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Hydrothermal microwave processing of microalgae as a pre-treatment and extraction 

technique for bio-fuels and bio-products 

Patrick Biller, Cerri Friedman, Andrew B. Ross* 

Energy Research Institute, University of Leeds, Leeds, LS2 9JT, UK 

ABSTRACT 

Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-

products. The current paper investigates the processing of microalgal slurries under controlled 

microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 

140°C at a constant residence time of 12 min. Microwave irradiation led to disruption of the 

algal cell walls which facilitated lipid extraction. The influence of inorganic material on 

microwave heating was assessed for three strains including, Nannochloropsis occulata, 

Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and 

showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly 

dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) 

was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids 

and phytochemicals. 
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1. Introduction 

The development of third generation biofuels from microalgae has seen increasing interest in the 

last decade. Microalgae are able to fixate carbon dioxide from the atmosphere or from 

anthropogenic sources by photosynthesis more efficiently than terrestrial biomass due to their 
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higher photosynthetic efficiency (Brennan and Owende, 2009). The high photosynthetic 

efficiency of microalgae and their ability to produce lipids led to research investigating the 

production of bio-diesel by lipid extraction and transesterification to fatty acid methyl esters 

(FAME). FAMEs can be mixed with diesel and combusted in conventional diesel engines 

without the need to modify existing engines. Even though there has been considerable amount of 

research into the production of bio-diesel from microalgae, only few small pilot-scale projects 

are currently in operation. One of the main issues associated with large-scale production is the 

supply of sufficient high lipid algal biomass at a reasonable cost. Cultivation of high lipid strains 

is quite challenging as the strains can be sensitive to environmental influences and are not 

generally associated with the high growth rates which some high protein or mixed strains can 

achieve. Another issue of microalgae is the low biomass in water concentrations from 

cultivation. This is a major concern when a dry feedstock is required in downstream processes, 

particularly in many conventional lipid extraction techniques such as solvent extraction or bead 

milling. Recently hydrothermal processing of algae has been proposed and involves processing 

of a wet feedstock in hot compressed water. Depending on the severity of the reaction 

conditions, the process is classified as carbonization, liquefaction or gasification with the latter 

requiring higher temperatures and pressures. Hydrothermal processing does not require a high 

lipid feedstock as the protein and carbohydrate fraction of algae can also be converted to either a 

hydro-char, bio-crude or syngas. Hydrothermal processing of algae has significant potential in 

the manufacture of microalgae derived biofuels and has been recently reviewed (Biller and Ross, 

2012).  

One issue which is unanswered by a lot of research in hydrothermal processing is the extraction 

of phytochemicals prior to biofuel production. The extraction of value added compounds is 
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essential to improve the economics of producing renewable fuels from microalgae and should be 

considered. Microalgae are a highly promising source of valuable phytochemicals such as 

pigments, recombinant proteins, mono- and polyunsaturated fats such as omega-3 fats and 

polysaccharides (Brennan et al., 2012). Limited studies have looked into the extraction of lipids 

and polysaccharides before further processing into biofuels. Miao et al. (2012) have recently 

investigated the sequential hydrothermal liquefaction of microalgae with extraction of valuable 

polysaccharides in the first step with subsequent bio-crude production of the residues 

(Chakraborty et al., 2012; Miao et al., 2012). Vardon et al. (2012) investigated the solvent 

extraction of lipids from Scenedesmus prior to hydrothermal liquefaction of the defatted 

microalgae (Vardon et al., 2012). Hydrothermal processing is a relatively sever procedure where 

close control of reaction conditions to achieve specific conversion to desired compounds can be 

quite difficult. Hydrothermal processing as a technique for the manufacture of chemicals is 

receiving increasing interest. For example the acid-catalyzed hydrothermal production of 5-

(Hydroxymethyl)-furfural and levulinic acid from cellulosic biomass has been recently proposed 

as a renewable source of platform chemicals (Potvin et al., 2011; Raspolli Galletti et al., 2012). 

Problems can arise however from induction heating, which may lead to unwanted side reactions 

at localized hot zones resulting in low extraction yields (Tsubaki et al., 2012). Microwave 

processing has been suggested to provide a more uniform method of heating as the heating 

occurs due to the rotation of dipolar molecules and vibrations of ions in solution in an 

electromagnetic field. This mode of heating can reduce residence times, increase reaction rates 

and provide more accurate control of reaction conditions (Tsubaki et al., 2012). Tsubaki et al. 

(2012) showed that the addition of halide salts within hydrothermal hydrolysis of cellobiose 

increases hydrolysis reaction of carbohydrates, results in a reduction of unwanted side reactions 
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and energy consumption. It is therefore hypothesized that algae, which are naturally high in salts, 

could prove to be a promising feedstock for microwave processing. Microwave processing could 

either be used to facilitate extractions of valuable compounds such as polysaccharides or protein, 

as recently shown by Budarin et al. (2012) or applied as a means to produce a biofuel by 

microwave-mediated pyrolysis of algae (Budarin et al., 2012; Budarin et al., 2011).     

The current study aims to investigate the use of microwaves for the extraction of value added 

compounds before further processing to biofuels.  The influence of inorganic salts on 

hydrothermal microwave processing is investigated and the process is evaluated as a technique 

for extraction of valuable compounds as well as pre-treatment for the production of biofuels via 

hydrothermal liquefaction. During direct hydrothermal liquefaction, proteins in microalgae are 

broken down to and rearranged to complex nitrogen containing molecules which are found in the 

bio-crude (Biller and Ross, 2011). This produces a bio-crude with undesirably high nitrogen 

content which can lead to complications if the fuel is to be upgraded via hydro 

treatment/hydrogenation and increased NOx emissions during direct combustion. It has 

previously been shown that proteins can be hydrolyzed to water soluble amino acids or extracted 

as proteins to the water phase during subcritical water treatment (Lamoolphak et al., 2006; 

Sereewatthanawut et al., 2008).  If the proteins can be fractionated to the water phase during 

hydrothermal microwave processing it is expected that a bio-crude of lower nitrogen content can 

be produced by HTL. Du et al. (2012) performed work similar to this concept by subcritical 

water pretreatment by conventional heating before flash pyrolysis to produce a bio-oil with fewer 

nitrogen containing compounds (Du et al., 2012). 
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2. Materials and Methods 

Three microalgae strains were investigated; Nannochloropsis occulata was grown in-house at the 

University of Leeds. Chlorogloeopsis fritschii (C. fritschii) was grown by the Plymouth Marine 

Laboratory, UK. The Pseudochoricystis ellipsoidea strain (P. ellipsoidea) was isolated by the 

DENSO CORPORATION, Japan and has the unique ability to synthesize and accumulate 

aliphatic hydrocarbons (Imamura et al., 2012). All three strains were freeze-dried before use. 

Samples were prepared by mixing ~1g of freeze-dried microalgae with 10 mL of deionized water 

to form a slurry.  The low ash containing high-lipid fresh water strain was mixed with 0.1M 

NaCl to investigate the effects of inorganic salt content on microwave processing. Samples of 

each strain were prepared in triplicate for each processing temperature used.  

 

2.1 Microwave processing 

Algal slurries were processed individually in a sealed quartz reaction vessel of 45 mL volume 

within a 1.2 kW Milestone StartSynth microwave oven (Milestone Srl, Italy). Samples were 

heated to 80, 100, 120 and 140°C within 3 min, the temperature was then kept constant for 12 

min before a fan was operated to cool the samples. Internal temperatures of the microalgal 

samples during processing were measured by an IR thermometer and logged on the control 

display. The energy used during microwave heating was determined through the integration of 

the power profiles using the computer’s inbuilt ∫E/t function.  

After the samples had been cooled, they were centrifuged for 15 minutes at 3500 rpm to separate 

the solid biomass sediment from the liquid phases to enable lipid extraction and compositional 

analysis. The liquid phase was then diluted to 250 mL with deionized water and analyzed for 
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anions and cations using a DX-100 ion-chromatography analyzer (Dionex, USA). After 

centrifugation the solid samples were freeze-dried and analyzed for CHNSO content using a CE 

Instruments Flash EA 112 series elemental analyzer. Around 10 mg of sample were analyzed 

using a TA Instruments  Q5000 thermo-gravimetrical analyzer; temperature was ramped to 

105°C in a constant flow of nitrogen to determine the moisture content and subsequently ramped 

at 10°C/min to 900°C and held for 15 min to obtain the pyrolysis devolatolisation profile. After 

15 min air was introduced for 15 min to burn off the fixed carbon and determine the ash content 

of the biomass. Biochemical and metal analysis of the unprocessed biomass was performed as 

described previously (Biller and Ross, 2011; Ross et al., 2008).  The solid residue was then 

coated with a thin gold layer before analysis by scanning electron microscopy (SEM) on a Zeiss 

EVO MA 15 (Carl Zeiss Microscopy, Germany). 

2.2 Lipid Extraction and Analysis 

Lipids were extracted from the microwaved samples and unprocessed algae by adding 25 mL of 

dichloromethane (DCM) to the dry biomass/residue and shaken continuously for 45 min in 

sealed sample containers. Subsequently, Whatman type 3 filters were used to separate the DCM 

soluble fraction from the defatted solids. Yields of lipids were determined gravimetrically after 

evaporation of the DCM at room temperature. Size exclusion chromatography of the lipids was 

carried out on a Perkin Elmer Series 200 HPLC instrument with a Varian PGel column of 30cm 

length, 7.5 mm diameter, 3ȝm particle size and a THF mobile phase flow rate of 0.8 mL/min. 

The lipids were additionally transesterified to FAME using methanol and sulfuric acid. 

Approximately 2 mL methanol were added to 200 mg of extracted lipids with one drop of 

sulfuric acid and agitated for 1 hour at 55°C in a shaking water bath. The FAME fraction was 

separated using pentane and water. The FAME extract was analyzed on an Agilent 5890 GC-MS 
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using a RTX-1701 capillary column and calibrated using an external FAME standard purchased 

from Sigma-Aldrich (F.A.M.E. Mix, C8-C24).  

2.3 Hydrothermal processing 

Approximately 1 g of freeze dried unprocessed and microwave processed algae biomass was 

mixed with 10 mL of deionized water and sealed in a 1.905 cm outer diameter and 13.5 cm 

length Swagelok sealed reactor, the remaining headspace contained ambient air. The sealed 

reactor was submerged to a preheated fluidized sand bath (FSB-3, OMEGA Engineering Ltd, 

Manchester, UK) at 300°C for a constant residence time of 15 min. Using an internal K-Type 

thermocouple the time to reach reaction temperature of the reactants was measured to be 2 min. 

Subsequently the reactor was quenched in cold water, once cooled to room temperature the gases 

were vented. The reactor contents were decanted and the reactor washed using DCM and 

deionised water (30 mL each in 15 mL aliquots). The resulting mixture was separated in a 

separating funnel and filtration to a bio-crude, solids and water phase. The solids and bio-crude 

were weighed and the water phase diluted to 100 mL with deionised water. Yields of bio-crude 

and solids were determined and analyzed as described previously (Biller and Ross, 2011).  

 

3. Results and Discussion 

3.1 Microwave processing 

Three strains of algae were investigated for the purpose of the current research; Nannochloropsis 

occulata, the high-lipid strain Pseudochoricystis ellipsoidea and the cyanobacteria 

Chlorogloeopsis fritschii. The strains were analyzed for their elemental, biochemical and 

inorganic composition and the data is presented in Table 1.  Nannochloropsis is a marine strain 
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which was grown in f/2 media and therefore has much higher ash content than the other two 

fresh water strains; this corresponds to its lower calorific value (CV) of 17.9 MJ/kg as seen in 

Table 1. P. ellipsoidea has the highest CV due to its low ash content and very high lipid content 

of 67 % measured by the Bligh-Dyer method. This lipid content is higher than reported before 

for the same strain but the growth conditions used for the strain used for this work are unknown 

(Satoh et al., 2010). Both Nannochloropsis and C. fritschii have a high nitrogen content of 

around 9 % which corresponds to their high protein content of 57 and 50 % respectively. The 

influence of salts on microwave heating was investigated as previously metals and salts have 

been shown to absorb microwave irradiation and influence reaction rates during microwave 

processing (Tsubaki et al., 2012). Nannochoropsis contains the largest levels of salts; the 

concentration of Cl and Na are particularly high. The concentration of Na in Nannochloropsis is 

around 50 fold higher than for C. fritschii and 1500 fold for P. ellipsoidea. The high lipid strain 

(P. ellipsoidea) has a low level of inorganics but contains a high K content. Due to the low 

concentrations of salts in P. ellipsoidea it was decided to process this strain in a solution of 0.1 

M NaCl to investigate the effect of inorganics on the hydrothermal microwave processing of 

microalgae.  The three strains were also analyzed for phosphorous content. Phosphorous is an 

essential nutrient for the cultivation of microalgae; however it is a finite non-renewable resource 

extracted from phosphate rock and extraction requires high energy inputs (Cordell et al., 2009), 

therefore the fate of phosphorous during hydrothermal microwave processing and the possibility 

of nutrient recycling and/or nutrient extraction is investigated and addressed in this study.  
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Table 1:  Proximate, ultimate, biochemical and metal analysis of microalgae feedstock.  

  C. fritschii Nannochloropsis P. ellipsoidea 

H2O (%) 10.1 9.2 1.2 

Ash (%) 3.6 25.7 1.0 

C (% daf) 52.2 57.8 61.3 

H (% daf) 7.5 8 9.1 

N (% daf) 9.8 8.6 2.1 

S (% daf) 0.2 n/d n/d 

O* (% daf) 30.3 25.7 27 

HHV (MJ/kg) 18.9 17.9 29.4 

Protein (% daf) 50 57 25 

Carbohydrate (% daf) 44 8 7 

Lipid (% daf) 7 32 67 

Cl (mg/kg db) 578 76955 10 

Na (mg/kg db) 3905 189271 124 

Fe (mg/kg db) 692 714 48 

K (mg/kg db) 4844 14989 2899 

Mg (mg/kg db) 2693 3295 244 

P (mg/kg db) 7847 7806 6256 
*by difference, n/d=not detected, daf=dry ash free basis, db=dry basis 

 

Each microalgae sample was processed under hydrothermal microwave conditions at 

temperatures of 80, 100, 120 and 140°C while P. ellipsoidea was also processed in 0.1M NaCl. 

The recovered solid fraction was analyzed for elemental composition and ash content and the 

results are presented in Table 2. For C. fritschii around 80-84 % of the total solid was recovered 

indicating that 20% of the mass resulted in the water phase as water soluble products. The gas 

produced during microwave processing was not quantified but is assumed to be low as 

comparable conditions during conventional heating by Garcia Alba et al. (2011) resulted in gas 

yields of <3 %  at 175°C and residence times of 5 and 60 min (Garcia Alba et al., 2011). The 

processing temperature had no significant effect on the mass of solids or the ash content 

recovered from C. fritschii. The ash content was reduced from 3.6 % in the initial biomass to 
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around 2 % in the microwaved samples, indicating that water soluble salts are fractionated to the 

water phase. The elemental analysis revealed that around 25 % carbon results in the water phase 

at 80 and 100°C and increased to 31% at the highest processing temperature of 140°C. 

Fractionation of the nitrogen content of the algae into the water phase would be beneficial as this 

could potentially upgrade the biomass feedstock for further processing and could also be used as 

a source of nutrients for microalgae cultivation. HMP of C. fritschii led to a maximum recovery 

of N to the solids of 91.7 % at the lowest temperature and a minimum of 71.8 % at 140°C. This 

indicates that at higher temperatures the protein and/or chlorophyll derived nitrogen becomes 

more soluble in water either by breakdown to more soluble compounds such as hydrolysis of 

protein to amino acids or by braking cell structures and hence releasing nitrogen compounds to 

the water phase. 

Table 2: Ash content and % carbon and nitrogen recovered to the solid microalgae residue following 
HMP. 

C. fritschii 80°C 100°C 120°C 140°C 

 

Mass % recovered 83.8 84.0 80.3 82.3 

 

C % recovered 75.6 75.6 73.1 68.9 

 

N % recovered 91.7 82.8 81.0 71.8 

 

Ash % 2.0 2.2 1.3 3.7 

Nannochloropsis         

 

Mass% recovered 49.0 50.3 38.0 27.8 

 

C% recovered 45.8 47.7 36.9 22.3 

 

N% recovered 44.3 43.1 35.8 17.2 

 

Ash % 4.2 4 5.5 6.5 

P. ellipsoidea         

 

Mass% recovered 83.2 80.1 81.9 76.8 

 

C% recovered 87.3 86.3 86.3 82 

 

N% recovered 67.1 62.5 56.5 48.4 

 

Ash % 0.8 1.1 1.3 0 
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P. ellipsoidea + 0.1M NaCl         

 

Mass% recovered 85.0 83.0 78.7 77.1 

 

C% recovered 89.4 88.5 83.9 80.1 

 

N% recovered 79.1 76.1 58.1 40.8 

  Ash % 0.4 1.5 0.5 0.5 

 

 

The results for the marine algae Nannochloropsis differ significantly to those of microwave-

processed C. fritschii. A maximum of 50 % of the total mass is recovered in the solid fraction at 

the lower temperatures of 80 and 100°C, compared to around 80 % for C. fritschii. At 120 and 

140°C the recovery is even lower with 38% and 27.8 % respectively. A proposed reason for this 

is that the high ash content of Nannochloropsis, which is comprised mainly of water soluble 

salts, is recovered to the water phase. This results in significantly lower ash content in the residue 

than in the original biomass. The ash contents of the residues range from 4 to 6.5 % compared to 

25.7 % in the original feedstock. This is beneficial for further processing, as a high ash content 

can lead to complications due to chloride stress corrosion and fouling and slagging issues in 

combustion (Anastasakis et al., 2011). However it is not only the ash that is removed, the carbon 

recovery is also much lower compared to C. fritschii, the maximum is 48% at the low processing 

temperatures and is reduced down to 22 % at 140°C. This represents a large loss of carbon into 

the water phase. The N content of the recovered solids after hydrothermal microwave processing 

follows the same trend; maximum recovery in the solid is around 44% and this decreases to 17 % 

at 140°C. This indicates that the majority of the nitrogen is fractionated into the water phase.  

For P. ellipsoidea, the mass recovery is remarkably similar to that of C. fritschii at all conditions. 

The maximum (83.2%) is seen at the lowest processing temperature and the minimum of 76.8 % 

at 140°C. The mass recovery when P. ellipsoidea is processed in 0.1 M NaCl is only affected 
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slightly with marginally higher recoveries at 80 and 100°C. The carbon recovery ranges from 

87.3-82% when processed in deionized water and 89.4-80.1% when processed in 0.1M NaCl. 

This represents the highest carbon recovery of the three strains investigated. The ash content of 

P. ellipsoidea is not significantly affected up to 120°C, however at 140°C the ash content is 

below the detection limit of TGA analysis, indicating that processing at 140°C removes the ash 

content completely. The nitrogen content of the solid algal residue is reduced up to 41% when 

processed in deionized water and 48 % when processed in 0.1 M NaCl at a temperature of 

140˚C.  For P. ellipsoidea microwave pre-treatment appears to be more beneficial compared to 

the other strains. Over 80 % of the carbon is recovered and over half the nitrogen is removed, 

improving the quality of the biomass feedstock for biofuel production by HTL and 

simultaneously extracting polysaccharides and amino acids to the water phase. This has also 

been shown by Chakraborty et al. (2012) to be possible in the low temperature hydrothermal 

treatment of Chlorella sorokiniana (Chakraborty et al., 2012).  

The hydrothermal microwave pre-treatment is shown to effectively remove a large fraction of the 

ash and nitrogen from Nannochloropsis but at the same time removing undesirably high amounts 

of carbon. The nitrogen removal from C. fritschii is lower but still significant, therefore the 

advantages and disadvantages of hydrothermal pre-treatment will need to be assessed based on 

overall mass and energy balances as well the benefits it has on product quality. The influence 

pre-treatment has on product quality is described in the following sections.  

 

Following HMP, the algal biomass was recovered, freeze dried and visually inspected by SEM. 

The images of the microwaved cells are included in the electronic supplementary material (Fig. 

S1-3). In summary, it was observed that the cells of C. fritschii in their raw form are linked 
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together by extracellular material, possibly originating from the freeze-drying process.. This 

hormogonia is removed even at 80°C but cells were only broken at the highest temperature of 

140°C (Fig. S1 a-c). SEM analysis of Nannochloropsis revealed that microwaving leads to more 

compact clustering of cells, where only at 140°C material appears to be torn from the compact 

clusters (Fig. S2 a-c). Similarly the cells of P. ellipsoidea appear to cluster together after 

microwaving with hormogonia being removed; individual cells became increasingly less 

recognizable as the temperature increased (Fig. S3 a-c). Generally the data shows the onset of 

cell disruption which is hypothesized to influence recoveries of different biochemical 

components.  

  

Figure S1: SEM images of untreated C. fritschii (a) Mag=2320, HMP processed at 120°C (b) Mag=1500 
and 140°C (c) Mag=1500. 

 

Figure S2: SEM images of untreated Nannochloropsis (a) Mag=5430, HMP processed at 120°C (b) 
Mag=4660 and 140°C (c) Mag=4660. 

(a) (b) (c) 

(b) (c) (a) 
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Figure S3: SEM images of P. ellipsoidea (a) Mag=4660, HMP processed at 120°C (b) Mag=4660 and 
140°C (c) Mag=4660. 

 

The supernatant after centrifuging the microwaved samples was analyzed for its pH and for 

anions and cations by ion exchange chromatography (Table 3). The fate of these is significant 

for nutrient recycling for further microalgae growth in a closed loop process, as previously 

proposed (Biller and Ross, 2012). The levels of Na and Cl in the process water are highest for the 

marine strain Nannochloropsis followed by P. ellipsoidea processed in 0.1M NaCl while levels 

are lowest for P. ellipsoidea. Levels of ammonium could only be detected in the C. fritschii 

sample but levels are much lower compared to those observed during hydrothermal liquefaction 

(HTL) of the same strain. HTL at 300°C for 1 hour led to concentrations of ammonium of 4750 

mg/L compared to around 150 mg/L observed from hydrothermal microwave treatment (Biller et 

al., 2012). This is due to the much less severe conditions employed in the current study. It is not 

expected that the protein fraction, containing the majority of nitrogen, is broken down 

significantly. This is also the reason why there is no ammonium detected in the other strains. The 

pH of the process water generally decreases with increasing processing temperature for all 

strains. This could potentially be due to the onset of acid formation by decomposition of simple 

carbohydrates such as glucose to compounds such as formic, acetic and luvelinic acid. Acid 

formation was not analyzed in the current study, only the pH was measured, but work by Tsubaki 

(a) (b) (c) 
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et al. (2012) showed the effect of increasing organic acid formation from cellobiose under 

hydrothermal microwave processing resulting in lower pH values at higher processing 

temperatures and with the addition of halide salts (Tsubaki et al., 2012). This effect is also 

observed in the current work where the pH values of P. ellipsoidea processed in sodium chloride 

are lower compared to the samples processed in deionized water.   

Table 3: Analysis of water phase after microwave treatment.  

  
HMP Temperature 

C. fritschii (mg/L) 80°C 100°C 120°C 140°C 

 
Na+ 323 345 357 242 

 
K+ 174 179 188 140 

 
NH4

+ 150 147 136 111 

 
Acetate 47 38 34 57 

 
Cl- - - - - 

 
PO4

3- 850 915 942 303 

 
pH 7.97 7.64 7.73 7.42 

Nannochloropsis               (mg/L) 
    

 
Na+ 7662 8077 8325 8400 

 
K+ 716 772 787 799 

 
NH4

+ - - - - 

 
Acetate 1550 2240 748 2845 

 
Cl- 4080 5248 5373 5628 

 
PO4

3- 708 930 778 1133 

 
pH 7.56 7.42 7.66 7.19 

P. ellipsoidea (mg/L) 
    

 
Na+ 110 84 103 104 

 
K+ 258 238 251 232 

 
NH4

+ - - - - 

 
Acetate - - - - 

 
Cl- 54 27 34 31 

 
PO4

3- 207 118 147 159 

 
pH 6.62 6.44 6.09 5.62 

P. ellipsoidea NaCl         (mg/L) 
    

 
Na+ 2122 2286 2183 2295 

 
K+ 236 262 256 259 

 
NH4

+ - - - - 

 
Acetate - - - - 
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Cl- 3406 3679 3472 3629 

 
PO4

3- 155 155 130 196 

 
pH 6.71 6.66 5.09 5.54 

 

Interestingly the amount of PO4
3- detected in the C. fritschii sample is higher at the lower 

temperatures and decreases to a third at the highest temperature, leading to the conclusion that if 

a process-water high in PO4
3- is required, for nutrient recycling or extraction, that mild 

processing conditions are favorable. Comparing these results with results published previously 

on HTL at 300°C for one hour, the concentrations are twice as high in the mild microwave 

processing (Biller et al., 2012). The trend of increasing PO4
3- concentrations in the process water 

is not observed for the marine strain Nannochloropsis where the concentrations increase by 

around 30 % at higher temperatures. The values of around 1000 mg/L PO4
3- for Nannochloropsis 

allow the calculation of a phosphorus (P) balance from the values measured in Table 1 and 

indicate that up to 50% of the algal P is recovered to the water phase. This value is between 30-

40 % for C. fritschii but only around 15-20 % for P. ellipsoidea. Nannochloropsis is the only 

strain to exhibit acetate in the water phase, this is the reason the carbon recovery in the solid 

residue after microwaving is so much lower compared to the other samples. The reason for 

acetate formation from Nannochloropsis, but not from the other two strains, is not clear but 

could be due to different type of carbohydrates present in the algae strain. The levels of acetate 

are comparable to those observed from HTL of different algae strains by Biller et al. (2012) at 

more severe conditions of 300°C (Biller et al., 2012). Acetate in the water phase can act as a 

substrate for heterotrophic microalgal growth as previously demonstrated (Bhatnagar et al., 2011; 

Biller et al., 2012).  
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3.2 Lipid Extraction and Analysis 

 

Microwave processing has previously been suggested as a technique to facilitate lipid extraction 

using solvents. Cell disruption by microwaves as seen by SEM analysis (See supplementary 

electronic material) can lead to much higher recovery of lipids from microalgae than 

conventional solvent extraction alone.  A study by Lee et al. (2010) identified microwave cell 

disruption as the most simple and efficient disruption method for the recovery of lipids form 

Botryoccocus sp., Chlorella v., and Scenedesmus sp.. They investigated autoclaving, bead 

milling, microwave heating (100°C), sonification and osmotic shock (Lee et al., 2010). In the 

current study simple solvent extraction using dichloromethane was carried out on unprocessed 

and microwaved samples. The yields of extraction are presented in Table 4. For all strains, 

microwave processing had a large effect on the recovery of lipids. C. fritschii has a very low 

lipid content and yields of only 0.5 %wt. were observed when the unprocessed sample was 

subjected to solvent extraction. The recovery increased to 1.4 % after microwave processing at 

the highest temperature of 140°C. Higher temperatures led to consistently increasing lipid 

extraction yields for C. fritschii. Untreated Nannochloropsis biomass yielded a 1.6% lipid 

recovery; this was increased to a maximum of 11.3 % at 120°C. The high lipid strain P. 

ellipsoidea had the highest yield of lipids of 13.1% when extracted un-treated but increases to 

about 30-35 % following pre-treatment by microwave processing. Extraction yields increase 

slightly when processed in NaCl compared to processing in distilled water alone. The differences 

between the two are small suggesting that the addition of sodium chloride does not have any 

significant effect on lipid extraction. The increase in lipid recovery is apparent for all three 

strains with 3-7 fold increases even at the lowest temperature of 80°C. These results confirm the 
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findings of Lee et al. (2010) who describe microwaving as a low energy intensive method of cell 

disruption for lipid recovery (Lee et al., 2010).  

Table 4: Lipid extraction yields from solvent extraction using DCM of pre-treated microalgae 

HMP 
Temperature  

C. fritschii 
wt% lipid 

Nannochloropsis 
wt% lipid 

P. ellipsoidea 
wt% lipid 

P. ellipsoidea 0.1M NaCl 
wt% lipid 

unprocessed 0.5 1.6 13.1 13.1 

80°C 0.7 10.6 30.6 31.5 

100°C 1 10.5 33.2 33.2 

120°C 1.2 11.3 31.4 34.4 

140°C 1.4 10 37.5 35.3 
 

 

Size exclusion chromatography (SEC) was carried out on the samples to investigate if 

microwave processing has any effect on the structures of the lipid fractions. A representative 

SEC chromatogram of the unprocessed and HMP lipids of P. ellipsoidea is plotted in Fig. 1. It is 

shown that the majority of lipids are present as triglycerides which represent the largest peak at 

6.9 min. This peak was identified to be in the range of Mw 1200, the second peak at 7.8 min is of 

Mw 420 and represents the free fatty acid fraction of the lipids. There are no changes in lipid 

profiles observed for the different HMP temperatures. This indicates that no significant 

hydrolysis of triglycerides to free fatty acids is taking place under HMP.  



19 

 

 

Figure 1: HPLC-SEC chromatogram of P.ellipsoidea indicating the triglyceride and free fatty acid 
fractions 

 

Additionally the lipids were analyzed for fatty acid composition after transesterification. Fig. 2 

plots the distribution of the fatty acids which were included in the calibration standard. It is 

known that this algae additionally contains significant amounts of C16:2 and C16:3 which were 

not included in the analysis (Satoh et al., 2010). The profiles show no change in carbon chain 

saturation at 80°C HMP. At 100°C around half the C18:3 fatty acids disappear with the 

remaining fatty acids being present in identical concentrations. At the highest temperature about 

half the C18:1 fatty acids are also removed and slight increased levels of C18:0 and C18:2 are 

observed. It is likely that double bonds are removed at the maximum temperature leading to an 

increase of saturated fatty acids. This leads to the conclusion that polyunsaturated fatty acids can 

be extracted undamaged with no loss of degree of saturation using HMP at 80°C despite the high 

sensitivity of omega-3 fatty acids to thermal processing. This is beneficial if the lipids are 
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extracted as polyunsaturated fatty acids, as these fatty acids are of high commercial value. 

Additionally it was shown in Table 4 that the extraction efficiency is already greatly improved at 

the 80°C HMP temperature.  

 

Figure 2: Distribution of fatty acid methyl esters from unprocessed and HMP samples of P. ellipsoidea at 
80°C, 100°C and 140°C.  

 

The power required to heat the reactants to the desired temperature and residence time were 

logged by the microwave reactor and automatically integrated to Wh values to determine the 

energy used. The Wh were converted to Mj/kg of dry algae to allow comparison to data 

published in literature and is plotted in Fig. 3. It is apparent that more energy is used at the 

higher temperatures and the trend lines plotted show that the increase is linear. The increase in 

energy requirement from 80°C to 140°C is around 230-330 % depending on the sample. The low 

ash and low halide salt containing sample P. ellipsoidea exhibits the largest increase in energy 

consumption. This sample also has the largest energy requirement at 100, 120 and 140°C of all 
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samples, indicated by the solid trend line in Fig. 3. The second largest amount of energy is 

required to heat the C. fritschii sample followed by Nannochloropsis and the lowest being P. 

ellipsoidea processed in 0.1M NaCl. This trend follows the amount of microwave absorbing 

inorganics, such as halide salts, present in the sample. The energy requirement to heat P. 

ellipsoidea in pure water to 140°C is 66 % higher than for the sample processed in 0.1M NaCl. 

This shows that microwave processing of marine algae samples or macroalgae which are also 

high in ash content is beneficial for two reasons; firstly this technique removes large amounts of 

the inorganic ash fraction, upgrading the biomass feedstock for further processing. Secondly this 

approach of heating biomass in salt water takes advantage of the increase in heating by ionic 

conductance resulting in lower energy requirements to heat the reactants to the desired 

processing temperature. The values in Fig. 3 range from 70-270 MJ/kg algae while the original 

feedstock only contains a maximum of 29 MJ/kg. Clearly it appears to be energetically 

unfeasible to process microalgae using HMP regarding these values. However it has to be 

considered that this is a laboratory study with the main objective of investigating the effects of 

HMP rather than energy usage. The energy requirement can be reduced significantly be various 

parameters such as solids loading, residence time and total reactant mass in the microwave. 

Continuous processing in the reactor also deserves investigation as this can greatly decrease the 

applied power. Nevertheless the current study compares favorably to other pretreatment methods 

such as sonication (132 MJ/kg algae), high-pressure homogenization (529 MJ/kg), bead milling 

(504 MJ/kg) and other microwave processing studies (140-420 MJ/kg) (Lee et al., 2012).  
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Figure 3: Specific energy requirement to heat samples to desired temperature at constant heating rate and 
residence time.  

 

 

3.3 Hydrothermal processing of pre-treated algae 

Hydrothermal microwave processing was evaluated as a pre-treatment technique for the 

production of a bio-crude by hydrothermal liquefaction. Similar work was carried out previously 

by Miao et al. where conventional heating was used to hydrothermal pre-treat Chlorella before 

liquefaction for bio-crude production. Their investigation showed positive results as valuable 

polysaccharides were extracted in the first step, reducing the overall energy requirements and 

producing a lower amount of unwanted solid residue in the process (Miao et al., 2012). In the 

current work the microwave processing residues were subjected to HTL at 300°C for 15 min and 

compared to unprocessed samples. The results presented in Table 5 show that the yields of bio-

crude did not increase significantly for Nannochloropsis and C. fritschii. It should be noted that 
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the yields were calculated on a dry ash free basis, therefore the yields of Nannochloropsis on a 

as-received basis would be much higher for the pre-treated samples than for the untreated sample 

as this exhibits an ash content of 25% compared to ~5% for the microwaved samples (see Table 

2). One of the aims of pre-treating the algae was to reduce the amount of nitrogen in the final 

bio-crude product which does not occur to any significant extent for C. fritschii or 

Nannochloropsis. The samples of C. fritschii at 140°C did show a decrease of nitrogen content of 

almost 1 % however the oxygen content increased leading to a lower HHV. Apart from the 

higher yields of bio-crude on an as-received basis for Nannochloropsis, microwave pre-treatment 

of Nannochloropsis and C. fritschii  prior to HTL does not appear to be particularly beneficial. 

However the results for P. ellipsoidea are more positive; the amount of nitrogen in the bio-crude 

decreases consistently with increasing pre-treatment temperature. This can be expected from the 

mass balance presented in Table 2, as more nitrogen is fractionated into the water phase. The 

nitrogen content is reduced from 1.7 % to 0.6% at 140°C pre-treatment temperature. Additionally 

the yields of bio-crude increase from 33.4 % to a maximum of 49.5%, this is most likely due to 

some initial hydrolysis reactions of the algae compounds which are more easily converted to bio-

crude during HTL. The HHV was increased by almost 10 MJ/kg as a result of the decreasing 

amounts of oxygen in the bio-crude. This was reduced from 20% to 10.5%. These results show 

that the bio-crude quality is increased significantly when the P. ellipsoidea samples are pre-

treated by microwave irradiation with minimum energy requirements.  

 

4. Conclusions 

Hydrothermal microwave processing (HMP) has been demonstrated to be a low energy intensive 

processing method for microalgae. It is especially suited for high ash, marine strains as the 
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inorganic salts act as microwave absorbers. Microwave pre-treatment was shown to increase 

lipid recovery by 3-7 fold and produce a bio-crude of increased quality following hydrothermal 

liquefaction. Even at mild processing conditions, large amounts of the nutrients such as P and N 

are recovered in the water phase reducing the levels in the residue. Due to the mild processing 

conditions, the extracts such as polysaccharides and fatty acids are undamaged allowing the 

simultaneous extraction of bio-products and nutrients leaving a residue which following further 

processing results in a biofuel of increased quality. 

Table 5: Bio-crude yields, elemental composition and HHV from the hydrothermal liquefaction of pre-
treated algae.  

 

 Bio-crude 
yield Ultimate analysis (%) HHV  

Sample 
HMP 
Temp (% daf) C H N S O (MJ/kg) 

Nannochloropsis  raw 25.7 72.3 10.6 4.5 0.0 12.6 40.8 

 
80°C 24.6 73.1 10.2 4.9 0.0 11.9 40.4 

 
100°C 29.4 67.6 10.2 4.7 0.0 17.5 39.1 

 
120°C 22.5 70.2 9.1 4.9 0.0 15.8 38.2 

 
140°C 26.5 73.2 10.8 5.1 0.0 10.9 41.3 

C. fritschii  raw 20.5 69.1 8.9 5.5 0.0 16.5 37.7 

 
80°C 18.8 68.8 9.1 6.9 0.0 15.2 37.7 

 
100°C 18.0 67.3 8.8 6.0 0.0 17.9 37.0 

 
120°C 19.7 65.5 9.1 6.4 0.0 19.0 37.0 

 
140°C 23.9 63.6 8.1 4.7 0.0 23.6 35.3 

P. ellipsoidea  raw 33.4 72.3 6.1 1.7 0.0 19.9 35.0 

 
80°C 43.0 74.0 11.6 0.8 0.0 13.6 42.9 

 
100°C 47.4 74.7 11.6 0.9 0.0 12.8 43.1 

 
120°C 49.5 77.1 11.0 0.8 0.0 11.1 42.9 

 
140°C 44.1 76.7 12.2 0.6 0.0 10.5 44.4 
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