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The Complexity of Theorem Proving

in Circumscription and Minimal Entailment

Olaf Beyersdorff⋆ and Leroy Chew⋆⋆

School of Computing, University of Leeds, UK

Abstract. We provide the first comprehensive proof-complexity analy-
sis of different proof systems for propositional circumscription. In partic-
ular, we investigate two sequent-style calculi: MLK defined by Olivetti
[28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux
calculus NTAB suggested by Niemelä [26]. In our analysis we obtain
exponential lower bounds for the proof size in NTAB and CIRC and
show a polynomial simulation of CIRC by MLK . This yields a chain
NTAB <p CIRC <p MLK of proof systems for circumscription of
strictly increasing strength with respect to lengths of proofs.

1 Introduction

Circumscription is one of the main formalisms for non-monotonic reasoning. It
uses reasoning with minimal models, the key idea being that minimal models
have as few exceptions as possible. Therefore circumscription embodies common
sense reasoning. Indeed, circumscription is known to be equivalent to reason-
ing under the extended closed world assumption, one of the main formalisms
for reasoning with incomplete information. Apart from its foundational relation
to human reasoning, circumscription has wide-spread applications, e.g. in AI,
description logics [7] and SAT solving [21]. Circumscription is used both in first-
order as well as in propositional logic, and we concentrate in this paper on the
propositional case.

The semantics and complexity of circumscription have been the subject of
intense research (see e.g. the recent articles [7, 14, 29]). In particular, deciding
circumscriptive inference is harder than for propositional logic as it is complete
for Πp

2, the second level of the polynomial hierarchy [11, 16]. Likewise, from the
proof-theoretic side there are a number of formal systems for circumscription
ranging from sequent calculi [8, 28] to tableau methods [25,26,28].

The contribution of the present paper is a comprehensive analysis of these
formal systems from the perspective of proof complexity. The main objective in
proof complexity is a precise understanding of lengths of proofs. The two main
tools for this are lower bound methods for the size of proofs for specific proof
systems as well as simulations between proof systems. While lower bounds pro-
vide exact information on proof size, simulations compare the relative strength
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of proof systems and determine whether proofs can be efficiently translated be-
tween different formalisms. In this paper our results will employ both of these
paradigms. While the bulk of research in proof complexity has concentrated on
propositional proofs the last decade has seen ever increasing interest in proof
complexity of non-classical logics (cf. [4] for a survey). In particular, very im-
pressive results have been obtained for modal and intuitionistic logics [20, 22].

Prior to this paper, very little was known about the proof complexity of
propositional circumscription. Our analysis concentrates on three of the main
formalisms for circumscription: the tableau system NTAB introduced by Niemelä
[26], the analytic sequent calculus CIRC by Bonatti and Olivetti [8], and the
sequent calculus MLK by Olivetti [28]. Our main results are exponential lower
bounds for the proof size in the tableau system NTAB and the sequent calculus
CIRC (Theorems 6 and 19) as well as an efficient simulation of CIRC by MLK
(Theorem 13). Together with the simulation of NTAB by CIRC shown by Bon-
atti and Olivetti [8] this gives a hierarchy of proof systems NTAB <p CIRC <p

MLK . Moreover, this hierarchy is strict as our results provide separations be-
tween the proof systems (Theorems 8 and 19). While the systems NTAB and
MLK only work for minimal entailment — the most important special case of
circumscription — we also extend the results on MLK to the calculus DMLK
from [28] for general circumscription (Theorem 16).

In related research, Egly and Tompits [15] investigated the proof-theoretic
strength of circumscription in a first-order version of Bonatti and Olivetti’s se-
quent calculus. They showed that for some formulas, first-order CIRC has much
shorter proofs than classical first-order LK . Also in [1,5] the authors investigated
the proof complexity of propositional default logic and autoepistemic logic, two
other main approaches to non-monotonic reasoning. Although there are several
translations between the different non-monotonic logics, we stress that none of
these previous results imply lower bounds or simulations for circumscription.

This paper is organised as follows. In Sect. 2 we review background informa-
tion and notation about circumscription and proof complexity. In particular, we
discuss the antisequent calculus AC . Section 3 contains our first main result: the
exponential lower bound for CIRC . In Sect. 4 we prove the simulation of CIRC
by MLK for minimal entailment; and this is extended to full circumscription
and the calculus DMLK in Sect. 5. Section 6 then contains the comparison to
Niemelä’s tableau calculus NTAB , obtaining a separation between this tableau
and CIRC . We conclude in Sect. 7 with a discussion and some open problems.
Due to space restrictions some proofs are omitted or briefly sketched.

2 Preliminaries

Our propositional language contains the logical symbols ⊥,⊤,¬,→,∨,∧. The
notation A[x/y] indicates that in the formula A every occurrence of formula x is
replaced by formula y. For a set of formulae Σ, VAR(Σ) is the set of all atoms
that occur in Σ. For a set P of atoms we set ¬P = {¬p | p ∈ P}. Disjoint union
of two sets A and B is denoted by A ⊔B.



Circumscription is a non-monotonic logic introduced by McCarthy [24]. It
looks at finding the ‘minimal’ situations that can occur, given our assumptions
(cf. McCarthy’s famous example of the “missionaries and cannibals” problem
[24]). For circumscription, the propositional atoms are partitioned into three
sets: P is the set of all atoms that are minimised, R is the set of fixed atoms,
and Z denotes all remaining atoms, which may vary from the minimisation but
are not themselves minimised. We usually only display P and R in the notation.

A model is a subset of the propositional atoms ΣProp. We define a pre-order
≤P ;R on models I, J as follows: I ≤P ;R J ⇔ I∩P ⊆ J∩P and I∩R = J∩R. The
relation ≤P ;R is transitive and minimality can be defined for models. Let I |= Γ .
We say that I is a (P ;R)-minimal model of Γ (and denote it by I |=P ;R Γ ) if
and only if for any model J , if J |= Γ then (J ≤P ;R I) ⇒ (I ≤P ;R J).

If φ is a formula, then Γ �P ;R φ means that φ holds in all (P ;R)-minimal
models of Γ . This is the notion of semantic entailment in circumscription. A
few special cases can be noted. When P = ∅ then �P ;R coincides with �, the
classical entailment. When P is the set of all variables appearing in the formulae
of either the antecedent or the succedent then entailment is known as minimal
entailment, and we denote it with the symbol �M .

Proof Complexity. A proof system (Cook, Reckhow [12]) for a language L
over alphabet Γ is a polynomial-time computable partial function f : Γ ⋆ ⇁ Γ ⋆

with rng(f) = L. An f -proof of string y is a string x such that f(x) = y.

From this we can start defining proof size. For f a proof system for language
L and string x ∈ L we define sf (x) = min(|w| : f(w) = x). Thus the partial
function sf tells us the minimum proof size of a theorem. We can overload the
notation by setting sf (n) = max(sf (x) : |x| ≤ n) where n ∈ N. For a function
t : N → N, a proof system f is called t-bounded if ∀n ∈ N, sf (n) ≤ t(n).

Proof systems are compared by simulations. We say that a proof system f
simulates g (g ≤ f) if there exists a polynomial p such that for every g-proof
πg there is an f -proof πf with f(πf ) = g(πg) and |πf | ≤ p(|πg|). If πf can
even be constructed from πg in polynomial time, then we say that f p-simulates
g (g ≤p f). Two proof systems f and g are (p-)equivalent (g ≡(p) f) if they
mutually (p-)simulate each other.

Gentzen’s system LK is one of the historically first and best studied proof
systems [18]. It operates with sequents. Formally, a sequent is a pair (Γ ,∆) with
Γ and ∆ finite sets of formulae. A sequent is usually written in the form Γ ⊢ ∆.
In classical logic Γ ⊢ ∆ is true if every model for

∧
Γ is also a model of

∨
∆,

where the disjunction of the empty set is taken as ⊥ and the conjunction as ⊤.
When considering LK in proof complexity we treat sequents as strings in binary,
built from binary strings representing atoms and connectives. The system can
be used both for propositional and first-order logic; the propositional rules are
displayed in Fig. 1. Notice that the rules here do not contain structural rules for
contraction or exchange. These come for free as we chose to operate with sets of
formulae rather than sequences. Note the soundness of rule (• ⊢), which gives
us monotonicity of classical propositional logic.



(⊢)
A ⊢ A

(⊥ ⊢)
⊥ ⊢

(⊢ ⊤)
⊢ ⊤

Γ ⊢ Σ (• ⊢)
∆,Γ ⊢ Σ

Γ ⊢ Σ (⊢ •)
Γ ⊢ Σ,∆

Γ ⊢ Σ,A
(¬ ⊢)

¬A,Γ ⊢ Σ

A,Γ ⊢ Σ
(⊢ ¬)

Γ ⊢ Σ,¬A

A,Γ ⊢ Σ
(•∧ ⊢)

B ∧A,Γ ⊢ Σ

A,Γ ⊢ Σ
(∧• ⊢)

A ∧B,Γ ⊢ Σ

Γ ⊢ Σ,A Γ ⊢ Σ,B
(⊢ ∧)

Γ ⊢ Σ,A ∧B

A,Γ ⊢ Σ B,Γ ⊢ Σ
(∨ ⊢)

A ∨B,Γ ⊢ Σ

Γ ⊢ Σ,A
(⊢ •∨)

Γ ⊢ Σ,B ∨A

Γ ⊢ Σ,A
(⊢ ∨•)

Γ ⊢ Σ,A ∨B

A,Γ ⊢ Σ,B
(⊢→)

Γ ⊢ Σ,A → B

Γ ⊢ Σ,A B,∆ ⊢ Λ
(→⊢)

A → B,Γ,∆ ⊢ Σ,Λ

Γ ⊢ Σ,A A, Γ ⊢ Σ
(cut)

Γ ⊢ Σ

Fig. 1. Rules of the sequent calculus LK [18]

A useful ingredient for working towards a calculus for non-monotonic logics
is the notion of underivability. We use Γ 2 φ to denote that “there is a model M
that satisfies all formulae in Γ but for which ¬φ holds”. An antisequent is a pair
of sets Γ , ∆ of formulae, denoted Γ 0 ∆. Semantically, an antisequent Γ 0 Σ
is true if there is some model M |= Γ so that for all φ in Σ we have M |= ¬φ.
This is equivalent to saying that we cannot derive Γ ⊢ Σ.

Bonatti [6] devised an antisequent calculus AC (cf. also [30]; rules of AC are
given in Fig. 2. Correctness and completeness of AC was proven by Bonatti.

Theorem 1. (Bonatti [6]) An antisequent is true if and only if it is derivable
in the antisequent calculus AC .

While the truth of an antisequent tells us of the existence of a model that
satisfies the left hand side but contradicts the right hand side, this does not
point immediately to the model itself. The model, however, can be constructed
from an AC -proof.

Proposition 2. Given an AC-proof of an antisequent Γ 0 ∆ we can construct
in polynomial-time a model M that satisfies Γ and falsifies ∆.

We mention that Proposition 2 implies that AC is presumably not automa-
tizable, i.e., it is not possible to construct AC -proofs in polynomial time (even
though AC -proofs are always of quadratic size [5]). In fact, using Proposition 2
it can be shown that automatizability of AC is equivalent to a complexity as-
sumption Q, studied in [17] and shown to be equivalent to the p-optimality of
the standard proof system for SAT in [3].



(0) where Γ and Σ are disjoint sets of propositional variables
Γ 0 Σ

Γ 0 Σ,α
(¬ 0)

Γ,¬α 0 Σ

Γ,α 0 Σ
(0 ¬)

Γ 0 Σ,¬α

Γ, α, β 0 Σ
(∧ 0)

Γ, α ∧ β 0 Σ

Γ 0 Σ,α
(0 •∧)

Γ 0 Σ,α ∧ β

Γ 0 Σ, β
(0 ∧•)

Γ 0 Σ,α ∧ β

Γ 0 Σ,α, β
(0 ∨)

Γ 0 Σ,α ∨ β

Γ, α 0 Σ
(•∨ 0)

Γ, α ∨ β 0 Σ

Γ, β 0 Σ
(∨• 0)

Γ, α ∨ β 0 Σ

Γ,α 0 Σ, β
(0→)

Γ 0 Σ,α → β

Γ 0 Σ,α
(• →0)

Γ, α → β 0 Σ

Γ, β 0 Σ
(→ • 0)

Γ, α → β 0 Σ

Fig. 2. Inference rules of the antisequent calculus AC by Bonatti [6]

3 A lower bound for the sequent calculus CIRC

Bonatti and Olivetti [8] devised sequent calculi for several non-monotonic logics,
among them was circumscription in a sequent calculus referred to as CIRC . A
new item Σ known as a constraint has been added to the sequent. Σ is a set of
atoms disjoint from R, so the circumscriptive sequents are of form Σ;Γ ⊢P ;R ∆
(which may be regarded as a 5-tuple). As defined by Bonatti and Olivetti [8],
the sequent Σ;Γ ⊢P ;R ∆ is true when: “In every (P ∪ Σ;R)-minimal model of
Γ that satisfies Σ there is a formula φ ∈ ∆ that holds.”

When Σ is empty we omit it from the notation, and these are the circum-
scriptive sequents we are primarily interested in. The rules of the calculus CIRC
comprise the rules given in Fig. 3 together with all rules from LK and AC .
Bonatti and Olivetti proved the correctness and completeness of CIRC :

Theorem 3. (Bonatti, Olivetti [8]) A sequent Σ;Γ ⊢P ;R ∆ is true if and
only if it is derivable in CIRC .

To start a proof-theoretic investigation of CIRC we need the following notion:

Definition 4. Let π be a CIRC-proof of a circumscriptive sequent Γ ⊢P ;R ∆
and let s be a sequent occurring in π (we will also call this a line of π). We call
s involved in π if either s is Γ ⊢P ;R ∆ or is used as premise for some rule whose
conclusion is an involved sequent. We call s intermediate if s is involved in π
and occurs in π as a conclusion of any of rules (C1)–(C4).

Thus the intermediate sequents form the “essential CIRC -part” of the proof
on which we will focus our analysis. The whole proof can be much larger due
to LK and AC -derivations. The next lemma shows that intermediate sequences
are always of a special form.



Γ,¬P 0 q
(C1)

q,Σ;Γ ⊢P ;∅ ∆

Σ,Γ ⊢ ∆
(C2)

Σ;Γ ⊢P ;R ∆

q,Σ;Γ ⊢P ;R ∆ Σ;Γ,¬q ⊢P ;R ∆
(C3)

Σ;Γ ⊢P,q;R ∆

Σ;Γ, q ⊢P ;R ∆ Σ;Γ,¬q ⊢P ;R ∆
(C4)

Σ;Γ ⊢P ;R,q ∆

In all rules q is atomic and does not occur in P or R.

Fig. 3. Inference rules of the circumscription calculus CIRC of Bonatti & Olivetti [8]

Lemma 5. Let π be a proof of the minimal entailment formula Γ ⊢VAR(Γ∪∆);∅

∆. Then every intermediate line in π (in the sense of Definition 4) is of the
form P+;Γ,¬P− ⊢P 0;∅ ∆, where VAR(Γ ∪∆) = P 0 ⊔ P+ ⊔ P−.

Our first result shows an exponential lower bound to the proof size of CIRC .
We do this by forcing the CIRC -proof to enumerate all minimal models, however
in general a CIRC -proof may not be required to do so. For an easy example,
consider

∧
1≤i≤n pi∨qi ⊢M

∧
1≤i≤n pi∨qi, which has exponentially many minimal

models, but can be derived in two lines from (⊢) and (C2).

Theorem 6. CIRC needs exponential-size proofs, i.e., sCIRC (n) ∈ 2Ω(n/ logn).

Proof. The idea is to construct a class of formulae which are of size O(n log n),
but whose proof size grows exponentially. We use propositional variables Pn =
{pi, qi : 1 ≤ i ≤ n} and define antecedent Γn := {pi ∨ qi : 1 ≤ i ≤ n} and
succedent ∆n :=

∧
1≤i≤n(pi ∧¬qi)∨ (qi ∧¬pi). We consider the class of sequents

Γn ⊢Pn;∅ ∆n.
Intuitively the sequents express

∧
1≤i≤n pi ∨ qi |=M

∧
1≤i≤n pi ⊕ qi, which is

not classically true. But they are true circumscriptive sequents, because every
minimal model of Γn will include pi or qi but cannot include both as these models
are not minimal. Notice that the size of the sequents is bounded by O(n log n)
because to represent of each of the n variables we need O(log n) bits.

Let now π be a CIRC -proof of ∅;Γn ⊢Pn;∅ ∆n. We now argue inductively.
Induction Hypothesis (on k for k ≤ n): Let P+;Γn,¬P

− ⊢P 0;∅ ∆n be
an intermediate sequent of π (we know it is of this form by Lemma 5) with
k = n− |P− ⊔ P+|. Then the sub-proof of P+;Γn,¬P

− ⊢P 0;∅ ∆n in π contains
at least 2k lines of the form B;Γn,¬A ⊢C;∅ ∆n, where A,B,C are sets of atoms,
with P+ ⊆ B, P− ⊆ A, and with B, A disjoint in any line.

Base Case (when k = 0): A single line is needed to state the end result
P+;Γn,¬P

− ⊢P 0;∅ ∆n, and it suffices to take B = P+, A = P−.
Inductive Step: Assume the induction hypothesis holds for k− 1. Our aim

is to show that if 1 ≤ k ≤ n, then P+;Γn,¬P
− ⊢P 0;∅ ∆n can only be inferred

in CIRC by using (C3) in the form of



s, P+;Γn,¬P
− ⊢P 0\{s};∅ ∆n P+;Γn,¬P

−,¬s ⊢P 0\{s};∅ ∆n

P+;Γn,¬P
− ⊢P 0;∅ ∆n

for some s in P 0. Lemma 5 tells us that P+ ⊔ P− ⊔ P 0 = Pn. As k < n there is
some i, 1 ≤ i ≤ n, such that pi, qi /∈ P+ ⊔ P− and so pi, qi ∈ P 0.

Suppose that P+;Γn,¬P
− ⊢P 0;∅ ∆n is inferred via (C1). Then, for some

p ∈ P+, the sequent Γn,¬P
−,¬P 0

0 p must be obtainable in the antisequent
calculus. But as pi, qi ∈ P 0 and pi∨qi ∈ Γn the set Γn,¬P

−,¬P 0 is inconsistent
and has no models. Hence Γn,¬P

−,¬P 0 � p and Γn,¬P
−,¬P 0

0 p is not
derivable in AC .

Suppose instead that it is inferred via (C2). Then P+, Γn,¬P
− � ∆n must

be true. However, as pi, qi /∈ P+ ⊔ P− the model which takes pi, qi as both true
is consistent with the antecedent but not the succedent; so (C2) cannot be used.

Rule (C4) cannot be used either as the resulting sequent always has an ele-
ment in R. Hence, (C3) is used to infer P+;Γn,¬P

− ⊢P 0;∅ ∆n.
The inductive case needs proofs of both s, P+;Γn,¬P

− ⊢P 0\{s};∅ ∆n and
P+;Γn,¬P

−,¬s ⊢P 0\{s};∅ ∆n to construct the full proof. By the induction hy-

pothesis each takes at least 2n−k−1 many lines of our desired form. Atom s is
either in B or in A but not both. Therefore the lines are all distinct and there
are 2 · 2n−k−1 many lines, hence at least 2n−k lines for the inductive step.

Finally, when k = n we get that the full proof π of ∅;Γn ⊢Pn;∅ ∆n contains
at least 2n applications of (C3). ⊓⊔

In fact the proof even shows an exponential lower bound to the number of
lines, i.e., the proof length, which is a stronger statement.

4 Separating the sequent calculi CIRC and MLK

We now focus our attention on minimal entailment. In particular we will discuss
Olivetti’s sequent calculus MLK from [28] and compare its proof complexity
with CIRC . MLK operates with sequents Γ ⊢M ∆. Semantically, Γ ⊢M ∆ is
true if

∨
∆ holds in all (VAR(Γ ∪∆); ∅)-minimal models of Γ .

To introduce derivability we use the property of a positive atom in a formula
from [28], defined inductively as follows. Atom p is positive in formula p. Atom p
is positive in formula φ if and only if it is negative in ¬φ. If atom p is positive in
formula φ or χ, it is positive in φ∧χ and φ∨χ. If atom p is negative in formula
φ or positive in χ then it is positive in φ → χ.

The MLK calculus comprises all rules detailed in Fig. 4 together with all
rules from LK . Olivetti showed soundness and completeness of MLK .

Theorem 7. (Olivetti [28]) A sequent Γ ⊢M ∆ is true if and only if it is
derivable in MLK.

We first show that for minimal entailment, CIRC is not better than MLK .

Theorem 8. CIRC does not p-simulate MLK for minimal entailment.



(⊢M )
Γ ⊢M ¬p

Γ ⊢ ∆ (⊢⊢M )
Γ ⊢M ∆

for p atomic and not positive in any formula in Γ

Γ ⊢M Σ,A A, Γ ⊢M Λ
(M-cut)

Γ ⊢M Σ,Λ

Γ ⊢M Σ Γ ⊢M ∆
(• ⊢M )

Γ,Σ ⊢M ∆

Γ ⊢M Σ,A Γ ⊢M Σ,B
(⊢M ∧)

Γ ⊢M Σ,A ∧B

A,Γ ⊢M Σ B,Γ ⊢M Σ
(∨ ⊢M )

A ∨B,Γ ⊢M Σ

Γ ⊢M Σ,A
(⊢M •∨)

Γ ⊢M Σ,B ∨A

Γ ⊢M Σ,A
(⊢M ∨•)

Γ ⊢M Σ,A ∨B

A,Γ ⊢M Σ
(⊢M ¬)

Γ ⊢M Σ,¬A

A,Γ ⊢M Σ,B
(⊢M→)

Γ ⊢M Σ,A → B

Fig. 4. Rules of the sequent calculus MLK for minimal entailment (Olivetti [28])

Proof. We use the hard examples from Theorem 6 and show that they can be
proved in MLK in polynomial size. Using the same notation as in the proof of
Theorem 6 we define Γ i as Γn\{pi∨qi}. Consider the following MLK derivation.

(⊢)
pi ⊢ pi

(• ⊢)
Γ i, pi ⊢ pi

(⊢⊢M )
Γ i, pi ⊢M pi

(⊢M )
Γ i, pi ⊢M ¬qi

(⊢M ∧)
Γ i, pi ⊢M pi ∧ ¬qi

(⊢M ∨•)
Γ i, pi ⊢M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(⊢)
qi ⊢ qi

(• ⊢)
Γ i, qi ⊢ qi

(⊢⊢M )
Γ i, qi ⊢M qi

(⊢M )
Γ i, qi ⊢M ¬pi

(⊢M ∧)
Γ i, qi ⊢M qi ∧ ¬pi

(⊢M •∨)
Γ i, qi ⊢M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(∨ ⊢M )
Γn ⊢M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

This proof tree shows that Γn ⊢M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi) can be proved in
linear length. By repeated use (at most a linear number of times) of rule (⊢M ∧)
we build the big conjunction and obtain Γn ⊢M ∆n in polynomial size. ⊓⊔

The next lemma provides a translation of intermediate CIRC -sequents to
MLK -sequents, which is easy to verify model-theoretically.

Lemma 9. Let VAR(Γ,∆) = P 0 ⊔P+ ⊔P−. Then P+;Γ,¬P− ⊢P 0;∅ ∆ is true
if and only if Γ,¬P− ⊢M ∆,¬P+ is true.

Given a minimal entailment sequent Λ ⊢VAR(Λ,∆);∅ ∆ and its proof (ti)0≤i≤n

in CIRC we define a map τ that acts on intermediate sequents of the form
Σ;Γ ⊢P ;∅ ∆ and maps them to the MLK -sequent Γ ⊢M ∆,¬Σ. This map is
well defined as Lemma 5 guarantees that all intermediate sequents are exactly
of the form that allow the translation in Lemma 9.

To compare MLK with CIRC we need a few facts on LK .



Lemma 10. 1. For sets of formulae Γ,∆ and disjoint sets of atoms Σ+, Σ−

with VAR(Γ ∪ ∆) = Σ+ ⊔ Σ− we can efficiently construct quadratic-size
LK-proofs of Σ+,¬Σ−, Γ ⊢ ∆ when the sequent is true.

2. For formulae φ, χ we have sLK(φ ⊢ φ[χ/⊥]) ∈ O(|χ|+ |φ|).

Lemma 11. Let Σ, Γ , ∆ be sets of formulae. From a sequent Σ,
∧
Γ ⊢M ∆ of

size n we can derive Σ,Γ ⊢M ∆ in an O(n3) size MLK proof.

Proof (Sketch). Informally, the idea is that writing a conjunction or a list of
formulae is semantically the same thing, but must be treated as different objects
in a proof. The lemma demonstrates the ability of MLK to prove one direc-
tion of the equivalence in polynomial size. The strategy used is to inductively
prove Σ,

∧
Γ, Γ ′ ⊢M ∆ for Γ ′ ⊆ Γ . We use proof by induction on the number

of elements r of Γ ′. We then use M -cut to remove the conjunction from the
antecedent. ⊓⊔

Remark 12. As can be seen, the M-cut rule is very powerful and allows to manip-
ulate the minimal entailment sequents, by using classical sequents. In fact, even
when omitting all rules (⊢M ∧), (∨ ⊢M ), (⊢M •∨), (⊢M ∨•), (⊢M ¬), (⊢M→)
from MLK we still obtain a calculus that is complete for minimal entailment
and p-simulates the original MLK . An example illustrating this for (⊢M ¬) is
given below.

(⊢)
A ⊢ A (⊢ ¬)
⊢ A,¬A

(repeated use of • ⊢)
Γ ⊢ A,¬A

(⊢⊢M )
Γ ⊢M A,¬A A,Γ ⊢M Σ

(M-cut)
Γ ⊢M Σ,¬A

The next theorem is the main result in this section. Together with Theorem 8
it shows that MLK is strictly stronger than CIRC for minimal entailment.

Theorem 13. MLK p-simulates CIRC for minimal entailment.

Proof (Sketch). Let π be a proof in CIRC of the minimal entailment sequent
Λ ⊢VAR(Λ,∆);∅ ∆. We will show that there exist constants a and b (independent
of π and the sequent) such that there is a proof π⋆ of Λ ⊢M ∆ in MLK with
|π⋆| ≤ a|π|3+ b. The induction argument is based on translating each line of the
CIRC -proof using τ defined after Lemma 9 and deriving it in MLK .

Induction hypothesis (on the number r of applications of (C3) and (C4)):
Let Λ ⊢VAR(Λ,∆);∅ ∆ be a minimal entailment sequent with CIRC proof π. Let
Σ;Γ ⊢P ;∅ ∆ be an intermediate sequent of π (as in Definition 4), which is
preceded by r applications of rules (C3) and (C4) in π, and the sub-proof up to
that line is of size k. Then τ(Σ;Γ ⊢P ;∅ ∆) can be derived in an (ak3 + b)-size
MLK proof.

Base Case (r = 0): For the base cases we only have to consider conclusions
of rules (C1) and (C2).



C1: What makes (C1) the most difficult case is that it uses the antisequent
calculus, which is not incorporated in MLK . When using (C1) in CIRC proof π
we would start with premise Γ,¬P 0 q and end with conclusion q,Σ;Γ ⊢P ;∅ ∆,
so we have to find an MLK proof starting with the axioms of the MLK calculus
that is cubic in size and reaches conclusion τ(q,Σ;Γ ⊢P ;∅ ∆) = Γ ⊢M ∆,¬q,¬Σ.

Suppose that the intermediate sequent q,Σ;Γ ⊢P ;∅ ∆ is inferred via (C1) in
the CIRC proof π. Then Γ,¬P 0 q holds; so there is some model N in which
Γ,¬P and ¬q hold. Moreover, since we have the AC -proof we can efficiently
construct this N by Proposition 2, which is needed to get a p-simulation.

Consider the sets of atoms Σ+ = VAR(Γ ) ∩ N and Σ− = VAR(Γ ) \ (N ∪
{q} ∪ P ). We claim that Σ+ ⊆ Σ ⊆ Σ+ ⊔ Σ− (but must omit the proof here).
Therefore we can find Σ⋆ ⊆ Σ− such that Σ = Σ+ ⊔Σ⋆.

For set of atoms A = {a1, . . . , al} let us define Γ̂ (A) =
∧
Γ [a1/⊥, . . . , al/⊥].

This notation allows us to replace the variables with their assigned value, and
treat the antecedent as a single formula. Let m = |Λ ⊢VAR(Λ,∆);∅ ∆|. We will
let U and Q be arbitrary sets of atoms such that U ⊔ Q = Σ− ∪ P . Then
Σ+ ⊢M Γ̂ (U) is true. This is because all atoms in Q and U are minimised to
not true, and the remaining positive atoms of N are all true, hence the minimal
model is N and so Γ is satisfied. We incorporate these sequents in a proof by
induction where we replace ⊥ with atoms in Γ̂ one by one (we omit details of
this induction). For Q = Σ− ∪ P we obtain from this induction an MLK -proof
of Σ+ ⊢M

∧
Γ of size O(m2). We proceed extending the proof with

Σ+ ⊢M

∧
Γ

(⊢M )
Σ+ ⊢M ¬q

(• ⊢M )
Σ+,

∧
Γ ⊢M ¬q

Using Lemma 11 we can add a cubic size proof to get Σ+, Γ ⊢M ¬q. Now we
wish to weaken the right hand side. To do this we start with the axiom ¬q ⊢ ¬q.
Then use the weakening rules of LK to get Σ+, Γ,¬q ⊢ ¬q,¬Σ⋆, ∆. We then
continue with

Σ+, Γ ⊢M ¬q

Σ+, Γ,¬q ⊢ ¬q,¬Σ⋆, ∆
(⊢⊢M )

Σ+, Γ,¬q ⊢M ¬q,¬Σ⋆, ∆
(M-cut)

Σ+, Γ ⊢M ¬q,¬Σ⋆, ∆

Repeated use of rule (⊢M ¬) on sequents derives Γ ⊢M ∆,¬q,¬Σ, which is
equivalent to the conclusion in (C1) under translation τ .

C2: We start with the classical sequent Σ,Γ ⊢ ∆ and then continue with

Σ,Γ ⊢ ∆
(⊢⊢M )

Σ,Γ ⊢M ∆
repeated use of (⊢M ¬)

Γ ⊢M ∆,¬Σ

to obtain Γ ⊢M ∆,¬Σ = τ(Σ;Γ ⊢P ;∅ ∆).
Inductive step: In our overall induction we still need to consider the cases

of applications of rules (C3) and (C4).
C3: For (C3), because of Lemma 5 our premises translated under τ must be

Λ,¬P− ⊢M ∆,¬P+,¬p and Λ,¬P−,¬p ⊢M ∆,¬P+, yielding



Λ,¬P− ⊢M ∆,¬P+,¬p Λ,¬P−,¬p ⊢M ∆,¬P+

(M-cut)
Λ,¬P− ⊢M ∆,¬P+

C4: Since we have no fixed elements there are no applications of (C4).
Finally, the inductive claim for the entire proof gives us a cubic size proof

of the sequent τ(Λ ⊢VAR(Λ,∆);∅ ∆), and this is Λ ⊢M ∆ as required. Since our
proof is constructive we even obtain a p-simulation. ⊓⊔

5 Extending the simulation to full circumscription

While MLK only works for minimal entailment Olivetti [28] also augmented
this calculus to obtain a sequent calculus for full circumscription. The rules of
this calculus DMLK are shown in Figure 5. To distinguish between the different
sequent calculi we use the notation Γ ⊲P ;R ∆ for derivability in DMLK .

(P -int)
Γ ⊲P ;R ¬p

Γ,N(U)⊲P ;R ∆
(Z-int)

Γ,N(z), U → z ⊲P ;R ∆

Γ ⊢ ∆ (⊢ ⊲)
Γ ⊲P ;R ∆

for p ∈ P and not positive in any formula in Γ
for z ∈ Z and z /∈ Γ,∆,U and formula U occurring negatively in N(U)

Γ ⊲P ;R Σ,A A, Γ ⊲P ;R Λ
(⊲-cut)

Γ ⊲P ;R Σ,Λ

Γ ⊲P ;R Σ Γ ⊲P ;R ∆
(•⊲)

Γ,Σ ⊲P ;R ∆

Γ ⊲P ;R Σ,A Γ ⊲P ;R Σ,B
(⊲∧)

Γ ⊲P ;R Σ,A ∧B

A,Γ ⊲P ;R Σ B,Γ ⊲P ;R Σ
(∨⊲)

A ∨B,Γ ⊲P ;Z Σ

Γ ⊲P ;R Σ,A
(⊲ • ∨)

Γ ⊲P ;R Σ,B ∨A

Γ ⊲P ;R Σ,A
(⊲ ∨ •)

Γ ⊲P ;R Σ,A ∨B

A,Γ ⊲P ;R Σ
(⊲¬)

Γ ⊲P ;R Σ,¬A

A,Γ ⊲P ;R Σ,B
(⊲ →)

Γ ⊲P ;R Σ,A → B

Fig. 5. Rules of the sequent calculus DMLK for circumscription (Olivetti [28])

Theorem 14. (Olivetti [28]) DMLK is sound and complete for circumscrip-
tion.

If we want to prove a p-simulation of CIRC by DMLK it is necessary to make
use of the (Z-int) rule. This seems problematic as the (Z-int) rule is syntactically
quite restrictive and specialised for Olivetti’s proof of Theorem 14. We therefore
alternatively suggest to incorporate the antisequent calculus, adding rules of AC
and the following new rule



Γ,R+,¬R−,¬P−,¬P 0
0 p

(0 ⊲)
Γ,R+,¬R−,¬P− ⊲P ;R ¬P+

for p ∈ P+, P− ⊔ P 0 ⊔ P+ = P , and R+ ⊔ R− = R. This still yields a sequent
calculus DMLK + (0 ⊲) which is sound and complete for circumscription.

Similarly to Lemmas 5 and 9, the next lemma provides a translation of cir-
cumscriptive sequents to ⊲-sequents.

Lemma 15. Let Γ ⊢P ;R ∆ be a circumscriptive sequent with a CIRC-proof π.

1. Every intermediate sequent of π is of form P+;Γ,¬P−, R+,¬R− ⊢P 0;R0 ∆,
where P is partitioned into sets P+, P−, P 0; R is partitioned analogously.

2. Let σ be the function that takes intermediate sequents of π of the form
P+;Γ,¬P−, R+,¬R− ⊢P 0;R0 ∆ to sequents Γ,¬P−, R+,¬R−⊲P ;R∆,¬P+.
Let A be an intermediate sequent of π, then σ(A) is a true sequent.

We can now state the simulation.

Theorem 16. DMLK + (0 ⊲) p-simulates CIRC .

6 Comparison to Niemelä’s tableau calculus

We now discuss the relations of these sequent calculi to a tableau calculus for
minimal entailment. This tableau works for clausal theories and was introduced
by Niemelä [26]. In this paper we will refer to this tableau calculus as NTAB .

For clausal theory Γ and formula φ, a Niemelä-tableau is defined as follows.
We start the construction of the tableau T with a single branch (Ci)0≤i≤k con-
taining all the clauses of Γ ∪∆, where ∆ is ¬φ expressed in CNF (conjunctive
normal form). There are two rules for extending a branch, where the premises
must occur earlier in the branch. Figure 6 gives these two rules where those
clauses above the line indicate the premises needed to use the rule, and the
clauses below indicate the extensions.

Niemelä’s tableau NTAB uses the following conditions to close branches.

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn},

{¬a1}, . . . , {¬aj−1}, {¬aj+1}, . . . , {¬am}
(N1)

{aj}

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn}
(N2)

{aj} | {¬aj}

Fig. 6. Rules of Niemelä’s tableau NTAB [26]. The notation {aj} | {¬aj} indicates
that the branch splits.



1. A branch B is (classically) closed when for some atoms b1, . . . , bn the clauses
{¬b1, . . . ,¬bn}, {b1}, . . . , {bn} occur in the same branch.

2. Let NΓ (B) = {¬c | c is an atom, {c} does not occur in B, and ∃C ∈ Γ s.t.
c ∈ C }. A branch B is ungrounded when B contains a unit clause {a}, for
which NΓ (B) ∪ Γ 2 a.

3. A branch is MM-closed if it is either closed or ungrounded.

The correctness and completeness of NTAB was shown by Niemelä:

Theorem 17. (Niemelä [26]) For clausal Γ and arbitrary φ there is an NTAB
proof for Γ, φ with all its branches MM-closed if and only if Γ �M φ.

In the same work [8], where Bonatti and Olivetti introduce CIRC , they
also compare it to NTAB , showing that tableaux in NTAB can be efficiently
translated into CIRC -proofs.

Theorem 18. (Bonatti, Olivetti [8]) CIRC p-simulates NTAB.

We will now show that the converse simulation does not hold, i.e.,we will
prove a separation between NTAB and CIRC . This separation uses the well-
known pigeonhole principle PHPn+1

n . This an elementary, but famous principle
for which a wealth of lower bounds is known in proof complexity (cf. [2, 19]).
PHPn+1

n uses variables xi,j with i ∈ [n+ 1] and j ∈ [n], indicating that pigeon
i goes into hole j. PHPn+1

n consists of the clauses
∨

j∈[n] xi,j for all pigeons

i ∈ [n + 1] and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n + 1]
and holes j ∈ [n]. We use these formulas to obtain an exponential separation
between NTAB and CIRC .

Theorem 19. NTAB does not simulate CIRC for minimal entailment.

Proof. We first show that sNTAB (PHPn+1
n ⊢ ⊥) ≥ 2Ω(n). The crucial obser-

vation is that any tableau in NTAB for the pigeonhole principle, is in fact a
refutation using the DPLL algorithm [13]. This can be seen as follows. The for-
mula ¬⊥ in conjunctive normal form is just the empty set. So each tableau has
as starting nodes just the clauses of PHPn+1

n . In any MM-closed tableau for this
sequent, every branch must be closed. This holds as PHPn+1

n is inconsistent;
so the antisequent NΓ (B), Γ 0 a is untrue and the ungrounded condition never
holds for any branch.

The only clauses that can be derived by (N1) and (N2) are unit clauses.
The unit clauses being derived by rule (N2) can be interpreted as the branching
labels in the DPLL algorithm. Using (N1) is a restricted form of unit propagation;
this step can be done at any point in the DPLL algorithm, and normally it is
done automatically between each branching step. Using (N2) is equivalent to
branching on a variable. When a branch is (classically) closed this means that
the empty clause can be inferred by unit propagation in a constant number of
steps. Therefore each proof of PHPn+1

n ⊢ ⊥ in NTAB can be efficiently turned
into a DPLL execution.

It is well known that runs of the DPLL algorithm can be efficiently translated
into resolution refutations. Therefore the exponential lower bound for PHPn+1

n



of Haken [19] applies and each NTAB -proof of PHPn+1
n ⊢ ⊥must be of exponen-

tial size. On the other hand, Buss [10] showed that the pigeonhole formulas admit
polynomial-size Frege proofs; and Frege systems are known to be p-equivalent
to LK (cf. [23]). As LK is part of CIRC we obtain polynomial-size CIRC -proofs
of PHPn+1

n ⊢M ⊥. ⊓⊔

7 Conclusion

Combining results from this paper together with earlier results from [8] we obtain
the p-simulations NTAB ≤p CIRC ≤p MLK of proof systems for propositional
circumscription. Moreover, all these systems are exponentially separated. While
this tells us that MLK is the best proof system with respect to size of proofs, this
might be different when it comes to proof search. In fact, NTAB and CIRC are
both analytic1, which enables efficient proof search strategies (cf. [8]), whereas
for MLK the restricted cut rule is very powerful, making the system highly
non-analytic. This is in line with the experience from classical proof complexity
and SAT solving where strong proof systems are known to be not automatizable
under suitable assumptions (cf. [9]); and modern SAT solvers all build on rather
weak proof systems [27].

In terms of proof complexity, the main question left open by this paper is
to show lower bounds for MLK . Clearly, as circumscription is complete for the
second level Πp

2 of the polynomial hierarchy [11, 16], there exist at least super-
polynomial lower bounds forMLK assuming NP 6= Π

p
2. However, it might be very

hard to show such bounds unconditionally. We note that for default logic and
autoepistemic logic it is even known that showing lower bounds for the sequent
calculi of these logics from [8] is as hard as showing lower bounds for classical
LK [1,5], which is the main open problem in propositional proof complexity. We
leave open whether a similar connection as in [1, 5] can also be shown between
LK and MLK .
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