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Abstract

Wavelet decompositions provide an excellent tool for localised approximation of
functions with any degree of regularity at different scales and with a desired accu-
racy. This representation allows operations like differentiation and integration to be
replaced by simple algebraic operations performed over the wavelet coefficients. In
this context the task of differentiating discrete noisy data can be performed more
efficiently. The present study analyses from both a theoretical and practical point of
view the problem of smoothing and differentiating experimental noisy signals within
the framework of multiresolution decomposition. The algorithm proposed is tested

on a numerical simulated example.
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1 Introduction

Numerical differentiation is required in many fields of science and engineering such as
mechanical engineering for the computation of velocity and acceleration from position
data (Harrison and McMahon, 1993), in thermodjnamics where in many situations a
realistic thermodynamic model based on physical principles is not available (Nunhez et al.,
1993), in processing signals of biomedical interest or in human motion analysis (Winter
and Sidwall, 1974), (Pezzack et al., 1977). |

Because in many situations direct measurements of the signal derivatives is very dif-
ficult, these values must usually be obtained using signal observations only, Tn most cases
the observed data is corrupted by noise which is amplified by numerical differentiation
making it very difficult to obtain good derivative estima.tesf‘j

To obtain accurate high order derivatives several methods have been employed
in the past. One approach makes use of/frequency domain techniques to prefilter the
data with a low-pass filter prior to a first order finite difference approximation which is
performed to estimate the derivatives (Winter and Sidwall, 1974). This method however
cannot remove the noise superimposed over the signal band and may, in some cases, alter
the interesting features of the original signal such as local high frequency oscillations.

The signal derivatives can also be determined byi{nterpola.ting the signal. Due to
the fact that experimental ciata usually contains regions of sharply different behaviour
the use of a simple polynomial representation is not satisfactory for the entire set of data.
The use of the orthogonal\@hebysev polynomials for example, was repcrted by Pezzack et
al (1977) to produce an oversmoothed estimate of the second derivai;ive.\‘éplines perform
better in this case and were used to smooth discrete noisy data in conjunction with a
method to control the degree of smoothing. The optimum degree of smoothing is obtained
by minimising a certain functional which depends on a parameter often referred to as the
regularisation parameter. Such a method is described in Craven and Wahba (1979) and
Hutchinson and Hoog(1985) where the critical part of the procedure namely choosing the
parameter, is done with the help of a Generalised Cross-Validation technique. _

Good results were reported by Fioretti and Jetto (1989) using a state space repre-
sentation which allows the use of a fixed-lag/Kalman smoother to obtain an optimal state

estimate. The use of the smoother leads to good estimates provided that an accurate




signal model is available and that a high signal-to-noise ratio is assumed.

The present work presents an improved method for the estimation of derivatives
from experimental data, corrupted by additive white noise, using a multiresolution wavelet
decomposition approach. In this context the paper evaluates first the effects of noise on
the wavelet coefficients. Based on this, a new procedure to smooth the data is proposed, in
which the first stage is performed by simply setting to zero the coefficients of the wavelet
functions at higher scales. This is equivalent to a low-pass filtering operation with the
advantage that because of the time frequency localisation of the basis functions, this can
be done locally in time. At the second stage the noise superimposed over the signal band
can be reduced using the mutual information between succesive data points. The new
algorithm is performed over the wavelet coefficients taking advantage of the fast pyramidal
decomposition and reconstruction algorithms of a multiresolution decomposition. The
whole approach is derived with the use of a multiresolution decomposition constructed
using B-spline basis functions which are well suited for smoothing purposes. In this
case the derivatives can be estimated in the same efficient way by simply differencing
the coefficients of the multiresolution approximation. Simulation results are included to

demonstrate the performance of the algorithms.

2 Wavelets

Multiresolution decompositions have spurred a lot of interest in recent years in mathe-
matics, in signal processing and numerical analysis.

A multiresolution decomposition of L? is a nested sequence of closed subspaces --
..V.1 C Vo € Vi C Vi... of L? having an empty intersection and a dense union and

satisfying the translation and scaling properties

fl) € Vo & f(do) € h
(1)
fz)eVo& f(z—k) e Vo

forall j,k e Z

Any function f from L? can be approximated at resolution j by its orthogonal




projection, denoted P;f, on Vj. A

The importance of the scaling property arises from the fact that a multiresolution
approximation can be described by means of a single function ¢ and its translates and
dilates. In this way at resolution j the projection P; of a function f can be represented

as a series which converges in L? norm,

Pif =0 cinbin ; (2)
k

where ¢; 5 = 21/2¢(27z — k)

When the multiresolution dec:;)mposition was first defined by Mallat and ‘Meyer
(see (Mallat, 1989) and (Meyer, 1993)) the scaling function ¢(z) was orthonormal to all
translates ¢(z — k) thus leading to anorthonormal multiresolution decomposition. How-
ever the orthonormality condition imposes tight constrains on the scaling function and
moreover this condition is not essential in many applications.

The wavelet subspaces W, can be introduced in the context of multiresolution

analysis as the orthogonal complement of V; with respect to the next resolution subspace
Viss

Vi =V, D W; (3)

where @ denotes the orthogonal sum of subspaces. Each wavelet subspace W; is generated
by a single function ¥(z) and its dilates and translates in the same way the scaling function
¢(z) generates subspaces V;.

In this way the projection @;f of a function f on the wavelet subspace W; has a

series representation in terms of the dilates and translates of the wavelet function (z)

as follows

Qif = dixtin (4)
k

Following the nested structure of subspaces V; and the fact that W; is the orthogonal

complement of the subspace V; with respect to V;4, we can write

Pignf=Fif+Qif (5)




This gives the following series representation of a function in terms of scaling and

wavelet functions

f(z)= Xk:q,kcﬁj,k(z) 4 ijde.ub,-.k(w) (6)

27

Both the scaling and wavelet function coefficients are given by

cix= [ F@)din(z)da
| ()
dip = /_ _f@)bin(z)da

with ¢(z) and 9(c) known as the duals of the scaling and wavelet functions. There are just
a few particular cases when the dual functions are known explicitly. In the orthonormal
case for example the scaling and wavelet functions are identical with their duals.

- Since Vi = Vo @ Wo, both the scaling and wavelet function can be expressed in

terms of the scaling function at resolution j =1

¢(z) = Zk:Pk¢(2m —k)

(8)
P(e) = Ek: 9x$(2z — k)

These are the two scale relations of the scaling and wavelet function and {Pr}rezy {ak}kez

are known as the two scale reconstruction sequences. Reciprocally any scaling function ™" -

from V; can alternatively be written using the scaling and wavelet functions from Vo and

Wo respectively as

2z — k)= {ar-aé(z — D4 beap(z-0}, keZ (9)

l

This is referred to as the decomposition relation with {ar}ez and {bi}icz the

decomposition sequences. Based on eq (8) and (9) fast decomposition and reconstruction
algorithms have been derived.

Consider the approximation of a function f(z) € L*(IR) by the orthogonal projec-
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tion P;f on a finer approximation subspace V;. This can be decomposed into a coarser
approximation onto Vi1 together with the difference or detailed information between
the succesive approximation levels j — 1 and j which is represented by the orthogonal

projection onto the wavelet subspace W;_1. This can be written as

Zk: cixdir(z) = 2 ci-1xpi-1.(z) + Xk: dj-14P8%5-1,4(z) (10)

The scaling and wavelet function coefficients ¢;_1 4 and dj_yx at resolution j — 1 can be

computed in an efficient way using the fast decomposition algorithm

Ci—1,k = 2.1 G1-2kCjl
(11)
dj—1k = L bi—2kciy
derived from (9). These equations describe a moving average process involving the scaling
coefficients c;x at resolution j and the decomposition sequences {ar}rez and {bx}rez-
‘The resulting data sequence has to be subsequently downsampled or decimated by two
by taking every second value in the sequence in order to obtain the desired coefficients.
This decomposition can be continued as long as desired using this time the coeffi-
cients c;_; & to perform the moving average procedure.
The reconstruction algorithm is a consequence of the two scale relations (8) and is
used to calculate the scaling function coefficients at the coarser level.

The computation involves the following moving average scheme

| c;,: — Z [PI—szj;-l..k + QI-;%dj—I,k] (12)
x

this time with the weighting sequences {px}xcz, {gk}rez- In this case upsampling (in-
serting a zero between every two consecutive terms in the input sequence {cj—1,;}jrecZ

and {d;j_1k};rcz is Tequired before the moving average scheme is performed.




3 Smoothing

The problem of measurement is in most of the cases subject to errors. These errors are
partly of a systematic and partly of an accidental nature. While the systematic errors are
due to poor calibration of the instruments employed for taking the measurments, acci-
dental errors arise from the fact that the parameters which characterise a certain physical
process are subject to uncontrollable fluctuations which can normally be described by sta-
tistical laws. These accidental errors which occur during measurments are usually referred
to as the noise on the measurements.

A model of a sampled signal affected by measurement errors is given by the equation

ye(t:) = y(t:) + e(t:) (13)

where y(t) is the function representing the signal of interest and y.(t;) is the set of noisy
observations obtained by uniformly sampling the analog signal. The random errors are

represented by €(%;) and satisfy

Ele(t:)] =0

(14)
Ele(t:)e(ts)] = Cbi;

where E denotes mathematical expectation and &;; is the Kronecker symbol.

Considering the discrete sequence of equidistant noisy observations it is desired to
reconstruct y and the associated first two derivatives. This can be done by first separating
the stochastic part of the signal (the noise) from the deterministing signal. The application
of such a procedure is designed to reduce the effects of observational errors over a data
set and is usually referred to as a smoothing operation.

The fact that noise is a highly non-analytical phenomenon and that it has an unpre-
dictable nature paradoxically gives a very good basis of separation from the deterministic
signal. A separation method is proposed which makes use of a multiresolution decom-
position of the signal. The smoothing procedure involves two stages; at the first stage a

part of the noise is rejected using the assumption that the signal is bandlimited while the
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second stage exploits the mutual information between succesive samples of the signal.

3.1 The effect of noise on the wavelet coefficients

The discrete noisy signal can be approximated by a wavelet series at resolution j leading

to the following expression

Ye(t:) = ZC: Pk Pi—p,k t)'l‘z E di ko e(ti (15)

k l=j-p

Although the noise signal does not belong to the space of square integrable functions
having infinite energy, the right hand side series will converge in L? norm (Cambanis and
Masry, 1994) since stationary random processes are square integrable over every finite
interval.

For the case of an infinite length signal, assuming that the probability distribution
function of the noise signal has compact support, the noise signal will have bounded
amplitude variation and it is possible to calculate the noisy wavelet cofficients since the
integral

| etybia(tyat (16)

is convergent. Of course the coresponding wavelet series will not converge in L? norm but
in L*.

Because of the presence of noise the coeflicients of the wavelet series representation
of the noisy signal will also have a stochastic character. The noisy wavelet coeflicients

can be calculated theoretically in this case using the integral formula (7)

div= [ vt0bint)it= [ v@)int)it+ [ o)sate)at (17)

Considering €(t) to be white noise with E[e(t)] = 0, the expected value of the

wavelet coefficients J_.,-J, can be computed

.E[Ai’k] = EU_ y(f)%kt)dt]-{»EU ¢,kt)dt]
(18)




= djx+ f_ c: E [e(t)] t;x(t)dt = d;

and the result demonstrates that the stochastic coefficients are unbiased.

The error variance of the wavelet coefficiets can be calculated as

o}, = Eldx—din)P]=E [( f - e(t)izvj,k(t)dt)z} =

—Cco

(19)

= |7 Bletw)eto) daslubsn(o)duds

But E [e(u)e(v)] = Yee(u — v) = 7ee(7) where 7.(7) is the autocorrelation function
of the noise signal. Since ¢(t) is white

Tee(T) = C6(7) (20)

where §(7) is the Dirac function. The expression of .(7) can be substituted into (19)

leading to the following relation

o = [ el €Pia€ + mdgdr
= [T comyr [ dinlerbiale +m)de (21)

c j- " 6(7')71;1_*‘53_'*(1')(17'

I

with 7. 4. ,(7) the autocorrelation function of 1;5_,-.;:.

Using the sifting property of the Dirac function, that is

[ swswa= £0) (22)

the integral in (21) becomes

o

zj.k =6 ]_m (T3, 0954 (T)dT = Lo 0 I (1) (23)




where '715,-_:‘151,:‘(0) is the maximum of the autocorrelation function Vi, n ij,:.(T)'

Next the following proposition can be proved:
Proposition : The variance of the wavelet coefficients of a noisy signal is scale invariant

This is somehow to be expected since the Fourier spectrum of a noise signal has
esentially a constant amplitude, that is the Fourier components will remain of essentially
constant order of magnitude,with irregular fluctuations around this constant.

To prove the proposition, it is sufficient to demonstrate that the maximum of the
autocorrelation function of the dual wavelet function is scale invariant. Making use of
the fact that 1,5_,-.;, is generated by translating and dilating the dual of the mother wavelet

function, that is

'J)j.k(t) = 2‘7./21; (253 = k) (24)

by a simple change of variable, the autocorrelation function of %, can be expressed as

Toian (1) = [ Bisl€0Pinl€ +7)de =

= [~ BN + P 1) = 7y5(27) (25)

that is 7¢j,k«5j,k(7) = 'yN(ZJT). Consequently 7@5,k¢j,g(0) = 7;44(0) so the proposition is
proven.

In practice, when finite length signals are involved, the infinite integrals (17) are
truncated and the effect of these truncations will be more and more obvious the lower the
scale, since the support of the wavelet functions widens in this case. Generally the effect
will be a slight decrease with the scale of the variance of the noise coefficients. However

for all practical purposes the variance can be considered as an invariant for a given range

of scales.

3.2 High frequency noise reduction

The behaviour of the wavelet coefficients discussed above yields a very effective method

for the separation of the true signal y(t) from the observed signal which as in equation
(13) is the true function plus noise.
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If the noisy signal is approximated in terms of a wavelet series it can be observed
that above a certain scale j the wavelet coefficients do not have any tendency to become
smaller but remain within a certain band of fairly constant amplitude. These coefficients
will account for the high frequency components which are purely caused by noise. This is
because the deterministic signal is by definition a bandlimited signal so the high frequency
components of such a signal above the cut-off frequency make a negligible contribution
to the spectrum of the signal. This in turn means that the wavelet coefficients of the
noise-free signal coresponding to that freqﬁency band should be very small, nearly zero.

By simply setting to zero and thus omitting the corresponding wavelet functions
from the series representation, the signal will be sensibly smoothed. Because the genuine
signal components are not zero above the frequency we have chosen to define the noise
band, it is expected that in this way some errors will be introduced in estimating the
deterministing signal. However these errors will generally be very small considering the
fact that at higher scales the contibution of the signal is almost zero.

- Here it is important to note that the above procedure has a global character since
it involves all the coefficients representing the signal at a given scale. This in turn means
that some nice properties of the wavelet functions are not yet fully exploited. The most
important i1s the time frequency localisation offered by a multiresolution decomposition.
This is a result of the time-frequency localisation of the wavelet function which acts as
a window function both in the time and frequency domain and provides a local Fourier
analysis which takes place at every single scale.

This feature is especially useful when dealing with deterministic signals with a
time-varying frequency behaviour, with local oscillations or discontinuities. In such cases
wavelets, due to the compact support (or at least spatial localisation) have the ability
to locally adapt to the features of the signal, the amplitude of the wavelet coefficients
in this case reflecting the contribution of each function to the approximation. A local
high frequency burst of the signal can in this way be identified and isolated from noise.
In such cases instead of setting all the coefficients at the corresponding scale to zero, we
can choose to preserve the high magnitude coefficients which represent a feature of the
deterministic signal. However, if the multiresolution decomposition is not orthonormal,
it is more correct to say that the corresponding wavelet functions are preserved since the

respective coefficients have to be re-estimated under the additional constraint that all
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other coefficients at the same scale are zero.

After completing the above procedure the noise will not be eliminated completely
since the remaining wavelet coeﬁ;ients at a lower scale are also affected by the noise.
Next a method to purify these coefficients is proposed which will further improve the

accuracy of estimating the noise-free signal.

3.3 Using mutual information to denoise wavelet coefficients

The results of the previous section showed how additive noise is reflected by the wavelet
coefficients of a signal represented as a wavelet series. As a result, to reject the noise
affecting a signal it is sufficient to remove or at least attenuate the stochastic part present
in the wavelet coefficients. Such a procedure is equivalent to a smoothing operation
performed over the noisy signal.

The advantage of reducing the noise by using the coefficients of the wavelet de-
composition of the signal is that since the signal is represented in terms of smooth basis
fu;lctions, by reducing the noise contribution to the wavelet coefficients the derivatives
of the signal are smoothed at the same time. Another advantage comes from the fact
that a multiresolution wavelet decomposition is equivalent in the frequency domain, to
a multiband representation of the signal. This is because each of the orthogonal signals
which result after decomposition have a frequency spectrum lying in different frequency
bands. Thus by minimising the effects of noise on the wavelet coefficients the noise will
be rejected at each frequency band.

The algorithm presented here makes use of the mutual information present in the
signal to minimise the noise contribution to the wavelet coefficients. _

The noisy signal is in practice a result of a data acquisition procedure. At this stage
the continuous signal produced by a physical process has to be sampled with a sampling
frequency f, which satisfies the Whittaker-Shannon condition f, > 2f, where fj is the
highest frequency present in the continuous signal considered to be band limited. In most
cases the performance of data acquisition equipment can handle fairly high sampling rates
which allows the user to oversample the continuous signal.

Suppose that noisy data y,(t1),...,.(tin) are given from sampling an analog sig-
nal with a sampling time ét so that the data is oversampled f, > 2kf, where k is the

12




oversampling factor.

It is assumed that the signal is corrupted by additive white noise

ye(ti) = y(ti) + E(t‘i)ﬂ 1=1, kn (26)
The noise content of the signal can be described by the signal to noise ratio defined as

0.2

SNR= 20log—= (27)

2
O

or alternatively we can use the noise to signal ratio measure defined as

NSRy = 2 x 100 (28)

Ty
where o, and o, are the standard deviation of the signal and noise respectively.
At the first stage the initial data set is separated into &k different subsets

{ye (tk({—1)+p) }_;=1'ﬂ = {yf(t) }ica (29)

with p = 1, ..., k. This is done in fact by downsampling by k the original data sequence
with k successive starting points ye(t1), ..., ye(tx). As aresult y1(),...,v5(%), i=1,..,n
represent k successive samples of the original data record stored in k different data sets.
Because the sampling time 6t = 1/f; is sufficiently small, k successive samples can be
considered to have a linear variation since the Taylor series expansion of the signal around
the central value within the k sample interval can be truncated to the first derivative. As
a result the mean value of k successive samples of the noise-free signal is the central value
of the interval that is the (k + 1)/2-th sample for k£ odd. This can be expressed as

k
£ 39 = (k) (30)

p=1

for any ¢ = 1,...,n.
Each of the k signals can be represented independently as a wavelet series (15).
Consider the noisy wavelet coefficients of the p-th signal at scale j to be denoted

as {Jfk} and consider the properties of the mean
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1 . L&
k=T L Ge =T et 2 ey (31)
E r=1

where {d'f k} are the noise-free wavelet coefficients and {deik} represents the stochastic
part of the wavelet coefficients. Since the coefficients are the result of a linear transfor-

mation performed over the signal it follows that

1
Ly &, =4} (52)
for k odd. As a result the expected value of the mean is given by

k1

E [2,-,,,] =E [dﬁl ] + %;:E [de?] = d; (33)

and this provides an unbiased estimate of the wavelet coefficients corresponding to the

signal having the index p = (k 4+ 1)/2.. The variance of the same variable is given by

B[(8s-0#)] - 522 )] = 2 2

since the noise components affecting each of the k signals can be considered uncorrelated.
The results show that the effects of taking the mean, are that the variance deviation of
the stochastic part of the wavelet coefficients is reduced k times. The overall effect is that

the variance of the noise affecting the signal is also reduced by the same amount.

4 A B:Sprline Multiresolution Approximati-oh 7

4.1 Construction and properties of B-spline Multiresolution

Approximations
For many applications of multiresolution analysis, orthonormality is not essential. Wavelets
need not be orthonormal. Relaxing the orthonormality condition leads to nonorthogo-

nal multiresolution approximations and provides a more flexible framework for function

approximation. A typical example of scaling functions ¢(z) are the m-th order cardi-
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nal B-spline functions f™(z) with m € Z which are defined recursively by the integral

convolution

Br(a)= [ Bz - B (t)at (35)

where 3'(z) is the characteristic function of the interval (called also the indicator function)
x(@).
1 ifze(0,1)

0 otherwise

Bl(t) = x(t) = { (36)

Relation (35) thus becomes

(@)= [ 67z~ 1)t (31)

The B-spline basis functions of higher order can be defined starting with the first
order basis function (of degree zero) given explicitly in (36) by the following recursive

algorithm

z m—=I

fn(z) = 6 - 1) (38)

Using this formula it is easy to see that the scaled and translated version of a B-spline

A" (z) +

m-—1 m —

function can be calculated using a similar recurrence relation

e (z—1) (39)

m Wz —k - m+k—2z
k(2) = p— () + BT
where as usual A7}, = 27/28™(2/z — k). The B-spline function ™ (of order m) consists in

fact of m nontrivial polynomial pieces of degree m — 1 so that

B™ lik-10= Pm-1,k) k=1,..,m (40)

where Pp,_; 4 is a polynomial of degree m — 1. Denoting II, as the collection of all
polynomials of degree at most n and with C™ the space of continuous functions having up
ton continuous derivatives, allows us to define the subspace V, generated by $lz) = 8™ z)
as the subspace of all functions f € C™ 2 L?(IR)such that the restriction of f to any
interval [k — 1,k] is a polynomial with degree at most m — 1. Each polynomial piece

15




can be computed analytically which gives an alternative way to compute the value of the
B-spline functions at any point.

A nonorthogonal multiresolution approximation is generated by an associated scal-
ing function ¢(z) which together with its translates forms a basis (fra,z-:.ie) for the subspace
Vo. In our case, for m a positive integer, the scaling function ¢(z) = f™(z) satisfies this
condition and it can be proven that a whole multiresolution approximation can be defined
based on B-spline basis functions [see (Chui, 1992) for details].

Let W; denote the wavelet subspace at resolution j. A B-spline wavelet basis can
then be defined for any W; in terms of translates and dilates of a mother wavelet function.
This mother wavelet function can be constructed (Chui, 1992) as a linear combination
of B-spline scaling functions. It can be shown that up to multiplication by a constant
the compactly supported wavelets with minimum support that correspond to the m-th
order cardinal B-spline are unique. The support of the m-th order B-spline wavelet is an
interval of length 2m — 1 and all wavelets are symmetric for m even and anti symmetric |
for m odd.

Because of the total positivity property of the B-spline scaling functions, the oscil-
lations in a data sequence are diminished when convolved with a B-spline interpolation
kernel. In contrast the B-spline wavelet functions have a strong oscillatory character so,
normaliy, a B-spline wavelet series will detect variations in the data.

In fact scaling functions and wavelets can be considered as filter functions. The
difference between them is that while the scaling function acts as a low pass filter, the
corresponding wavelet function behaves like a bandpass filter. The frequency characteris-
tics of B-spline scaling functions is presented in Fig. 1(a) for the case of a cubic B-spline
(m = 4). Fig.1(a) shows how the low frequency band of the scaling basis function widens
with the scale while Fig.1(b) illustrates the multiband structure generated by the cor-
responding wavelets, which in the frequency domain cover higher and wider frequency
ranges when the scale is increased.

If a signal is represented using the multiresolution approximation approach, such
as a wavelet series, the reconstructed signal is nothing other than the result of a linear
filtering process. From this perspective we should be aware of possible distortions in the
reconstructed signal. A usual requirement in such cases, to avoid distortions, is that the

filter should have linear or at least generalised linear phase. It can be shown (Chui, 1992)
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Figure 1: The Fourier transform of cubic B-spline scaling and wavelet function
at different scales 7 function increases with the scale.

that both the B-spline scaling and wavelet functions satisfy this requirement.

4.2 Computation of the coefficients of a B-spline multiresolu-

tion decomposition

In previous sections the attractive properties that make B-spline wavelet decomposi-
tion the optimum candidate for smoothing purposes and time-frequency analysis of non-
stationary signals was presented. The practical implementation of such a decomposition
must now be considered.

Consider a discrete time series y(¢;). The first step consists in expanding the signal
in terms of the scaling basis functions corresponding to the finer resolution subspace V;.

This involves the computation of the coefficients of the series

y(t:) = Ek: ci ki k(ti) (41)

where ¢ = 2/24 (29t — k) and ¢(t) = f™(t) the m-th order cardinal B-spline function
defined in (38). The right hand side series in equation (41) is in fact the projection of the
signal onto the approximation subspace V;.

To find the coefficients involved in the series (41), one way is to calculate the
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coefficient sequence corresponding to the scaling basis functions by convoluting the data
sequence (moving average procedure) with an appropriate spline interpolation operator
constructed as in (Chui, 1992). At this stage the resolution subspace V; should be chosen
so that the expansion (41) gives a sufficiently good approximation of the signal. For
example for h = 277 the approximation error is bounded by a constant multiple of A™ as
j — oo. The coefficients of the series (41) can be also computed by using a least squares
algorithm since this is a linear-in-the-parameters expression. This gives the orthogonal
projection P;y of y(t;) onto the approximétion subspace V.

In both situations it is important to take into account that the sequence we want
to approximate has in practice a finite extent, so in order to avoid distortions, due to the
lack of continuity at the boundaries, a standard practice, for example in image processing,
is to extend the signal on both sides by using the mirror image of the signal. In our case
it will be sufficient to consider the approximation of our signal on the interval [0, 1] using
the observations of y(t) over a larger interval [-N,1 + N]. Once the coefficients have
been determined the signal will be approximated, with an accuracy depending on the
chosen resolution subspace V;, by the series (41). At this stage presuming that the signal
is corrupted by noise, the coefficients of the series representation are also noisy.

A multiresolution pyramidal decomposition applied p times leads to the following

equivalent expression of (41)

Y8 2 eropsbions(8) + 30 S distua(t) (42)
k k

I=j—p

To perform such a decomposition the weight sequences {ax} and {b;} must be
determined. In the case of B-spline multiresolution approximation the weighting sequences
are infinite length sequences (Chui, 1992) which means that the moving average used to
calculate the wavelet and scaling coefficients at the coarser resolution level is an IIR
(Infinite Impulse Response) filter. Usually IIR filters can be implemented as ARMA
(Autoregressive Moving Average) filters providing that the Z-transform of the weight
sequence is a rational function. Otherwise the infinite weight sequence has to be truncated
to give an FIR filter. Truncation coupled with round-off errors will usually induce errors
which can be estimated (Chui, 1992) and made arbitrarily small. It has been proved
(Chui, 1992) that the decomposition sequences for B-spline wavelets are ARMA since the
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Z-transform of the weight sequences can be described by the rational functions

6= 5 g =7t (12)" Emnild)

n=—oo 2 EZm-l(zz)
(43)
1—2z\" (2m —1)!
-1
ﬂ_Z—co hﬂz ( 2 ) Ez‘m-l(zz)

where the decomposition sequences are given by

1
(44)
1
b, = =hon
2

and Epm-y is the Euler-Frobenius polynomial of order 2m — 1 (of degree 2m — 2).
Formulas to calculate the truncated decomposition sequences are provided in (Chui,
1692) along with error bound estimates for the cases m=2,3,4 (where m is the B-spline
order).
Having computed the truncated decomposition sequences {a;} and {b;} the wavelet

decomposition of a signal can be performed step by step as follows:

o Compute the coefficients c; in equation (41) at the finer resolution j.

) Followmg equation (9) perform a moving average algorithm over the coefficients
¢jx using the decomposition sequences {ax} and {b} as weights, and downsa.mple
or decimate by two (take every other point) the results to obtain the scaling and
wavelet basis function coefficients ¢j-1,k and d;_; ; at resolution j — 1.

* Repeat the second step with ¢;_; 4 replacing ¢ C;-1,k- In this way at the p-th iteration

the coefficients ¢;_p41,1 are used to compute ¢;_,j and iy ks

After performing the smoothing operation over the wavelet coefficients, in order to
calculate the signal derivatives, the signal should be expressed just in terms of the scaling
functions at resolution j, as in (41), for ease of computation. The modified coefficients

of the series (41) can be calculated using the pyramidal reconstruction algorithm, which
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this time involves the reconstruction sequences {px} and {gi}. The finite reconstruction

sequences are given in this case by the following expressions

P = 27N (m), n=0,m

(45)
0 = TS (410, m=03m o2
1=0

which can be easily computed for any order m (Chui, 1992).
Considering that the decomposition procedure has been performed p times starting

from the resolution level j the reconstruction algorithm can be summarised as follows

¢ Upsample with two both coefficient sequences {c;_,} and {d;_, +} by inserting zeros

between every two succesive values.

e Perform a moving average procedure as described by equation (8), involving the

reconstruction sequences {pi} and {gx} to obtain the coefficients {c;_p114}-

o Repeat the first two steps using this time the newly calculated coefficients {¢;_p41.4}
and the wavelet coefficients {d;_p+1} at scale j — p+ 1. This means that at the :-th
iteration the coefficients used will be {c;—p4:x} and {d;_,4+:;}. The procedure should

be repeated p times until the coeficients {c;+} at resolution j are calculated.

4.3 Estimation of signal derivatives

The derivatives of the signal can be determined, after smoothing, by simply differentiating
the reconstructed B-spline series. Following de Boor (de Boor, 1978) The derivatives of a

B-spline series at scale 7 = 0 can be written as

D [g Ckﬁ;’:‘] =3 (e —ex-2)B7" (46)

k
This shows that the first derivative of a B-spline series can be found simply by differencing
its B-spline coefficients, to obtain the coefficients of a B-spline series of one order lower

which represents this derivative. Since formula (46) applies for infinite length signals, the
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derivatives of a finite B-spline series are obtained by making the series bi-infinite through
adding B-spline functions with zero coefficients.
The formula to compute the derivatives of a B-spline series at any resolution 7 is

as follows

D [E Cj.kﬁ}f‘k] =2 (cjk — cip-1)B " (47)
k k

and can be derived easily from (46). By repeating the application of (47), the following

formula of the i-th derivative of a spline series can be written:
D [Z Cik ﬁ} =GB (48)
k k
where
Cik fOI‘ 1= 0

&= (49)
29 (= hyq) fori>0

5 Simulation results

This section is devoted to a numerical simulation of the smoothing procedure described
in the previous sections. In order to be able to evaluate in a quantitative manner the

performance of the algorithm, the following expression
y(t) = sin(wot) + sin(2wot — 7/6) + cos(5wgt + 7 /4) (50)

with wo = 27/T and T = 1s (signal period) was used to generate a sequence of 10000
points with a sampling period dt = 1/10000s. A white noise sequence was generated and
added to the original data to simulate the noisy observed signal. The noise variance was
chosen in order that the signal-to-noise ratio of the resulting signal was SNR = 40dB
that is equivalent to NSRy = 10%. For this level of noise the resulting signal can be

considered to be heavily contaminated by noise. In order to measure the effectiveness of
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the smoothing scheme the following quantity has been used

n_ 11
NSR(%) = -'—\J
O'g{l)

=3 (@900 - y0(n) (51)
k=1 :
which is the noise to signal ratio of 7*), the i-th derivative of the estimated, smoothed
signal,z = 0,1, 2 where o 1s the standard deviation of the i-th derivative of the simulated
signal. |
To furher illustrate the efficiency of the smoother another measure, the noise re-
duction rate (NRR) described by the following relation

(52)

_ | Ze(ye(te) — y(t))?
NRR = \] ACICARRYEN):

was used. All the above quantities can be used of course only in a simulation context
since in practice the true signal would be unknown.

For the example chosen the whole smoothing procedure can be summarised as

follows:

e The (oversampled) signal of interest is separated in k = 9 signals following the
procedure described in (29)

* Each signal is approximated by a six order B-spline series at resolution g==1D
e For each signal a wavelet decomposition algorithm is performed p = 8 times

e Perform a high frequency smoothing by setting to zero the wavelet coefficients at
higher scales which reflect high frequency components above the characteristic fre-

quency band of the noise-free signal

® The signal is reconstructed using the mean values of the wavelet coefficients corre-

sponding to the 9 signals computed as in (31).

o Compute the derivatives of the reconstructed B-spline series using relation (49)

One of the £ = 9 signals resulting by downsampling the original signal is represented
in Fig.(2) while the associated wavelet decomposition is illustrated in Fig.(3). The initial

signal is the sum of the signals resulting after decomposition.
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Figure 2: The 5-th noisy signal resulting from downsampling
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Figure 3: Wavelet decomposition
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Figure 4: Smoothed position estimates (solid) and simulated (dashed)
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Figure 5: Smoothed velocity estimates (solid) and simulated (dashed)
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Figure 6: Smoothed acceleration estimates (solid) and simulated (dashed)




Figures (4) (5) and (6) represent the signal and the first and second derivatives
together with the estimated (smoothed) signal and the corresponding derivatives. The
plots clearly demonstrate excellent accuracy of the estimates.

Numerical values of the performance indexes defined are

NSR® = 0.6045% (position)
NSRS = 2.4400% (velocity) (53)
NSR®) = 7.2070% (acceleration)

The resulting noise reduction rate is NRR = 16.5405

5.1 Conclusions

In this paper, the concept of multiresolution approximation has been shown both theo-
retically and by example to be an effective method to solve the problem of smoothing and
numerical differentiation of discrete noisy data. Using a new fast and efficient wavelet
based algorithm, very good estimates of the derivatives are obtained in an example in-

volving a heavily noise corrupted signal (10%).
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