achieved sacrifices plasticity for the sake
of stability. In non-stationary classification domains (i.e. when the underlying statistics of the
population are changing with time), these networks cannot incrementally acquire new
associations as the environment changes. Instead, they must be completely retrained on new




domain data, losing all previously learned associations even though some may still be useful
(and will be reacquired alongside the new associations with retraining). Furthermore, when
retraining with additional data there is no guarantee that the previous network’s topology,
learning parameters, etc. will still provide a good solution. It is possible that significant changes
to the network will be needed when it is re-derived. (For a detailed discussion on this issue with
regard to feedforward networks see Sharkey and Sharkey, 1994.)

Many medical domains are non-stationary to a greater or lesser extent, for example, owing to
changes in clinical procedures. Furthermore, the artificial termination of learning means thata
neural network trained on data from one site is likely to perform the same task sub-optimally
using data from another site because of variations in local conditions (e.g. Kennedy, Harrison
and Marshall, 1994). Thus it would be desirable if such a network could be “fine-tuned” to its
changed operating conditions by incremental learning of cases from the new site. In general,
causality dictates that it is not possible to know, a priori, whether or not a domain is stationary.

The second problem stems from a common general criticism of the neural network paradigm
that the rules governing the predicted outcome are obscure. This can lead to a strong resistance
to acceptance of a network’s predictions by potential users. This is particularly true for medical
domains. For example, a diagnosing clinician using a neural network decision-support tool has
to be convinced that the underlying model captures the salient features of the domain and that
the system is further able to offer an explanation of its diagnoses in user-comprehensible
(i.e.symbolic) terms. However, attempts to extract domain rules from feedforward networks
have met with limited success, with, so far, no completely general method published (see Ma
and Harrison, 1995).

In this paper we describe the application of a powerful, but relatively little-used, neural
network model, fuzzy ARTMAP, to a medical decision-support task—assisting a pathologist
in the diagnosis of breast cancer. Fuzzy ARTMAP is a neural network model, using both
feedforward and feedback, which is not susceptible to the two criticisms cited above and has
other desirable properties for this task (and medical classification tasks in general, see Downs
et al., In Press). The paper will however demonstrate only the symbolic rule extraction
capability of fuzzy ARTMAP, although some discussion will be made of its incremental
learning ability in the conclusions.

The structure of the remainder of this paper is as follows. Section two defines some general
medical terminology before progressing to a description of the breast cancer diagnosis task and
previous work in this domain. Section three provides details of the fuzzy ARTMAP neural
network model and its associated activities such as the voting strategy and symbolic rule
extraction. Since fuzzy ARTMAP is relatively little-known this section provides quite detailed
coverage of the model. Section four provides the basic performance results using fuzzy
ARTMAP. Section five evaluates the symbolic rules derived from the trained networks.
Section six provides further performance results investigating the effect of variations in input
features. Section seven provides our conclusions and suggestions for further work.

2 Medical Background
2.1 Terminology

Medical domains inevitably have their own specialist terminology, the basics of which are




defined in this subsection in order to facilitate comprehension of the remainder of this paper.

The presence of a particular disease or disorder is referred to as a posirive case, while
conversely the absence is referred to as a negative case. This in turn leads to four types of
prediction when assessing the veracity of a diagnosis. A true posirive is a case where the
presence of a disease has been correctly diagnosed. Similarly, a rrue negative is a case where
the correct diagnosis of the absence of a disease has been made. The two remaining types of
prediction, false positives and false negatives, relate to incorrect diagnoses. A Jalse positive is
a case where a disease is diagnosed as being present, when in fact the patient does not have the
disease. Conversely, a false negative is a case where a disease is diagnosed as being absent,
when in actuality the patient does have the disease.

There are three commonly used metrics of diagnostic performance in medical domains.
Accuracy is the proportion of all cases (positive or negative) correctly diagnosed, sensitivity is
the proportion of positive outcomes correctly diagnosed, and similarly specificity is the
proportion of negative outcomes correctly diagnosed.

Obviously, high accuracy requires both high sensitivity and high specificity. However, there is
also a trade-off between sensitivity and specificity. If all cases are diagnosed as having a
positive outcome, 100% sensitivity but 0% specificity will be achieved (and vice versa if all
cases are classed as negative outcomes). Although this is an extreme example, it is often the
case that diagnoses will be deliberately made that are to some extent biased towards one or the
other outcome. (This will be demonstrated in the next subsection.) It should also be noted that
false positive predictions lower specificity, while false negatives reduce sensitivity.

2.2 Breast Cancer

Breast cancer is a common disease affecting approximately 22 000 women yearly in England
and Wales and is the commonest cause of death in the 35-55 year age group of the same
population (Underwood, 1992). The primary method of diagnosis is through microscopic
examination by a pathologist of cytology slides derived from fine needle aspiration of breast
lesions, FNAB, (Elston and Ellis, 1990). The acquisition of the necessary diagnostic expertise
for this task is a relatively slow process. (A trainee pathologist in the UK requires at least five
years study and experience before being allowed to sit the final professional pathology
examinations for membership of the Royal College of Pathologists.)

Large studies of the cytopathologic diagnosis of FNAB have shown a range of specificity of
diagnosis of 90-100% with a range of sensitivities from 84-97% (Wolberg and Mangasarian,
1993). These studies have been produced in centres specializing in the diagnosis of breast
disease by pathologists with a special interest in breast cytopathology. In less specialized
centres, such as district general hospitals, when a diagnostic FNAB service is being set up the
performance is in the lower range of those values with a specificity of 95% and a sensitivity of
87% (Start et al., 1992). There is thus scope for an artificial intelligence decision-making tool
for this domain to assist in training junior pathologists and to improve the performance of
experienced pathologists.

The most important performance metric in this domain is not overall diagnostic accuracy but
specificity. This is because the pathologist’s prime concern is to avoid false positive
predictions (diagnosing benign lesions as malignant) since these may result in unnecessary




surgery such as mastectomy or wide local excision of the lesion!. False negatives are tolerated
because, if the clinical suspicion of malignancy remains, the surgeon will then take further
samples for additional testing by the pathologist. (Indeed, false negatives are inevitable within
this domain since some aspirations fail to locate a malignant lesion and extract nearby healthy

tissue.)

Table 1: Abbreviation and definition of data features used in breast cancer diagnosis

AbbrevIARd Definition of Feature
Feature Name

DYS True if majority of epithelial cells are dyhesive, false if majority of
epithelial cells are in cohesive groups.

ICL True if intracytoplasmic lumina are present, false if absent.

3D True if some clusters of epithelial cells are not flat (more than two nuclei
thick) and this is not due to artefactual folding, false if all clusters of
epithelial cells are flat.

NAKED True if bipolar “naked” nuclei in background, false if absent.

FOAMY True if “foamy” macrophages present in background, false if absent.

NUCLEOLI True if more than three easily visible nucleoli in some epithelial cells,
false if three or fewer easily visible nucleoli in epithelial cells.

PLEOMORPH | True if some epithelial cell nuclei with diameters twice that of other
epithelial cell nuclei, false if no epithelial cell nuclei twice the diameter
of other epithelial cell nuclei.

SIZE True if some epithelial cells with nuclear diameters at least twice that of
lymphocyte nuclei, false if all epithelial cell nuclei with nuclear
diameters less than twice that of lymphocyte nuclei.

NECROTIC True if necrotic epithelial cells present, false if absent.

APOCRINE True if apocrine change present in majority of epithelial cells, false if not
present in majority of epithelial cells.

In the cytodiagnosis of FNAB there are some observable features which are cited as being
important in the recognition of malignant cells. A “canonical” list is provided by Wells et al.
(1994), although this publication does not attribute weights to these features or indicate the
significance of combinations of these features. Ten of the features described by Wells et al. are
utilized in this research. The medical definitions are shown in table 1, together with the
abbreviations by which they will be referred to throughout this paper. As a general guideline,
the features NAKED, FOAMY and APOCRINE are regarded as indicators of a benign
outcome and all other features are indicative of malignancy. (However, some interactions

1 However, in other contexts sensitivity can be more important than specificity. For example, the initial
stage of the U.K.’s nationwide screening program (which uses mammography rather than FNAB) needs
to avoid false negatives, so that all women with breast cancer will be referred to hospital for reatment.




between conjunctions of features are possible, see subsection 5.2.)
2.3 Previous Work

Some expert systems have been described which attempt to use human observations of features
in FNAB and then apply computers to process these observations and attach weight to the
presence and combination of features. Heathfield et al. (1990) describe a rule-based expert
system with rules derived from cytopathological textbooks and discussions with pathologists
but they do not give any results for the performance of the system on a test set of data. A
Bayesian belief network has been developed by Hamilton et al. (1994). The conditional
probability matrices relating each observed feature to the diagnosis were defined by a
cytopathologist. The network was tested using 40 cases, it is difficult to assess the results
because four categories of diagnosis were used (benign, malignant, atypical probably benign
and suspicious) but 6% of the true benign cases and 9% of the true malignant cases were
assigned to an equivocal category. Wolberg and Mangasarian (1993) have produced a large
study with a 420 case training set and 215 case test set and they have used a user-modified
computer-generated decision tree, the multisurface method of pattern separation and a
connectionist system with a back-propagation leaming algorithm. Nine cytological features
were observed and given a scalar value of 1-10. On the test data set the decision tree method
gave a specificity of 97% with a sensitivity of 93%, the connectionist network a specificity of
99% and a sensitivity of 97%, the multisurface separation method produced 100% specificity
and sensitivity. However, some cases (such as cancer judged to have been missed by the
aspirating needle) were excluded before analysis.

In previous work by the authors (Downs, Harrison and Cross, 1995a, 1995b) we applied the
ARTMAP neural network model to this task using a 313 item training set and a 100 item test
set. Various configurations of the model gave an accuracy of 94-95%, a sensitivity of 90-96%,
and specificity of 92-99% (for full details see Downs, Harrison and Cross, 1995a). Atypical
cases were not removed prior to measuring system performance. The model was shown to
perform at least as well as an expert human pathologist and displayed diagnostic accuracy very
close to the optimum possible for the domain. In this paper we present further results using a
new ARTMAP configuration with a revised and expanded data set. The present work also
overcomes some minor flaws in the methodology of our previous papers.

3 Fuzzy ARTMAP

Adaptive resonance theory, or ART (Carpenter and Grossberg, 1991) represents a family of
neural network models originally developed from the competitive learning paradigm with the
intention of overcoming the stability-plasticity dilemma (Grossberg, 1987). This was achieved
by utilizing feedback between layers of input and category nodes in addition to the standard
feedforward connections of competitive learning. Thus, in ART models, an input pattern is not
automatically assigned to the category that is initially maximally activated by that input.
Instead, if the feedback process rejects the initial categorisation, a search process is initiated
which terminates when a category node with an acceptable match to the input is found. If no
such node exists, a new category node is formed to classify the input.

It should also be noted that ART models usually employ a localist representation for category
nodes owing to the so-called “winner-take-all” competitive learning dynamics. Although
biologically implausible, this feature does have the advantage of facilitating symbolic rule
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extraction from a trained network (see subsection 3.2). Furthermore, localization results from
a simplification used to obtain the computational models and is not inherent in adaptive
resonance theory per se.

Since ART was an outgrowth of competitive learning, initial models developed from it
employed unsupervised learning. Examples of such models include ART 1 (Carpenter and
Grossberg, 1987) which is restricted to the classification of binary input patterns, and fuzzy
ART (Carpenter, Grossberg and Rosen, 1991) which generalizes ART 1 so as to classify both
analogue and binary patterns. More recently ART models employing supervised learning have
been developed which are based upon these earlier models and so retain their self-organizing
properties.

Fuzzy ARTMAP (Carpenter et al., 1992) is one such model, based upon fuzzy ART. It is thus
a self-organizing, supervised learning, neural network model for the classification of both
analogue and binary patterns. Fuzzy ARTMAP consists of three modules, two fuzzy ART
systems called ART, and ART}, and a related structure called the map field. During training,
input patterns are presented to ART, together with their associated teaching stimuli at ART;,.
Associations between patterns at ART, and ART, are then formed at the map field. During
testing, supervisory inputs at ART), are omitted, and instead the inputs at ART, are used to
recall a previously learned association with an ART;, pattern via the map field.

However, fuzzy ARTMAP does not directly associate inputs at ART, and ART;,. Rather, such
patterns are first self-organized into prototypical category clusters before being associated at
the map field. Hence generalized associations are formed. If the ART, category cluster selected
through self-organization does not match with the teaching category at ART), the map field
generates a re-set at ART,, forcing the input to be re-classified to an appropriate ART, category
prototype. If no such prototype exists, a new cluster is automatically created for classification
of the input. Thus it can be seen that supervision of learning is only employed when self-
organization leads to a classification error.

Additionally, input patterns are initially “preprocessed” by complement coding, such that each
input feature also has its complement passed to the fuzzy ARTMAP input layer. (The fuzzy
ARTMAP input layer is thus twice the length of the original input vector.) Complement codin g
is necessary to help reduce proliferation of category clusters in ART models. With purely
binary data, complement coding ensures that the vector received by the fuzzy ARTMAP input
layer always has a fixed number of true bits (equal to the length of the original input vector).

Training in fuzzy ARTMAP almost always results in multiple category clusters forming at
ART, for each teaching category present at ART}, with each such cluster encoding multiple
input exemplars (i.e. each ART, cluster represents a significant sub-region of the overall state
space covered by a particular teaching category). Hence fuzzy ARTMAP instantiates a many-
to-one mapping between ART, input patterns and their actual classification. For full details on
fuzzy ARTMAP see Carpenter et al. (1992).

Simplified fuzzy ARTMAP (henceforth abbreviated to SFAM) is a “streamlined” version of
fuzzy ARTMAP intended to be more computationally efficient than a full implementation but
with a minimal loss of computational power (Kasuba, 1993). Figure 1 gives a diagrammatic
representation of the model; circled lines denote adaptive weight connections, arrowed lines
show processing flow. The teaching stimulus has a dashed arrow to indicate its variable
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status—if it is present learning occurs, if it is absent prediction takes place instead.

The model does not self-organize teaching inputs at ARTy, but instead encodes these patterns

directly. (Thus, unlike fuzzy ARTMAP, the ART, module in SFAM is not a complete fuzzy
! ART system.) This is based on the observation that in most pattern classification tasks the
teaching stimuli themselves do not need to be further categorised since they directly represent
distinct, known classes, e.g. one-from-many classification.

In addition, SFAM converts all but one of the three user-changeable parameters in fuzzy
ARTMAP to constants whose values are the usual default settings of the original parameters.
(For the benefit of those familiar with the ARTMAP models, the category choice parameter, o,
is fixed to be near-equal to zero and the learning rate, B, is set to its maximum value of one—
so-called fast learning.) The only remaining user-changeable parameter is the baseline
vigilance for the ART, module, p,. This determines how close a match is required between an
ART, input pattern and a category cluster prototype before accepting the input as a member of
the cluster. This parameter (indirectly) controls the size of the category clusters that will form,
since the higher it is set, the closer acceptable matches must be, and the smaller the coverage
of the state space each cluster will have. Generally, higher vigilance provides better
classification performance, although this must be balanced against the potential proliferation
of category clusters, providing poor data compression and leading the network to become little
more than a “look-up table” (Marriot and Harrison, 1995). Additionally, with small training
sets and/or high-dimensional input vectors with many features, high vigilance can lead to
incomplete coverage of the feature space by the network.

As well as its capabilities for continuous learning and symbolic rule extraction, SFAM has a
number of other useful properties for medical pattern classification tasks:

First, as noted earlier, the model has but one user-changeable parameter, the baseline vigilance
of the ART, module. SFAM can thus be easily tuned to a particular task.

Second, successful learning can occur with only one pass through the data set (termed single-
epoch training). This is demonstrated within this paper, since all the results we describe were
achieved by means of single-epoch training.

Third, the model does not perform optimization of an objective function and is not therefore
prone to the problem of local minima as occurs with feedforward networks using
backpropagation. Also, the problem of selecting the appropriate number of hidden units does
not occur. This is because, as described previously, SFAM self-organizes its own structuring
of the data, automatically creating new category clusters for itself as and when they become
needed.

Fourth, the model is able to discriminate rare events from a “sea” of similar cases with different
outcomes owing to the feedback mechanism based on top-down matching of learned categories
3 to input patterns. This is again in contrast to feedforward networks using backpropagation
where weights are refined by a process which effectively averages together similar cases and
thus fails to acknowledge rare events. SFAM is therefore suitable for domains where the
distribution of data items is skewed between different categories. This is demonstrated within
the present application domain (see subsection 4.1). '
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Additionally, there are a number of supplementary features of our approach which require
some explication:

3.1 Voting Strategy

The formation of category clusters in ARTMAP models is affected by the order of presentation
of input data items (Carpenter et al., 1992). Thus the same data presented in a different order
to separate SFAM networks can lead to the formation of quite different clusters within the two
networks. This subsequently leads to different categorisations of test data, and thus different
performance scores. This effect is particularly marked with small training sets and/or high-
dimensional input vectors, where the input items may not be fully representative of the domain,
and with single-epoch training.

This effect can be compensated for by the use of the ARTMAP voting strategy (Carpenter et
al., 1992). This works as follows: a number of SFAM networks are trained on different
orderings of the training data. During testing, each individual network makes its prediction for
a test item in the normal way. The number of predictions made for each category is then totalled
and the one with the highest score (or the most “votes”) is the final predicted category outcome.
The voting strategy can provide improved SFAM performance in comparison with the
individual networks.

3.2 Symbolic Rule Extraction

Most neural networks suffer from the opaqueness of their learned associations (Towell and
Shavlik, 1993). In medical domains, this “black box” nature may make clinicians reluctant to

? utilise a neural network application, no matter how great the claims made for its performance.
Thus, there is a need to supplement neural networks with symbolic rule extraction capabilities
in order to provide explanatory facilities for the network’s “reasoning”. The ARTMAP models
have been endowed with such capabilities (Carpenter and Tan, 1993; Tan, 1994). The act of
rule extraction is a straightforward procedure compared with that required for feedforward
networks since there are no hidden units with implicit meaning. In essence, each category
cluster in ART, represents a symbolic rule whose antecedent is the category prototype weights
and whose consequent is the associated ART}, category (denoted via the map field).

3.3 Category Pruning

An SFAM network often becomes “over-specified” on the training set, generating many low-

utility ART, category clusters which may represent noise or rare but unimportant cases, and

subsequently provide poor-quality rules. The problem is particularly acute when a high ART,

baseline vigilance level is used during training. To overcome this difficulty, rule extraction

involves a “preprocessing” stage of category pruningl. This involves the deletion of these low
% utility nodes.

Pruning is guided by the calculation of a confidence factor (CF) between nought and one for
each category cluster, based upon a node’s usage and accuracy. The usage score for an ART,

2 With continuously-valued category weights, rule extraction also involves a second preprocessing stage
of quantization (see Carpenter and Tan, 1993). However, this application uses binary data under so-called
fast-learn conditions (Carpenter et al.,1992) which yields purely binary category weights. Quantization
is therefore omitted from this description.
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node is simply the number of training set exemplars it encodes, normalized through division
by the maximum number of exemplars encoded by any node with the same category outcome.
(Hence, there will be at least one node for each different category class which has a maximal
usage score of one.) The accuracy score for a node is calculated as the proportion of predictions
that are correct which the node makes on a prediction data set independent of the training data.
This score is then normalized, similarly to the usage calculation, through division by the
maximum proportion of correct predictions made by any node with the same outcome. (Thus
there will be at least one node for every category class which has a maximal accuracy score of
one.) The confidence factor for a node is then calculated as the mean of its usage and accuracy
scores. All nodes with a confidence factor below a user-set threshold will be pruned. Full
details of the process are given in Carpenter and Tan (1993) or Tan (1994).

The pruning process can provide significant reductions in the size of a network. In addition, it
also has the very useful side-effect that a pruned network’s performance is usually superior to
the original, unpruned net on both the prediction set and on entirely novel test data. This is
because the removal of the low-utility nodes caused by over-specification on the training set
improves the general performance of the network.

In the original formulation of the pruning process, a uniform CF threshold is used to select
nodes for deletion, irrespective of their category class. In this application, we have generalised
the pruning process to allow separate CF thresholds for nodes belonging to different category
classes. This allows us to vary the proportion of the state-space covered by different categories.
For example, by increasing the CF threshold for nodes with positive outcomes the relative
proportion of such nodes is decreased and thus the sensitivity of the network is reduced. (The
same effect can also be achieved of course by decreasing the CF threshold for nodes with
negative outcomes.) This is useful for medical domains since it allows an ARTMAP network
to be pruned so as to trade sensitivity for specificity and vice versa.

3.4 SFAM cascade

The generalization of the category pruning process described above allows a novel “cascaded”
configuration of SFAM networks to be employed as shown in figure 2. This consists of three
layers, a network pruned so as to maximize sensitivity, another pruned so as to maximize
specificity, and a third layer consisting of a set of uniformly pruned networks (which maximize
accuracy) operating by the voting strategy. (The network cascade described here is a slightly
simplified version of that first presented in Downs, Harrison and Kennedy, 1995, which was
used for the early diagnosis of heart attacks.)

The first two layers are intended to identify those cases which have a very high certainty of
being classified correctly, with the sensitive network being used to “trap” the negative cases
and the specific network capturing the positive cases. The intuition behind this is that a network
which displays very high sensitivity will rarely make false negative predictions and so any
negative predictions made by that network are very likely to be correct. Conversely, a highly
specific network will make very few false positive predictions, and so its positive predictions
have a high certainty of being correct.

11
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Figure 2: Cascaded SFAM configuration for breast cancer diagnosis

The cascade therefore operates as follows: An input data item is first presented to the sensitive
network. If this yields a benign (negative) verdict, this is taken as the final category prediction.
If not, the data item is next presented to the specific network. If this yields a malignant

12
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(positive) verdict, this is taken as the ultimate category prediction®. Otherwise the final
prediction of the category class of the input is obtained by majority verdict from the uniformly
pruned nets, with a lower certainty of the prediction being correct than with the previous two
layers. The cascade mimics the behaviour of a human pathologist in this domain in that some
diagnoses are reported as “certainly” correct, while others are labelled as “suspicious” (and will
thus require a second opinion and/or further test samples).

4 Basic Findings
4.1 Data

The total data set for the application comprised 600 patient records each composed of 10
binary-valued features (see table 1). Each record was derived from microscopic observation of
FNAB specimens by an expert pathologist (of Consultant status with 10 years experience in the
field). The samples were taken from patients referred to the Royal Hallamshire Hospital,
Sheffield, UK with symptomatic and screening-detected breast lesions in 1993. The
distribution of categories within the data was slightly skewed but represents the prior
probabilities of adequate specimens received in the laboratory—215 cases were malignant, the
remaining 385 benign (i.e. 35.8% malignant, 64.2% benign). This data differs therefore from
that used in our previous work (Downs, Harrison and Cross, 1995a, 1995b) in that the previous
data set was artificially biased to represent approximately equal numbers of each outcome,
rather than the actual distribution across outcomes within the domain. (Additionally, the extra
data in the current work allows performance to be measured on a test set that is independent of
the prediction data set used to guide category pruning.)

In many medical situations the final diagnosis or outcome is difficult to confirm without
unnecessary invasive procedures or a long period of time has to elapse to allow further
manifestations of the disease to appear. In FNAB the final outcome is relatively easy to confirm
within a few months of the initial procedure. In this study the majority of cases where a
malignant diagnosis was made on FNAB had further excision of tissue (e.g. lumpectomy or
mastectomy) and the final diagnosis was made by histological examination which has a
specificity and a sensitivity very close to 100%. In a few elderly patients the tumour was not
removed and the patient was treated by radiotherapy and chemotherapy, in these cases the
clinical diagnosis of malignancy was secure since all were large tumours with clinical features
of malignancy such as invasion through the skin. A benign outcome was confirmed by benign
clinical features recorded at the time of aspiration, mammographic examination and absence of
subsequent malignant specimens from the same area of the breast.

It should also be noted that, as with almost all information gathered from a real-world medical
domain, the data set possesses a degree of “noise”. Specifically, some combinations of features
do not always have the same outcome in every case (notably owing to flawed aspirations of
malignant lesions). Analysis of the data set revealed the existence of 16 such states, which
collectively account for 365 cases. Assuming that the most frequent outcome should always be
chosen when an ambiguous feature-state occurs will result in 22 of these cases being
misclassified. This represents 3.7% of the total data-set, and thus the maximum possible
diagnostic accuracy with this data is 96.3%.

. Obviously, the order of presentation between the sensitive and specific networks is not crucial, although
for efficiency reasons it is preferable to have the network which captures the largest number of cases as
the first layer.
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4.2 Method

The total data were partitioned into three subsets; 125 randomly selected items formed a
prediction set of 44 malignant and 81 benign cases (i.e. 35.2% malignant, 64.8% benign), a
further 100 randomly selected items formed a rest set of 35 malignant and 65 benign cases, the
remaining 375 items formed the training set of 136 malignant and 239 benign cases (i.e. 36.3%
malignant and 63.7% benign).

Ten SFAM networks were then trained on different random orderings of the teaching data.
Vigilance was set very high (0.9) during training in order to maximize classification
performance. Vigilance was relaxed to 0.6 for all predictions to ensure that all cases were
matched to an existing category cluster node (i.e. forced choice prediction). Performance on
the prediction set was recorded for each network in order to calculate the accuracy ratings for
each category node as a prerequisite to category pruning.

The ten trained networks were then pruned in three separate ways. First, the “standard” form
of category pruning (Carpenter and Tan, 1993) was performed on the original networks, such
that all nodes with a CF below 0.5 were deleted from the networks to improve predictive
accuracy. The original networks were then pruned using different CF thresholds for the
malignant and benign nodes to produce pruned networks which maximized sensirivity. CF
thresholds of 0.05 for malignant nodes and 0.95 for benign nodes were employed, the criterion
for setting the CF thresholds being a performance on the prediction set such that no network
made more than one false negative prediction. A similar procedure was then conducted to
produce 10 networks which maximized specificity. CF thresholds of 0.65 for malignant and 0.5
for benign nodes were sufficient to yield no more than one false positive for all networks on
the prediction set.

The cascade configuration shown in figure 2 was then derived from the pruned networks.
Selection criteria were as follows: From the ten networks pruned for sensitivity, the one which
had the highest specificity while maintaining 100% sensitivity on the prediction set was
selected to form the first layer of the cascade. Similarly, from the 10 networks pruned for
specificity, the one which had the highest sensitivity while maintaining 100% specificity on the
prediction set was chosen to form the second layer of the cascade. Finally, from the uniformly
pruned networks, the five with the highest individual accuracies on the prediction set were
selected to form the third (voting strategy) layer of the cascade. Performance of the cascade
was then measured on the test set.

4.3 Results

The performance of the network cascade on the test set is shown in table 1, alongside the
performance of the human consultant on the same set of cases. It can be seen that the overall
performance of the cascade is very similar to that of the human pathologist—in terms of
numbers of cases, the cascade made two false positive predictions avoided by the consultant,
but also made only three false negative predictions, compared with six made by the consultant.
Additionally, the two false positive decisions were confined to the “suspicious” layer of the
cascade. The overall accuracy of the cascade can also be seen to be very close to the maximum
possible for the domain (see subsecton 4.1).

The top two layers of the cascade (representing “certain” decisions) showed almost perfect
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performance, and covered a large proportion of the total test data (71%). Perfect performance
was marred only by the occurrence of one false negative decision. Further examination of the
details of this case revealed that the sample was very likely to have resulted from a flawed
aspiration, which, as noted earlier, is an unavoidable feature of the domain.

It should also be noted that standard category pruning produced an mean reduction in network

size of 70.3%; from a mean of 91 category nodes in the unpruned networks to an average of 27
nodes in the pruned networks.

Table 2: Performance of SFAM voting strategy cascade on 100 item test set

Accuracy (%) Sensitivity (%) Specificity (%)
“Certain” Decisions 98.6 967 100.0
“Suspicious” Decisions 86.2 60.0 01.6
Overall Performance 95.0 91.4 96.9
Consultant’s Performance 94.0 82.9 IO—EO

5 Symbolic Rules

5.1 General Discussion

Rule extraction facilities provide two advantages which, taken collectively, should help to
overcome reluctance to utilize a neural network decision-support tool. First, a domain expert
can examine the complete rule set in order to validate that the network has acquired an
appropriate mapping of input features to category classes. Second, the symbolic rules provide
explanatory facilities for the network’s predictions during on-line operation. In the case of
SFAM this corresponds to displaying the equivalent rule for the ART, cluster node that was
activated to provide a category decision. (In the case of the voting strategy, a number of such
rules, one per voting network, would be displayed.) The diagnosing clinician is then able to
decide whether or not to concur with the network’s prediction, based upon how valid he or she
believes the rule(s) to be.

The specific rules discovered for this domain will be presented in section 5.2. However, some
discussion of their general nature is needed here since they differ somewhat from the
production rules used in conventional decision support aids such as expert systems. Expert
system rules are “hard”—an input must match to each and every feature in a rule’s antecedent
before the consequent will be asserted. In ARTMAP models, the rules are “soft”—recall that
they are derived from prototypical category clusters which are in competition with each other
to match to the input data. Exact matching between inputs and categories is not necessary; a
reasonably close fit suffices. (The degree of inexactitude that is tolerated being determined by
the value of the ART, vigilance parameter.) This provides greater coverage of the state space
for the domain, using fewer rules.

Additionally, the rules are self-discovered though exposure to domain exemplars, rather than
having been externally provided by a human expert. ARTMAP models are thus able to bypass

15




the difficult and time-consuming knowledge-acquisition process found with rule-based expert
systems (Hayes-Roth, Waterman and Lenat, 1983). However, collection of the data may itself
be a non-trivial task in many medical domains.

A drawback of this approach is that the rules are “correlational” rather than causal, since SFAM
possesses no underlying theory of the domain but simply associates conjunctions of input
features with category classes. (Of course, this problem is not specific to the ARTMAP models
but occurs with neural networks generally.) However, this difficulty is probably not of great
importance from an applications viewpoint since useful diagnostic performance can often be
achieved from correlational features without recourse to any “deep” knowledge of the domain.

A final general point concerns the learning rule in SFAM which governs the formation of
category clusters, and hence the rules that will be derived from these clusters. Under the “fast-
learning” conditions with binary data used in this application, whenever an input is
successfully matched to an existing category cluster node the new weights for that node are
formed by taking the logical AND of the input pattern and the existing weights for that cluster
(Carpenter et al., 1992). This has the effect of deleting all features from the category cluster
weights that are not also present in the input pattern. Hence, the weights tend to denote
progressively more general clusters as they encode more input patterns and more features are
deleted. Additionally, all features that are still present in the weights for a cluster once training
ceases are known to have been present in all input vectors encoded by that cluster.

5.2 SFAM Rules for the Domain

Rule extraction from the uniformly pruned networks yielded 44 distinct rules, 12 with benign
outcomnes (shown in table 3) and 32 with malignant outcomes (shown in table 4). Rules are
ranked within each table by number of occurrences within the five networks and by the mean
value of their certainty factor. The rules which the Consultant pathologist involved in this study
did not consider to be in accord with standard diagnostic criteria are shown hatched in grey
within the tables.

Table 3: Benign rules extracted from uniformly pruned SFAM networks

Rule 1. 5 Occurrences
Mean CF = 1.00

IF

NO_SYMPTOMS
THEN

BENIGN

Rule 2. 5 Occurrences
Mean CF = 0.57
IF

NAKED = TRUE

Rule 4. 4 Occurrences
Mean CF = 0.53
IF

APOCRINE = TRUE
THEN

BENIGN
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Table 3: Benign rules extracted from uniformly pruned SFAM networks

Rule 7. 3 Occurrences
Mean CF = (0.52

IF

FOAMY = TRUE
APOCRINE = TRUE
THEN

BENIGN

Rule 8. 3 Occurrences
Mean CF = 0.52

IF

PLEOMORPH = TRUE
SIZE = TRUE
APOCRINE = TRUE
THEN

BENIGN

Rule 9. 2 Occurrences
Mean CF = 0,77

IF

FOAMY = TRUE

Rule 10. 2 Occurrences
Mean CF = 0.53

IF

NAKED = TRUE
FOAMY = TRUE
THEN

BENIGN

Rule 11. 2 Occurrences
Mean CF = 0.52

IF

FOAMY = TRUE
PLEOMORPH ='TRUE
SIZE =TRUE
APOCRINE = TRUE
THEN

BENIGN

Table 4: Malignant rules extracted from uniformly pruned SFAM networks

Rule 1. 5 Occurrences
Mean CF = 0.94

IF

3D =TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE

THEN

MALIGNANT

Rule 2. 5 Occurrences
Mean CF = 0.60

IF

DYS = TRUE

ICL = TRUE
NUCLEOQOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
NECROTIC = TRUE
THEN
MALIGNANT

Rule 3. 5 Occurrences
Mean CF = 0.59

IF

3D = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
NECROTIC = TRUE
THEN

MALIGNANT

Rule 4. 4 Occurrences
Mean CF = 0.99

IF

ICL = TRUE

3D =TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE

THEN

MALIGNANT

Rule 5. 4 Occurrences
Mean CF = 0.75

IF

DYS =TRUE
NUCLEQLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN

MALIGNANT

Rule 6. 4 Occurrences
Mean CF =0.73

IF

NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN

MALIGNANT
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Table 4: Malignant rules extracted from uniformly pruned SFAM networks

Rule 7. 4 Occurrences
Mean CF = 0.64

IF

PLEOMORPH = TRUE
SIZE= TRUE

THEN

MALIGNANT

Rule 8. 4 Occurrences
Mean CF = 0.59

IF

ICL = TRUE

3D =TRUE
FOAMY = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
NECROTIC = TRUE
THEN
MALIGNANT

Rule 9. 4 Occurrences
Mean CF = 0.58

IF

ICL = TRUE

FOAMY = TRUE
PLEOMORPH = TRUE
SIZE = TRUE

THEN

MALIGNANT

Rule 10. 4 Occurrences
Mean CF = 0.58

IF

ICL = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN

MALIGNANT

Rule 11. 4 Occurrences)
Mean CF = 0.56

IF

DYS = TRUE

3D =TRUE

FOAMY = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
NECROTIC = TRUE
THEN

Rule 12. 4 Occurrences
Mean CF = 0.55

IF

3D =TRUE

NAKED = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN

MALIGNANT

MALIGNANT
Rule 13. 3 Occurrences Rule 14. 3 Occurrences Rule 15. 3 Occurrences
Mean CF = 0.79 Mean CF = 0.69 Mean CF = 0.68
IF IF IF
3D =TRUE FOAMY = TRUE FOAMY = TRUE

FOAMY = TRUE
NUCLEOLI = TRUE

NUCLEOLI = TRUE
PLEOMORPH = TRUE

NUCLEOLI = TRUE
PLEOMORPH = TRUE

PLEOMORPH = TRUE SIZE = TRUE SIZE = TRUE

SIZE = TRUE THEN NECROTIC = TRUE
THEN MALIGNANT THEN

MALIGNANT MALIGNANT

Rule 16. 3 Occurrences Rule 17. 3 Occurrences Rule 18. 3 Occurrences
Mean CF = (0.62 Mean CF = 0.60 Mean CF = 0.57

IF IF IF

3D =TRUE ICL = TRUE ICL = TRUE

FOAMY = TRUE THEN 3D =TRUE
PLEOMORPH = TRUE MALIGNANT NUCLEOLI = TRUE
SIZE = TRUE PLEOMORPH = TRUE

NECROTIC = TRUE
THEN
MALIGNANT

SIZE = TRUE
NECROTIC = TRUE
THEN
MALIGNANT
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Table 4: Malignant rules extracted from uniformly pruned SFAM networks

Rule 19. 3 Occurrences
Mean CF = 0.53

IF

ICL = TRUE

NAKED = TRUE
FOAMY = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN

MALIGNANT

Rule 20. 2 Occurrences
Mean CF = 0.67

IF

ICL = TRUE

3D =TRUE
NUCLEOLI = TRUE
THEN

MALIGNANT

Rule 21. 2 Occurrences
Mean CF = 0.62

IF

DYS = TRUE

ICL = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE= TRUE
THEN

MALIGNANT

Rule 22. 2 Occurrences
Mean CF = 0.62

IF

NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
NECROTIC = TRUE

Rule 23. 2 Occurrences
Mean CF=0.62 *

IF

ICL = TRUE

FOAMY = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE

Rule 24, 2 Occurrences
Mean CF = 0.60

IF

DYS = TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE

THEN SIZE = TRUE NECROTIC = TRUE
MALIGNANT THEN THEN

MALIGNANT MALIGNANT
Rule 25. 2 Occurrences Rule 26. 2 Occurrences Rule 27. 2 Occurrences
Mean CF = 0.57 Mean CF = 0.59 Mean CF = 0.55
IF IF IF
ICL = TRUE ICL = TRUE DYS = TRUE
PLEOMORPH = TRUE FOAMY = TRUE FOAMY = TRUE
SIZE = TRUE THEN NUCLEOLI = TRUE
THEN MALIGNANT PLEOMORPH = TRUE
MALIGNANT

SIZE = TRUE
NECROTIC = TRUE
THEN
MALIGNANT

Rule 28. 2 Occurrences
Mean CF = 0.53

IF

DYS = TRUE

ICL = TRUE

3D =TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE

THEN

MALIGNANT

Rule 30. 1 Occurrence
Mean CF = 0.59
IF
DYS = TRUE
3D =TRUE
NUCLEOLI = TRUE
PLEOMORPH = TRUE
SIZE = TRUE
THEN
MALIGNANT
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Table 4: Malignant rules extracted from uniformly pruned SFAM networks

Rule 31. 1 Occurrence Rule 32, 1 Occurrence
Mean CF = 0.56 Mean CF = 0.53
IF IF
ICL = TRUE DYS = TRUE
3D =TRUE ICL = TRUE
NAKED = TRUE 3D = TRUE
FOAMY = TRUE NUCLEOLI = TRUE
NUCLEOLI = TRUE PLEOMORPH = TRUE
SIZE = TRUE SIZE = TRUE
THEN NECROTIC = TRUE
MALIGNANT THEN
MALIGNANT
I. Of the 44 rules extracted from the trained SFAM networks 39 were in complete agreement with

published canonical lists (Wells et al., 1994). The majority of the rules for a malignant

diagnosis consisted of combinations of the features ICL, 3D, NUCLEOLI, PLEOMORPH and

SIZE with other features appearing less frequently. Most cytopathologists agree that the

nuclear features of increased nuclear size (SIZE), multiple prominent nucleoli (NUCLEOLI)

and variation in nuclear size (PLEOMORPH) are the most important diagnostic features of

I malignancy in FNAB (Bottles et al., 1988; Trott, 1991; Wells et al., 1994). Rule 17 for

malignant diagnoses is interesting in that it only contains one feature, the presence of

. intracytoplasmic lumina; one specific type of breast carcinoma, lobular carcinoma, often

produces cells which do not have prominent nuclear abnormalities but which do have these

Ii abnormal cytoplasmic inclusions (Quincey et al., 1991). Rule 29 for malignant diagnoses gives

- only the feature of increased nuclear size but most cytopathologists require other nuclear

abnormalities to be present before making an unequivocally malignant diagnosis, with

increased nuclear size alone a cytopathologist would probably assign the case to a suspicious

category. In the benign rules the features PLEOMORPH and SIZE appeared together twice

1 which taken alone would be suggestive of malignancy but in these rules they were in

combination with the feature APOCRINE. Apocrine change in breast epithelial cells produces

large cells with abundant cytoplasm but the nucleus is also enlarged which would produce

positive observations of the features PLEOMORPH and SIZE without prominent multiple

nucleoli (NUCLEOLI). Apocrine change could also have led to the production of benign rule

il 5 where PLEOMORPH is the only feature since a few cells with apocrine change in the

specimen would trigger this positive observation without also triggering APOCRINE because

the majority of epithelial cells did not show apocrine change. This circumstance arises because

of the binary nature of the definitions used in this study, a coding scheme with more gradation

for each feature could circumvent this problem. Benign rules 3, 6 and 12 are not in complete

; | accord with published cytopathological knowledge and these cases would probably have been
assigned to a suspicious category by a cytopathologist.

6 Further Results

This section presents results concerning investigations into the effects upon SFAM
performance of employing both different input features and different observers to derive the
features. It follows up issues raised in Downs, Harrison and Cross (1995b).
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6.1 Effect of Different Input Features

In this subsection we consider three variations of the “standard” set of input features used to
obtain the results described in section 4:

1) The removal of the “FOAMY™ feature (representing the presence of foamy macrophages in
the background of the slide.) In previous work (Downs, Harrison and Cross, 1995b) it was
observed that there was disagreement as to the utility of this feature in making a diagnosis. This
variation therefore attempts to resolve this issue by determining if removal of the “FOAMY”
feature has an adverse effect upon network performance.

2) The addition of an “AGE” feature, representing the patient’s age. (The age feature was
encoded for input to SFAM by dividing the patient age in years by 100 in order to yield a value
in the range 0-1.) The motive for including this feature is that after menopause the breast
atrophies and thus the proportion of epithelial cells drops. Aspirates are expected therefore to
show fewer and smaller epithelial cells. Hence, patient age is a potentially useful diagnostic
indicator.

3) The addition of a binary “NOISE” feature, derived from whether or not the laboratory
number of the sample was odd or even. This variation is intended to investigate the robustness
of SFAM in the face of irrelevant data.

In order to compare the effect of different input features, the SFAM network configuration and
experimental method were changed from the procedure described in subsection 4.2. This
earlier method was intended to optimize SFAM performance for use of the model as a decision-
support tool. This goal was achieved, with a diagnostic accuracy very close to the maximum
possible for the domain. However, comparison of the effects of different input features requires
a non-optimal baseline performance in order to detect any improvements caused by input
feature variations. The following changes in the experimental method were therefore adopted,
all for the purpose of lowering the baseline SFAM performance with the standard set of input
features:

1) Category pruning was omitted. This also allowed an expanded test set to be created, by
merging the prediction and test sets described in subsection 4.2 into a single 225 item test set.

2) Vigilance was set at zero during training of the networks. This change was further
necessitated by the fact that a uniform non-zero vigilance level can have a slightly different
effect upon two SFAM networks which have different sized input vectors (see Stork, 1989).

3) The full SFAM cascade was not employed in measuring performance. Instead a simpler
three network voting strategy was used.

The full description of the experimental method is as follows:

Ten SFAM networks were trained on different random orderings of the 375 item teachin g data
set described in subsection 4.2, using single-epoch training with a vigilance level of zero. These
networks used the 10 “baseline” standard input features described previously in table 1.
Performance of each individual network was then recorded on the new 225 item test set. The
three networks with the highest individual accuracy were then selected to form a three network
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voting strategy. The voting strategy performance of these networks was then recorded on the
test set.

The procedure described in the above paragraph was then repeated using the three variations
in the network input features outlined previously. SFAM results with the three input feature
variations were then compared with the baseline results across all performance metrics (i.e.
accuracy, sensitivity and specificity) using McNemar’s test (see Bland, 1987).

The performance with the three input feature variations in comparison to the standard input
feature set is shown in table 5. It can be seen that the deletion of the “FOAMY” feature led to
a small drop in overall accuracy because of reduced specificity. However, none of the
differences across the three metrics was statistically significant (McNemar’s test, p>0.1). The
addition of the “AGE” feature led to a increase across all performance metrics in comparison
to the baseline. These increases were all statistically significant (McNemar’s test; accuracy
p<0.001, sensitivity p<0.05, specificity p<0.01.). The addition of the “NOISE” feature did not
cause a deterioration in performance in comparison to the baseline. Indeed, it led to a slight
increase in accuracy owing to higher specificity. However, neither difference was statistically
significant (McNemar’s test, p>0.1).

Table 5: Effect of different input features on SFAM performance

Input Features Accuracy (%) Sensitivity (%) Specificity (%)
e et —— |
BASELINE 10 85.3 84.8 85.6
-FOAMY 82.2 87.3 79.5
+AGE 94.2 94.9 93.8
+NOISE 87.6 84.8 89.0

6.2 Effect of Different Observers

In previous work (Downs, Harrison and Cross, 1995b) performance of the SFAM network
appeared to degrade badly in the face of “noisy” input data provided by an inexperienced junior
pathologist. It is thus possible that SFAM’s utility as a decision-support tool is limited by the
quality of the input data, being suitable for use by senior pathologists but vulnerable in the face
of incorrect feature assignments made by junior pathologists. In this subsection therefore, this
issue is investigated further by studying the performance of SFAM using input feature
observations provided by several different pathologists.

A test set of 50 cases (25 malignant and 25 benign) was employed which was entirely
independent of the 600 item data set described previously in subsection 4.1. The presence or
absence of the ten standard input features (see table 1) for each case was then rated by six
different pathologists, all working separately and with no knowledge of clinical data apart from
patient age. One of these pathologists had provided the original 600 item data set. Of the six
pathologists, two were of consultant status (each with over 10 years experience of interpreting
FNAB), three were senior registrars (each with 6 years experience) and one a senior house
officer (2 years experience). All pathologists reported FNAB in their daily work but those




below consultant status would have had their reports scrutinized by a consultant pathologist
who might modify the report after examining the cytological preparations.

Voting strategy performance of the five uniformly pruned networks trained previously to form
the third layer of the SFAM cascade (see section 4) was recorded for each of the six
pathologist’s observations. The results with the observations from the pathologist who had
provided the original training data served as the baseline for comparison with the other 5
pathologists’ observations (observer 1 in table 6). The results for all three performance metrics
were compared using McNemar’s test.

The performance of SFAM with the six sets of observations is shown in table 6. It should be
noted that the small size of the data set used here means that the differences between observers
may appear somewhat exaggerated since, in percentage terms, a single false case alters
specificity or sensitivity by 4% and accuracy by 2%.

General performance of the SFAM networks held up well across all observers, with no more
than four misclassifications for all but one observer’s data (seven misclassifications with
observer 4). Somewhat surprisingly, the networks performed slightly better than the baseline
with two observers (numbers 3 and 5). Furthermore, the observation set showing the worst
performance had only four extra misclassifications in comparison to the baseline. There were
no statistically significant differences between the baseline observation set and any of the other
observation sets across any performance metric (McNemar’s test, p>0.1).

Table 6: Effect of different observers on uniformly pruned SFAM performance

Observer Accuracy (%) Sensitvity (%) Specificity (%)
%‘: 94 100 88
2 92 92 92
3 96 100 92
4 86 84 88
2 96 100 92
6 94 92 96

7 Discussion

The performance of the SFAM cascade described in subsection 4.3 indicates that the
architecture has useful potential value as a decision-support tool for this domain. Performance
is very close to the domain optimum, despite only utilizing single-epoch training on a skewed
data set. Furthermore, the cascade served to isolate a large proportion of cases where the
network’s predictions were very likely to be correct, and, very importantly, avoided any false
positives within this subset of the test data.

Additionally, the model was shown to have self-discovered a generally valid set of rules for the
domain, with only five rules from a set of 44 considered not to be “canonical”. It is interesting




to note that all but one of these five rules had a mean CF factor very close to the threshold for
pruning. We therefore believe it is possible that the networks were “under-pruned” in this
application and that a slightly higher CF threshold for pruning (e.g. 0.55) would have almost
entirely eliminated all dubious rules, as well as providing a more compact overall rule set.
However, balanced against this is the need to avoid “over-pruning” where useful category
nodes are deleted resulting in degraded system performance and incomplete coverage of the
state space for the domain. This is therefore an area for future work. A further interesting
related piece of future work might be to use expert knowledge as a “post-processor” for
pruning, by deleting only those rules above the standard pruning threshold which are
considered to be invalid by the domain expert, and recording any subsequent effects upon
system performance.

The rule discovery aspect of SFAM can be seen as a knowledge engineering facet of the
model—validating that a network behaves in a way that is acceptable to a domain expert in
order to enhance confidence in the use of the model as a decision-support tool. Conversely, our
experiments with variations in the input features illustrate a machine learning facet—
establishing the utility of different diagnostic features which may be at odds with the “received
wisdom” of domain experts. Specifically our results indicate that patient age should be
regarded as a useful diagnostic feature, whereas the presence of foamy macrophages is not
perhaps as useful as is conventionally claimed. Furthermore, the SFAM was shown to be robust
in the face of an irrelevant input feature which did not degrade system performance.(See also
Goodman et al., 1994, for another experiment concerning fuzzy ARTMAP’s noise resistance
in a different medical domain—prediction of the length of hospital stay of pneumonia patients.)

Our findings with different observers providing the network inputs also showed the SFAM
network to be quite robust across potential variations caused by subjectivity in feature
assignments made by different pathologists. This is somewhat at odds with our previous
findings (Downs, Harrison and Cross, 1995b). The previous study, which showed a marked
decrease in performance with an inexperienced observer, only used two observers and the
inexperienced observer had 18 months experience compared with a minimum of 2 years in this
study. This is therefore an area where more research is needed in order to establish the limits
of and reasons for SFAM’s apparently variable robustness, probably requiring a larger volume
of data providing feature ratings from a variety of pathologists of different levels of experience.
The aptitude of individuals for pattern recognition and visual discrimination tasks varies and
larger numbers of inexperienced observers are required before any firm conclusions about the
system’s performance with very junior pathologists can be made. Unfortunately, the collection
of data for such a study is a non-trivial task. Evidently, an objective method for feature

extraction would enhance the utility of the current system and this remains an area for future
work.

A problem with studies where human observers are used to make observations which are then
used in a decision-support system is the separation of observational and interpretative
processes. In the cytodiagnosis of FNAB in a routine (non-teaching) setting, pathologists rarely
express their decisions in component observations and the diagnosis is made by a process
which is largely subconscious and is the result of training the natural neural networks of the
human brain by observation of past specimens and knowledge of their diagnosis/outcome.
Since the pathologists in this study knew the “canonical” lists of features for the diagnosis of
FNAB it is possible that their observations may have been biased if they made a diagnosis of
the specimen whilst recording the observed features. The presence of 5 extracted rules which
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do not correspond with the “canonical” lists is evidence against this as is the evidence that the
SFAM voting strategy cascade produced a better overall performance than the human who
made the observations which the SFAMs used. The separation between observations and
diagnosis could be improved by selecting microscopic fields of view in specimens, digitizing
them and then displaying them to observers in random order so that fields from the same
specimen were not in an unbroken sequence, but this would require numerous images for each
specimen (since some of the definitions are based on the presence or absence of a feature in all
cells of the specimen) and the resolution of the best digitized images is still not as great as those
viewed directly through the microscope.

In this study verbal definitions of observed features were used and the observers were just
given these with no additional training and no sample images. The reliability of observations,
especially among trainee pathologists, could be improved by a more visually-based input
system such as a range of sample images for each feature displayed on a computer screen with
a cursor controlled input scale (Hamilton et al., 1995).

We are also considering the development of a modified version of SFAM with a more
sophisticated matching technique between input cases and category clusters. In SFAM, each
true input feature contributes equally to the match with a category prototype. We envisage
introducing a variable weighting for features, which attaches more importance to individual
features that are considered to be (a) very strongly predictive for the domain and (b) most easily
identified by an inexperienced pathologist. This should increase the robusmess of an SFAM-
based decision-support tool when used by an inexperienced pathologist, by effectively building
a priori expert knowledge into SFAM.

Another possible area for future work is to automate the CF threshold selection process for the
differential category pruning described in subsection 3.3. In the present implementation, the CF
thresholds were “hand-set” by the system’s designer to achieve the desired changes in network
performance. However, this is a rather laborious trial-and-error process which contrasts poorly
with the general ease of tuning of the basic SFAM model.

Finally, an important area for future work not so far addressed is to investigate the claimed
potential for incremental learning with the SFAM model. The relatively small size of the data
set did not allow such a study to be made in this application. However, in theory, were further
data for the domain to become available, the existing networks could be trained on this new
data without the necessity also to retrain with the original data. It should be noted though that
there are a few caveats to this statement. Specifically, the voting strategy and category pruning
are essentially “off-line” learning processes which cannot be employed in conjunction with
continuous (case-by-case) learning. The voting strategy requires randomization of the ordering
of input data which obviously disrupts its original temporal order. Similarly, the category
pruning process requires a “batch” of input data to form the prediction set.

However, these features can still be feasibly employed in the less stringent circumstance of
incremental learning on a batch of new data, rather than on-line learning on a case-by-case
basis. For example, suppose a further 125 of the most recent hospital cases were to become
available for the domain. This could form a new prediction set and the existing 125 item
prediction set would be freed to serve as further training data. This new training data could then
be randomized and applied to the ten existing unpruned networks. Category pruning could then
occur on the basis of performance on the new prediction set. This would yield new pruned
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networks to be employed in the SFAM cascade which should be adapted to the most recent data
while still retaining useful older associations, without having to have undertaken extensive
retraining from scratch.
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