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a b s t r a c t

Limit analysis is a powerful procedure which is widely used in geotechnical engineering for the analysis
of collapse states. However, when applied to toppling-sliding failures in rock slopes, overestimates of
stability can arise, and hence limit equilibrium and DEM approaches have proved more popular. In this
paper it is shown that limit analysis tends to overestimate stability due to the presence of potentially
unrealistic dilatancy at the joints. To address this, a modified plastic limit analysis procedure incorpo-
rating a non-associative, low dilation, friction model is proposed. Originally developed to assess the
stability of masonry walls, the procedure is here extended to allow an envelope of potential solutions to
be obtained. The numerical results obtained are found to closely match both analytical and experimental
results from the literature, demonstrating the significant promise of the procedure.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

1.1. Background

The influence of geological discontinuities on the stability of
rock slopes and in particular on their modes of failure had been
recognised by a number of workers by the 1960s, as documented
in the literature, e.g. Hoek and Bray [1]. Examples of rock slope
failure modes are shown in Fig. 1, and include planar 2-
dimensional wedge, 3-dimensional wedge and circular failure
modes. Plane failures occur by sliding on a single discontinuity,
whereas wedge failures require two or more intersecting disconti-
nuities. Although circular arc failures were originally recognised in
soil slopes, they can occur in large scale rock slopes where the
discontinuities are closely spaced, or where the intervening rock is
sufficiently weak to fail internally.

Toppling failure involves rotation of jointed columns about
pivot points. Pure toppling failure only occurs in very steep or
overhanging slopes. On the other hand, toppling-sliding failure can
occur in flatter slopes or in larger scale slopes, where toppling
columns force the rock near the toe of the slope to fail by sliding
or shearing through intact material. The resulting failure surface
is often approximately circular in shape. Studies of toppling-
sliding failure were initiated in the late 1960s and early 1970s
using physical models, e.g. Ashby [2]. Subsequently various workers

have identified the toppling-sliding mechanism in failures observed
in the field [3].

1.2. Toppling-sliding stability analysis

Various numerical and analytical procedures have been pro-
posed to solve problems involving toppling-sliding failure of rock
slopes. Considering numerical procedures first, the distinct ele-
ment method (DEM) originally developed by Cundall [4] has been
applied by workers such as Ashby [2], Ishida et al. [5] and Lanaro
et al. [6]. With DEM large displacements and separation of blocks
can be modelled by incrementally solving equations of motion,
using an explicit finite-difference method that requires small time
steps. Corners of blocks are rounded to model crushing, thereby
eliminating singularities. In order to balance the kinetic energy in
the system a damping coefficient is introduced, tailored according
to block size.

Considering analytical procedures, analysis of rock slope stabi-
lity is usually undertaken by a combination of kinematic analysis
and limit equilibrium analysis. Kinematic analysis involves inter-
preting the geometry of the geological discontinuities and the
slope to determine whether failure by a given mechanism is
feasible. The rock slope stability analysis is then carried out using
a limit equilibrium analysis of the given geometry as shown by
e.g. Goodman and Bray [7] and Hoek and Bray [1]. However in a
limit equilibrium analysis the goal is to ensure global equilibrium
is satisfied, regardless of kinematic considerations, i.e. the failure
mechanism identified need not actually be kinematically admis-
sible. Since then, in the absence of other readily available tools,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijrmms

International Journal of
Rock Mechanics & Mining Sciences

http://dx.doi.org/10.1016/j.ijrmms.2014.06.008
1365-1609/& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

n Corresponding author. Tel.: þ44 114 2225717.
E-mail address: c.c.smith@sheffield.ac.uk (C.C. Smith).

International Journal of Rock Mechanics & Mining Sciences 71 (2014) 1–11

www.sciencedirect.com/science/journal/13651609
www.elsevier.com/locate/ijrmms
http://dx.doi.org/10.1016/j.ijrmms.2014.06.008
http://dx.doi.org/10.1016/j.ijrmms.2014.06.008
http://dx.doi.org/10.1016/j.ijrmms.2014.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmms.2014.06.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmms.2014.06.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmms.2014.06.008&domain=pdf
mailto:c.c.smith@sheffield.ac.uk
http://dx.doi.org/10.1016/j.ijrmms.2014.06.008


limit equilibrium procedures have been favoured by most workers
in the field, e.g. Wyllie [8], Zanbak [9], Aydan and Kawamoto [10],
Adhikary et al. [11], and Sagaseta et al. [12].

In recent years, research on rock slope stability has continued.
Many researchers have continued to focus on toppling-sliding
failures, e.g. Liu et al. [13], Tatone and Grasselli [14], and Liu et al.
[15], with limit equilibrium methods generally used to obtain
solutions. Additionally, some researchers have considered ‘flexural
toppling’ scenarios, in which flexural cracking of blocks is con-
sidered (e.g., [16–18]) or ‘block-flexure’ toppling, in which over-
turning of some blocks is accompanied by flexural cracking of
others (e.g. [19]). In this paper, the focus will be on modelling
toppling-sliding failures, without flexural cracking, though now
utilising a numerical approach based on the principles of limit
analysis rather than limit equilibrium, which has been the pre-
dominant methodology used in this field to date.

1.3. Limit analysis

In limit analysis (see e.g. [20]) both global equilibrium and
kinematic admissibility are enforced, potentially leading to more
rigorous solutions when compared to limit equilibrium methods
which generally consider equilibrium only and often require
additional assumptions about forces acting in the system. The
only issue is that in conventional limit analysis the relationship
between inter-block forces and displacements is governed by the
associative flow rule, which means that sliding along a joint will be
accompanied by separation, or ‘dilatancy’ [21]. Thus a tangential
displacement δt along a joint will be accompanied by a normal
displacement δn, according to the following equation:

δn ¼ δt tan ψ ; ð1Þ
where ψ is the angle of dilatancy. This will equal the angle of
friction ϕ when using a conventional limit analysis approach due
to the normality principle, leading to what is termed ‘associative
friction’. This theoretical principle makes the analysis of the
problem relatively straightforward by eliminating a source of static
indeterminacy and allows the application of the powerful upper
and lower bound theorems of plasticity. However, little or no
dilation is typically observed in practice (i.e. Fig. 2b vs. 2a). While
this does not tend to affect analysis of sliding failures due to the
simple mechanics and kinematics involved, analysis of toppling-
sliding failure is complicated by the indeterminacy that affects the
location of the points of contact between blocks and the forces at
those points. This can lead to a conventional limit analysis over-
estimating the actual stability of rock slopes, given that these
generally comprise tightly packed assemblages of blocks.

However, since the essential features of a limit analysis approach
are otherwise attractive, here a method of modelling problems with
a reduced, more realistic, level of dilation within a limit analysis
framework is explored, leading to a novel non-associative friction
(i.e. ψaϕ) analysis.

1.4. Aims

The aims of this paper are to:

(i) Provide details of a general purpose method that can generate
kinematically viable non-associative collapse mechanisms for
sliding, toppling, or combined toppling-sliding, failures.

(ii) Establish the range of non-associative collapse loads relevant
to a particular collapse mechanism.

(iii) Validate the proposed methodology using theoretical and
experimental results available in the literature.

An algorithm previously applied to assemblages of masonry
blocks [22] will be used to address (i), while a new numerical
procedure will be presented to address (ii). Given the strongly
non-associative character of toppling-sliding rock slope failures,
examples of experimental data were chosen from the rock mech-
anics literature to address (iii).

Fig. 1. Modes of failure in rock slopes (after Hoek and Bray [1]). (a) Plane, (b) wedge, (c) circular and (d) toppling -sliding.

Fig. 2. Sliding along a joint: (a) with dilation (‘associative friction’ when ψ¼ϕ),
(b) no dilation (‘non-associative friction’, unless ϕ¼0).
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2. Analysis of simple systems

2.1. Single block failure

For single blocks of the sort shown in Fig. 3, the conditions for
failure can involve sliding or toppling, and limit equilibrium and
limit analysis approaches will be identical. Sliding occurs when the
tangential component of the weight ðW sin αÞ is greater than the
shear resistance at the base ðμW cos αÞ, where W is the weight
of the block, α is the dip angle and μ¼ tan ϕ is the friction
coefficient. Sliding will thus occur when α4ϕ. Toppling, on the
other hand, involves a column rotating about a pivot point or
‘hinge’, taken to be at the lowest corner point if the block is
assumed to be rigid, represented by point O in Fig. 3. Stability
requires that the weight W acts through a point on the line of
contact between the base and the block. The large block in Fig. 3
could thus fail by toppling, while both blocks may fail by sliding
if α4ϕ.

Stability may also be assessed in a more general way by
perturbing the system by some means to initiate collapse. Physical
experiments are typically performed using a tilting table. In this
approach failure is identified by the tilt angle (α) at which collapse
occurs. As the tilt angle of the base is increased, the horizontal
components of the weight driving sliding or rotation increase.
This is analogous to applying an increasing horizontal body force,
achieved in practice by applying a horizontal force equal in
magnitude to the self weight of each block multiplied by a load
factor, λ. The tilt angle can then be obtained from the following
relation:

tan α¼ λW
W

ð2Þ

And hence:

α¼ tan �1 λ ð3Þ
It should be noted that in the equivalent tilted analysis, gravity

has also increased by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

q
. However, this does not

affect the limiting tilt angle for a purely frictional problem.

2.2. Effect of associativity on the solution

For a single block, the flow rule has no effect on the solution
(i.e. the amount of dilatancy which occurs does not affect the

answer). Therefore a standard limit analysis is sufficient to assess
stability. However, in general, a problem will not be composed of a
single block or column but an assemblage of blocks that may slide
and/or topple, and will in general interact with each other in
a statically indeterminate way. It is possible to analyse such
problems using limit analysis, but this is likely to provide a non-
conservative estimate of stability when the number of blocks
increases. It is therefore necessary to take the kinematics of the
problem into consideration and in particular the effects of non-
associativity.

As mentioned earlier, imposing an associative flow rule results
in restrictive mechanisms that may result in non-conservative
collapse loads. Non-associative friction removes these kinematic
restrictions by allowing sliding with reduced dilation. This leads
to equilibrium systems with greater degrees of freedom due to
fewer joints between blocks undergoing relative movement (and
thus being constrained to be at yield). This can be illustrated
by examining a simple two-block system, presented in the next
section.

2.3. Two-block failure: sliding and toppling

For the two-block system shown in Fig. 4, toppling failure can
occur when the larger of the two blocks rotates while the smaller
block slides. In this problem it will be shown that the frictional
resistance at the point of contact (X) between the two blocks
governs the range and value of the load factor λ. For the associative
case, shown in Fig. 4a, the shear force acting on the large block
at X is mobilised in the vertically upwards direction due to
kinematic considerations. However, for the non-associative case
shown in Fig. 4b, since there is no relative movement (assuming

Fig. 3. Sliding and toppling: forces acting on a single block.

Fig. 4. Two-block failure: the influence of dilation (δ) on stability (assuming small
displacement theory holds). (a) Associative mechanism: shear force at X in the
positive vertical direction and (b) non-associative mechanism: shear force at X may
act upwards or downwards.
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instantaneous displacements and zero dilation), the force magni-
tude and direction will be bracketed but not specifically defined.

2.3.1. Analysis of a sliding and toppling two-block system
Fig. 5 shows the free body diagram for the two-block system

considered in Fig. 4. By considering the equilibrium and yield of
the two blocks, associative and non-associative solutions for the
sliding of Block A and toppling of Block B can be derived.

If the unit weight of the blocks is γ, then the weight W of each
block is given as follows:

WA ¼ γhAbA ð4Þ

WB ¼ γhBbB ð5Þ

Failure is induced by the application of a horizontal body force
λW to each block, where λ provides a measure of the tilt required
to initiate collapse, see Eq. (3). The equilibrium and yield condi-
tions for the two blocks are shown in Tables 1 and 2. Joint 3,
between Block A and Block B, will mobilise a strength m, such that

T3 ¼mN3 tan ϕ ð6Þ

where �1rmr1.
It is also necessary to ensure that the normal force N1 acts

within the width of the base of Block A, i.e:

0rxrbA ð7Þ

In order to formulate the problem λ must be defined as a
function of T1;N1; T2;N2; T3;N3. Substituting the vertical equili-
brium equation for Block A and sliding yield equation for Joint
1 into the horizontal equilibrium equation for Block A and

rearranging gives

N3 ¼ ðWAþT3Þ tan ϕ�λWA ð8Þ
Substituting the horizontal and moment equilibrium equations

of Block B into Eq. (8) and rearranging gives

T3 ¼
1

tan ϕ
λðWAþWBÞ�

WBbB
hB

� �
�WA ð9Þ

The mobilised strength m¼ T3=ðN3 tanϕÞ on the joint between
the blocks can be determined for various values of λ. For each
solution it must be checked that T2r N2 tan ϕ and 0oxobA are
satisfied. The minimum non-associative solution is found when
m¼�1 whilst the maximum is found when m¼1.

The influence of the angle of friction on the associative load
and the minimum non-associative load is shown in Fig. 6 for the
case of a 1�1 (height�width) Block A and a 2�1 Block B.

For ϕ¼361 the associative solution can be shown to be λ¼
0.6165, while the minimum non-associative solution can be shown
to be λ¼0.5559, a difference of 9%, with possible non-associative
solutions λNA bracketed as follows: 0:5559r λNAr0:6165. It will
be shown later that the difference between the non-associative
and associative results will in general increase as the number
of blocks increases. It is therefore important to model non-
associative friction for these types of problem.

3. Identification of non-associative collapse mechanisms

Basic limit analysis formulations for problems involving assem-
blages of rigid blocks with associative frictional joints have been
considered by workers such as Livesley [23] and Gilbert and
Melbourne [24]. In the current approach the problem considered
involves an assemblage of rigid blocks separated by joints which
cannot resist tensile forces. Each block may rock and/or slide
relative to an adjacent block. Each block has three degrees of

Fig. 5. Two-block failure: free body diagrams.

Table 1
Two block failure: block equilibrium conditions.

Condition Block A Block B

Horizontal T1 ¼ λWAþN3 N3þT2 ¼ λWB

Vertical N1 ¼WAþT3 N2þT3 ¼WB

Moment T1hA

2
þN3hA

2
þN1 x�bA

2

� �
¼ T3bA

2
T2hB

2
¼N2

bB
2

� �
þT3

bB
2

� �

‘ x¼ ðT3þN1ÞbA�ðT1þN3ÞhA

2N1

‘ T2hB ¼WBbB

Table 2
Two block failure: joint sliding yield conditions.

Condition Joint 1 Joint 2 Joint 3

Sliding T1 ¼N1 tan ϕ T2rN2 tan ϕ �N3 tanϕrT3rN3 tan ϕ
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freedom around its centroid: horizontal displacement, vertical
displacement and rotation. Correspondingly three forces act along
the joints between blocks: shear force, normal force and moment,
as shown in Fig. 7. Yield conditions govern the failure criterion
along each joint i between blocks for both slip and rotation. Fig. 8a
and b shows a typical failure surfaces for toppling and sliding at
any contact i. It can be seen that both criteria depend on the
normal force which is the unknown parameter in these type of
problems. When a classical equilibrium formulation is employed,
this involves maximising a load factor while ensuring that each
block is in equilibrium and that yield is not violated at any joint.
Considering an assemblage of b blocks and c joints, this problem
can be formulated as a linear programming (LP) problem as
follows:

max λ

subject to

Bq�λfL ¼ fD ð10Þ

mir0:5nihi
miZ�0:5nihi
sirμini

siZ�μini

9>>>>>=
>>>>>;

for each joint between blocks i¼ 1;…; c ð11Þ

where λ is the load factor, B is a suitable ð3b� 3cÞ equilibrium
matrix, enforcing horizontal, vertical and moment equilibrium,
and q and f are respectively vectors of joint forces and block loads.
Thus qT ¼ n1; s1;m1;n2; s2;m2::nc; sc;mcf g; f ¼ fDþλfL where fD and

fL are respectively vectors of dead and live loads. Joint and block
forces, dimensions and frictional properties are shown in Fig. 7.
Using this formulation the LP variables are the contact forces for
any joint i, i.e: ni; si;mi (where niZ0; si;mi are free variables).
Eq. (11) enforces joint yield conditions for each joint in the n-s-m
domain and defines the failure criteria governed both by sliding
and toppling. Note that although the associative flow rule is not
explicitly referred to in this formulation, it is implicitly enforced
(e.g. see [23]).

More recently, extended formulations which allow non-associ-
ative frictional joints to be treated have been proposed by workers
such as Ferris and Tin-Loi [25], Orduña and Lourenco [26] and
Gilbert et al. [22]. Here the latter approach is used as a
starting point.

3.1. Limit analysis formulation for discrete block rotation and sliding
(after Gilbert et al. [22])

In essence the approach proposed by [22] involves the succes-
sive solution of simple associative problems. Thus, referring to
Fig. 9a, consider a point A representing the forces acting on a joint
between blocks and lying on the Mohr–Coulomb failure surface
(indicated by the solid line), where the normal and shear forces
are N and T respectively. The associated flow rule clearly requires
ψ¼ϕ (i.e. flow in the direction of the solid arrow), whereas the
required non-associated flow, with ψ¼0, will be in the direction
indicated by the dashed arrow. In order to ensure ψ¼0, while still
utilising an associative analysis, a fictitious failure surface can be
constructed by rotating the yield surface about the force point

Fig. 6. The influence of friction angle (ϕ) on the associative and minimum non-associative load factor λ for the two block problem.

Fig. 7. Block j geometry and properties, and contact forces for joint i.
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obtained for the associative solution, represented by the dashed
line ðĈ ¼N tan ϕÞ. This still correctly limits the shear force at A
provided the normal force remains constant. In principle the
failure surfaces corresponding to all joint forces would be replaced
in this way and the problem solved again. However there is no
guarantee that the normal forces will remain constant after re-
solving, and hence a number of iterations may be required before a
converged solution is reached, as shown in Fig. 9b. Assuming a
converged solution can be obtained, this solution will satisfy both
the original failure surface at all points, and will ensure that flow
is non-associative as required (the flow vector is also normal to
the fictitious yield surface). This will be a valid non-associative
solution, though is not necessarily unique.

Extending the process to all joints between blocks in the problem
allows a numerical solution procedure to be developed as follows:

1. Solve the problem initially assuming associative flow. The
initial normal Ni;0 and shear Ti;0 forces can be extracted from
the solution for each joint i, together with the collapse load
factor λ0.

2. At the next iteration k the modified shear strength parameter
Ĉi;k for joint i can be computed using the normal force from the
previous iteration Ni;k�1 as follows:

Ĉi;k ¼Ni;k�1 tan ϕ ð12Þ
where ϕ is the actual material angle of friction.

3. Solve the associative problem using parameters Ĉi;k to obtain
new values of Ni;k, Ti;k, and λk.

4. If k41 and ∣λk � λk�1∣=λkoϵ, where ϵ is the specified solution
tolerance, and violation of the real failure surface is not
detected at any discontinuity i, then the algorithm stops.

5. If there is no convergence the process is repeated from step (ii)
until convergence is reached.

This algorithm was implemented using a modified version of a
Cþþ code described by [22] which utilised the Mosek LP solver
[27].

As in most limit analysis procedures, it is possible to model
horizontal body forces. This is achieved by applying a factored
block weight (λW) horizontally in order to cause failure. Also, for
the sake of simplicity a cohesionless material interface with
dilation angle ψ taken as zero will be considered in this paper,
though the same basic method can potentially be applied to
problems with a non-zero angle of dilation.

4. Min–max procedure to bracket the range of
possible solutions

The algorithm presented in the previous section is capable of
generating kinematically valid collapse mechanisms. However,
as was demonstrated in the example considered in Section 2.3,
the value of the collapse load factor will generally be non-unique,
since most problems encountered will be statically indeterminate.
It is therefore of interest to establish the likely range of possible
load factors which can be applied.

Considering the mechanism identified as being critical, the
force distribution along yielding joints can be fixed and defined
by the yield criterion (i.e. T ¼N tan ϕ when sliding failure is
involved). On the other hand, to allow a range of possible solutions
to be identified, forces along non-yielding joints can be left free to

Fig. 8. Yield domains. (a) Toppling and (b) sliding.

Fig. 9. Non-associative algorithm: original and modified failure surfaces. (a) Con-
stant normal force at joint for a single iteration and (b) variable normal force at
joint for multiple iterations.
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take different values subject to equilibrium being enforced, and
yield not being violated. Thus the following procedure is proposed:

(i) Obtain a non-associative solution using the procedure
described in Section 3.

(ii) Setup a new associative analysis, but this time prescribing that
yield must occur along all joints that yielded in the mechan-
ism identified in (i).

(iii) Solve the problem searching for the minimum load factor,
λmin.

(iv) Solve the problem searching for the maximum load factor, λmax.

It should be noted that the initial non-associative solution
referred to in (i) and the maximised solution found in (iv) will both
correspond to kinematically compatible collapse mechanisms. (N.
B. although an equilibrium formulation has been used, collapse
mechanisms can be identified using LP duality principles, e.g. see
Charnes et al. [28].) However, the minimised solution from (iii)
will not in general correspond to a mechanism that is kinemati-
cally viable, since the solution derives from a minimisation
process. However in this case the original mechanism should be
compatible with the solution found and thus remains valid.

The procedure described has been tested and found to be robust as
long as a viable mechanism is identified in step (i) of the procedure.
However it may sometimes be found to be difficult to precisely
define the form and extent of a mechanism, and whether yielding
is truly occurring in a given joint. This is particularly the case for
problems involving numerous blocks, with very small relative move-
ments between some blocks. After investigating the issue further it
was found that relative displacement was actually the most reliable
indicator of yielding, and a constant threshold value of 10�5 was
chosen for use in the examples described in this paper.

5. Case studies

5.1. Example 1: Goodman and Bray (analytical)

The following is a limit equilibrium block-toppling problem
based on an example proposed by Goodman and Bray [7],
published by Hoek and Bray [1] and reprinted by Wyllie and

Mah [29]. The objective is to calculate the factor of safety and
required bolting force to prevent toppling failure for the problem
illustrated in Fig. 10.

A rock face 92.5 m high is cut at an angle of 56.61 in a layered
rock mass dipping at 601 into the face. The width of each block is
10 m and the angle of the slope above the crest of the cut is 41, the
base of each block is stepped by 1 m. Based on this geometry, there
are 16 blocks formed between the toe and crest of the slope. The
friction angles on the faces and bases of the blocks are 38.151 and
the unit weight of the rock is 25 kN/m3.

The limit equilibrium analysis proceeds by evaluating the
stability of each block, starting from block 16 until the toe block
(1) is reached. According to the analytical results the top three
blocks (16, 15, 14) and the three toe blocks (3, 2, 1) slide, while
the rest of the blocks fail by toppling. The analytical calculations
are made possible by assuming the supporting slope is stepped,
thereby eliminating indeterminacy of the contact point locations
between adjacent toppling blocks. The result of the analysis
performed indicates that the system is unstable, and that the
angle of friction would have to be increased to 391 to make it
stable.

The same problem was modelled using the proposed approach.
In order to compare the analytical results with the proposed
approach, the angle of friction was increased until a tilt angle of
301 was obtained (this is equal to the tilt angle pre-assumed in the
analytical solution). The angle of friction required to achieve this
was found to be approximately 39.11. The failure mechanism
obtained was virtually identical to that identified by Goodman &
Bray, though with block 3 (hatched in Fig. 10) now predicted to fail
by toppling rather than sliding.

A further analysis was carried out by extracting and comparing
the shear and normal forces acting on the base and sides of each
block; the results are shown in Fig. 11. It can be seen that the there
is a difference in the forces acting on the toe blocks due to
the difference in mechanism mentioned above. For blocks in
the toppling and stable zones (i.e. blocks 4–16), the forces are
approximately the same.

In summary, the results from this example demonstrate that
the proposed non-associative procedure is capable of approxi-
mately reproducing results from the widely used limit equilibrium
procedure developed by Goodman and Bray [7]. However a

Fig. 10. Example 1 – predicted toppling mechanism for a dip or tilt angle of 301. The three shaded blocks remain stable (14, 15, 16), two blocks slide (1, 2) and the hatched
block (3) is predicted to topple by the current procedure, but to fail by sliding in the analytical solution [7].
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significant advantage of the proposed procedure is that it is much
more general, and does not for example require that the support-
ing slope is stepped to enable the calculations to be performed.

5.2. Example 2: Ashby's staggered joints problem (experimental)

The experimental data utilised here were produced by Ashby
[2]. Plaster blocks with an interface angle of friction of 361 were
used to create a simplified model and were tilted to failure as
shown in Fig. 12a. Initially a non-staggered pattern of blocks was
used but the results were found to be variable as a consequence
of shear failure across some of the columns. A staggered pattern
was therefore adopted which maintained a continuous but flexible
column structure and produced consistent results. In each case the
tilt angle required to cause failure was determined.

The single column model failed by sliding only when the tilt
angle reached the friction angle of the base (361). As more columns
were added, the tilt angle at failure reduced, as shown in Fig. 13.
The particular significance of this is that if a simple sliding analysis
is assumed, and the effect of toppling is ignored, the analysis will
grossly overestimate the tilt angle at failure.

The same problems were modelled using the proposed non-
associative method and the results compared in Fig. 13. It can be
seen that the experimental results closely match the average of the
min–max results, and that the initial non-associative solution and
the lowest values in the min–max envelope are on the safe side.
Solutions obtained assuming associative friction are also shown;
these clearly grossly overestimate the tilt angle required to cause
failure when more than a small number of columns of blocks are
involved. Analytical results for the same problem obtained using
the Goodman and Bray limit equilibrium routine are also shown.
These results show that the Goodman and Bray analysis over-
estimates the experimental results up to 12 columns and under-
estimates the tilt angle for more than 12 columns, despite the
assumption of continuous non-flexing columns used in this case.
For the larger number of columns the Goodman and Bray analysis
agrees quite well with the proposed non-associative solution.

It is also evident that the predicted failure mechanism shown
in Fig. 12 has a similar form to that observed experimentally.
Characteristic features for this set up include sliding of toe blocks
and the presence of a triangular pocket of stable blocks at the base
of the taller columns, features which were observed both experi-
mentally and numerically. However, it is notable that whereas
in the experiments the uppermost blocks were observed to slide
relative to underlying toppling columns, this was not observed
numerically. It is reasonable to infer that the experimentally

observed mechanism is slightly less critical (i.e. involves slightly
more energy dissipation) than that identified in the numerical
analysis, but occurs in practice due to minor imperfections in the
physical model. Another possible explanation is that whereas in
the numerical model scaled up instantaneous displacements
are shown, actual displacements are shown in the case of the
physical model.

In summary, the proposed non-associative procedure provides
reasonably good, if somewhat conservative, predictions of stability
in the case of Ashby's staggered joints problem, and the min–max
procedure described in Section 4 successfully brackets all the
experimental results.

5.3. Example 3: Non-staggered joints problem (experimental)

Lanaro et al. [6] used physical and numerical models to
simulate toppling failure of the arrangement of blocks shown in
Fig. 14. The block geometry was 90 mm�90 mm�40 mm, with a
unit weight of 28 kN/m3 and friction angle of 381. A total of 97
blocks were stacked into columns to form a slope.

The physical model was placed on a table which was tilted
until collapse. Lanaro et al. [6] modelled the same arrangement
numerically using the distinct element code UDEC [30]. Their
numerical model was found to overestimate stability, with failure
predicted to occur at a tilt angle of 111 in the numerical model
compared with 91 experimentally. A good match was obtained
when a reduced angle of friction of 311 was used in the UDEC
model. Lanaro et al. [6] attribute this to possible damage of the
block interfaces and to the development of large displacements at
lower tilt angles in the experiments, leading to premature failure.
It was suggested that this could effectively be modelled in the
numerical model by using a very much lower angle of friction. To
investigate this further, the same problem was analysed using the
proposed numerical method. The failure mechanisms for different
angles of friction are shown in Fig. 14 and the numerical results in
Fig. 15.

Firstly, the predicted mechanism shown in Fig. 14a quite closely
replicates the experimentally observed collapse mechanism. Sec-
ondly, from Fig. 15 it is evident that the numerical non-associative
results and the min–max envelope are relatively insensitive to
angle of friction. (This is in stark contrast to the associative friction
results, which suggest that stability increases monotonically with
increasing angle of friction.) However, at higher angles of friction
ð4351Þ there is some sensitivity, and in order to obtain failure
at the experimentally observed critical tilt angle of 91, an angle
of friction of 371 needs to be used. This is just 11 less than the

Fig. 11. Example 1 – comparison of normal and shear forces obtained using the current method and the limit equilibrium method by Goodman and Bray [7].
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Fig. 12. Example 2 – experimental and predicted failure mechanisms, showing stable, sliding and toppling blocks. (a) Experimental results and (b) numerical results.

Fig. 13. Example 2 – predicted and experimental results vs. number of columns.
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measured friction, but is significantly higher than the angle of
friction required in the UDEC model to replicate the experimental
results (311).

In summary, the proposed non-associative procedure provides
reasonably good predictions of stability for the model studied by
Lanaro et al., with the min–max procedure described in Section 4
bracketing the experimental result over a wide range of angles of
friction ð311rϕ1r371Þ.

5.4. Discussion

The proposed method of generating non-associative mechan-
isms has been found to be capable of generating credible mechan-
isms very similar to those seen experimentally. However, whilst
there may be several viable non-associative mechanisms, the
standard procedure will only converge on one solution (assuming
that this can be obtained; note that several solutions are missing

from Fig. 13 because the prescribed convergence tolerance could in
some cases not be met). While the converged solution is not
guaranteed to be the least stable mechanism, the results obtained
so far indicate that the mechanism found is generally as, or more,
critical than that observed in the corresponding physical model.
This is not necessarily surprising as it is likely that the physical
models will have minor discrepancies from the idealised numer-
ical model geometry, that influence the nature of the mechanism
that actually forms.

Finally, although in the interests of space associative friction
mechanisms have not been shown in the paper, these were
generally observed to be highly unrealistic. Even more impor-
tantly, the associative friction model has been found to be prone to
grossly over-predicting the critical tilt angles in the case of the
experimental examples considered (e.g. 25.71 cf. a non-associative
prediction of 9.31 in the case of the Ashby staggered block example
involving 36 columns).

Fig. 14. Example 3 – range of predicted failure mechanisms (shaded blocks are stable). (a) ϕ¼311–351, (b) ϕ¼361, and (c) ϕ¼381.

Fig. 15. Non-staggered joints problem: numerical results compared to experimental results.
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6. Conclusions

1. A numerical analysis procedure originally developed to assess
the stability of masonry walls has been shown to be capable of
generating kinematically viable non-associative solutions for
rock toppling problems, similar or identical to those observed
experimentally, or obtained using conventional limit-equilibrium
techniques in the case of simple problems.

2. A significant advantage of the proposed limit analysis proce-
dure compared with the limit equilibrium techniques that have
been traditionally applied to rock toppling problems is that it is
generally applicable, and does not require assumptions to be
made about how forces act within the system.

3. The numerical analysis procedure has been found to provide
reasonable, albeit somewhat conservative (i.e. safe), estimates
of the stability of experimental rock toppling setups considered
in the literature.

4. A new min–max procedure that can provide minimum and
maximum non-associative solutions for a particular kinematic
collapse mechanism has been described. When used in combi-
nation with the proposed non-associative numerical analysis
procedure this generates solutions that successfully bracket
experimental data described in the literature.

5. Conventional associative friction limit analysis models are
likely to grossly over-predict the stability of rock slopes when
toppling of blocks is involved, and their use should therefore be
avoided.
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