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Abstract

We present a coupling of the reduced basis methods and free-form deformations for shape optimization

and design of systems modelled by elliptic PDEs. The free-form deformations give a parameterization of

the shape that is independent of the mesh, the initial geometry, and the underlying PDE model. The

resulting parametric PDEs are solved by reduced basis methods. An important role in our implementation

is played by the recently proposed empirical interpolation method, which allows approximating the non-

affinely parameterized deformations with affinely parameterized ones. These ingredients together give rise

to an efficient online computational procedure for a repeated evaluation design environment like the one for

shape optimization. The proposed approach is demonstrated on an airfoil inverse design problem.

Key words: reduced basis methods, free-form deformations, empirical interpolation, engineering design,

shape optimization

1. Introduction and motivation

The solution of partial differential equations in domains of arbitrary shape has become an important part

of the computational science and engineering disciplines. A typical application is the simulation and design

of structures, such as airfoils, in computational fluid dynamics. The finite element method [7, 54] is ideal

for solving elliptic and parabolic PDEs on domains of very general shape. However, when the objective is to

solve the same problem repeatedly on different domains, the cost of setting up the problem (meshing, matrix

assembly) every time from scratch is too high. This requires more efficient procedures to be developed.

One of our primary interests for solving partial differential equations in domains of varying shapes is to

perform shape optimization in the computational fluid dynamics setting. To that end we have to first set up

the framework of parametric shapes. Assume that we have a bounded reference domain, which is given to

us in the form of a triangular mesh and its nodal points. We consider small perturbations of this reference

∗Corresponding author
Email addresses: toni.lassila@epfl.ch (Toni Lassila), gianluigi.rozza@epfl.ch (Gianluigi Rozza)

Preprint submitted to Elsevier January 8, 2010



domain. The description of the perturbations of a domain can fall roughly in two categories: variational

[15, 17, 48] or parametric [2, 23, 34]. In this work we consider only parametric deformations, i.e. the

perturbed domain is a function of a finite number of real parameters. The role of the parameters is to allow

the efficient study of several and different configurations and settings for the problem considered (different

shapes for many different target functions and state solutions). Once the shape has been parameterized with

a small number of parameters, our aim is to perform shape optimization w.r.t the parameters by solving a

partial differential state equation on the parametric domain that models some relevant physical phenomena.

One of the goals of this paper is to propose a combined methodology to reduce the geometrical complexity

(i.e. to reduce the number of geometrical parameters needed for shape optimization) as well as to reduce

the dimension of the resulting discretized problem in terms of linear system dimension. The requirements

set for the domain parameterization are that it should be expressive and versatile enough to describe a wide

variety of shapes of interest while at the same time being computationally effective and efficient enough for

real-time solution of the parametric PDEs.

For a review of shape parameterization techniques in engineering design we refer the reader to [23, 43].

Two different but typical approaches for parametric domains are:

• Basis shapes are a well-chosen set of shapes that have relevance to the underlying model – a pa-

rameterization can be obtained by blending smoothly between the basis shapes. For problems, such

as aerodynamic design, where the qualities of the desired target shapes are limited to a small subset

of shapes, this has been a common choice. These parameterizations are usually low-dimensional, and

consequently the methods will only explore a limited variety of shapes [43, 49].

• Splines can be used to describe smooth boundaries of shapes with arbitrary accuracy [8, 30]. The

approximation properties of splines are well understood and there are several families of splines to

choose from. To obtain a parametric shape we can take the location of the control points and their

weights as the parameters. The drawback to this approach is that the number of parameters used

to describe the shapes is a priori high-dimensional [4, 43] and often outside the practical realm of

nonlinear programming techniques such as Sequential Quadratic Programming (SQP) and various

quasi-Newton methods [6]. For this reason many people have turned to pseudo-optimization methods

such as evolutionary algorithms to solve problems of optimal engineering design [4, 12, 32].

Neither the shape bases nor the boundary splines are absolutely the best choice to fulfill our requirements

set for shape parameterization. The shape bases require expert knowledge of the problem in constructing

the basis shapes that might not be available a priori. On the other hand, the high number of degrees of

freedom in a boundary spline based parameterization makes model reduction schemes for efficient solution

of the PDEs not viable. Earlier works on reduced models in shape optimization have been presented in [50]
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FFD versatile parameterization of geometry
↓

EIM offline-online computational decomposition
↓

RB efficient reduced order solution for the PDE
↓

OPT shape optimization algorithm

Figure 1: The building blocks of our shape design approach

for the structural shape optimization and in [21] for shape optimization of airfoils by Proper Orthogonal

Decomposition (POD).

Our proposed approach to parametric shape design is as follows. First we define the mathematical setting

of the parametric PDE problem. A suitably low-dimensional parameterization of the reference domain is

obtained by considering free-form deformations (FFD) [20, 47] that are independent from the description

of the reference domain and meshes. FFDs are a powerful tool for representing smooth global deformations

of the reference domain and allowing the reduction of a great number of shape parameters. They allow the

construction of a mesh-independent parameterization, since for a given geometry and computational mesh

we can construct a parameterization of arbitary flexibility without the need for remeshing. These defor-

mations lead to non-affinely parameterized transformations of the computational domain. The non-affinely

parameterized transformations are then approximated by affinely parameterized transformations obtained

with the recently developed empirical interpolation method (EIM) [5, 13, 22, 25, 26, 40]. This permits an

offline-online computational procedure for the parametric PDE using reduced basis approximations (RB),

which were originally considered in [3, 11, 27, 31], and which have since been treated in more analytical

detail for example in [29, 33, 41]. As the shape optimization problem can be recast into an optimal control

framework, we recall previous works where these kind of problems have been solved by reduced basis meth-

ods, see e.g. [14, 36, 37]. A diagram of our computational “tools” properly linked is displayed in Fig. 1. The

result is an efficient method for shape design, where the parametric deformation of shapes is independent

from the reference geometry, the PDE model, or the chosen mesh. We will demonstrate the efficiency of

the chosen approach with an inverse design problem in the NACA family of airfoil shapes [1]. Recent

works suggest that free-form deformations are a promising approach to airfoil design [32, 44, 45]. In [4] a

thorough investigation into boundary B-spline vs. FFD based parameterizations in airfoil design was made,

and it was observed that with a comparative number of optimization variables the FFD parameterizations

obtained better results. The reduced basis method could however be coupled with other parameterization

methods such as boundary splines [12], radial basis functions [24] etc.

Our approach to shape optimization is related to the surrogate model optimization [38] approach. In
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surrogate model optimization an expensive model is replaced with a cheaper reduced model (in this case

the reduced basis approximation), which is then used for evaluations of cost function in the optimization

iteration. The surrogate models proposed in literature are often based on approximation techniques such as

local polynomial fitting, radial basis functions [12, 32], or neural network techniques. The common factor

with all of these is that the state equations still need to be solved using the expensive finite element method

for many different parameter values, typically to the order of 103 times, during the course of the optimization

iteration. In contrast, in the reduced basis technique the finite element “truth approximations” are not used

once during the optimization process, owing to the all the “preparation” that has already been done offline

in a precomputation stage. The flexibility of changing the cost functional and the constraints to better suit

the design criteria is therefore greater.

We argue that free-form deformations and the reduced basis framework together can be considered a

combination of basis shapes and spline representations. Free-form deformations have the good expressiveness

of splines, while the reduced basis methodology permits efficient computations by reducing the solution of

the PDE to small number of snapshot configurations, which can be thought of as our set of basis shapes.

By allowing the user to choose the density of the control point grid and the degrees of freedom to be used

we keep the dimension of the parameterization low for practical optimization methods. The reduced basis

framework has to be applicable to the flow model equation in the sense that reliable and sharp a posteriori

error estimates are available for the reduced basis solutions. A posteriori estimates for potential flows

are fairly straightforward [39] using the existing theory for coercive problems, and work on reduced basis

methods for the Stokes [40, 42] and Navier-Stokes [9, 35, 52] equations has been carried out and their use

with a coupled FFD technique is possible and an object of future study.

An alternative approach to parameterizing the domain perturbations is to build piecewise affine geometry

transformations based on domain subdivisions. A detailed description of this technique was given in [41].

The piecewise affine geometry parameterization however suffers from two drawbacks:

• The smoothness of the shape is not necessarily preserved. This is sometimes important, especially in

applications such as aerodynamic design.

• Discontinuities in the transformation tensor mean that the mesh has to conform to the domain subdi-

vision, otherwise we need to perform partial remeshing or at the very least do local refinements near

the boundaries of the subdivisions.

For problems with simple domains and pure sizing optimization the affine parameterizations are workable.

For more complex problems, including shape optimization and inverse design, the geometry and the mesh

take a lot of expert time to construct. If possible we want to avoid remeshing or readjusting the mesh. In

these cases it is beneficial to have a procedure which allows us to parameterize the geometry independently

4



from the PDE model or its discrete formulation. In this framework we propose an approach based on three

coupled tools: free-form deformations, the empirical interpolation method, and reduced basis methods.

2. Elliptic PDE problem with parametric domain

Let Ω0 ⊂ R
d be a fixed reference domain, and T : Ω0 × D → R

d an invertible and continuously

differentiable parametric map, where D ⊂ R
P is the admissible parameter range. For any given µ ∈ D we

want to solve the elliptic partial differential equation

ã(ũe, v) = f̃(v) for all v ∈ Xe(Ω) (1)

in some Hilbert space Xe(Ω) defined on the domain Ω(µ) with prescribed boundary conditions. Here ã(·, ·)

is a coercive continuous symmetric bilinear form, and f̃ a bounded linear form. By ũe(µ) ∈ Xe we denote

the exact solution. Without loss of generality we can always transform equation (1) back onto the reference

domain and consider instead the parametric partial differential equation

a(ue(µ), v;µ) = f(v;µ) for all v ∈ Xe(Ω0), (2)

where a(·, ·;µ) is also a coercive continuous symmetric parametric bilinear form and f(·;µ) a bounded linear

functional for all µ ∈ D.

By using finite element discretization with Galerkin projection we arrive at a corresponding finite-

dimensional equation

a(uN (µ), v;µ) = f(v;µ) for all v ∈ XN ⊂ Xe(Ω0), (3)

where the dimension N of the finite element space XN can be chosen large enough so that the difference

between the exact solution ue(µ) and the finite element solution uN (µ) is negligible. We call uN (µ) a “truth

approximation” to be obtained, and forget about the exact solution as it is typically unobtainable. We next

discuss reduced basis methods for obtaining reliable approximate solutions to (3).

3. Reduced basis methods for parametric elliptic PDEs

The reduced basis method is an efficient way to compute approximations to the finite element “truth

approximation” uN (µ) by considering only a small subspace of XN spanned by well-chosen solutions of

equation (3). If the dependence of the bilinear form a(·, ·;µ) on the parameter µ is smooth the parametric

manifold of solutions in X is smooth. Let us take a relatively small collection of parameter values µ1, . . . ,µN

and the corresponding FE solutions uN (µ1), . . . , uN (µN ) (called snapshot solutions). From these snapshot

solutions we can construct with Gram-Schmidt orthonormalization (using a suitable inner product, see [29]

Ch. 3.2.1) a basis {ζn}
N
n=1 spanning an N -dimensional subspace XN

N ⊂ XN , where typically N ≪ N . Using

Galerkin projection onto this subspace we obtain the reduced basis formulation to find uN
N (µ) ∈ XN

N s.t.

a(uN
N (µ), v;µ) = f(v;µ) for all v ∈ XN

N (4)
5



and this reduced basis solution can be written in the basis spanned by the reduced basis functions as

uN
N (µ) =

N∑

n=1

unζn

with coefficients un, n = 1, . . . , N . The choice of the snapshot solutions plays a vital role in the accuracy

of the reduced basis approximation. A parameter-independent inner product and norm can be obtained by

choosing a fixed µ̄ ∈ D and defining as

(u, v)X := a(u, v; µ̄) for all u, v ∈ Xe,

||u||X :=
√

(u, u)X for all u ∈ Xe.

The following greedy algorithm for choosing the basis functions ζn has been proposed [53]. Let Ξtrain ⊂ D

be a finite training sample of parameter points chosen according to uniform or log-uniform distribution

containing a sufficiently varied set of training points. Given the first snapshot parameter value µ1 and a

sharp, rigorous, and inexpensive a posteriori error bound ∆n(µ) for the norm || · ||X such that

||uN (µ) − uN
n (µ)||X ≤ ∆n(µ) for all µ ∈ D,

we choose the remaining snapshot parameter values as the solutions

µn = arg max
µ∈Ξtrain

∆n−1(µ), for n = 2, . . . , N.

The quality of the reduced basis approximation depends crucially on the quality of the a posteriori error

estimator. We introduce the residual as

rn(v;µ) := f(v;µ) − a(uN
n (µ), v;µ) ∈ X ′

and use the residual-based estimator

∆n(µ) :=
||rn(·;µ)||X′

αLB(µ)
,

where || · ||X′ is the dual norm of the residual and is defined as [41]

||rn(·;µ)||X′ := sup
v∈XN

rn(v;µ)

||v||X
,

and αLB(µ) is a computable lower bound for the coercivity constant α0(µ) [19], i.e.

αLB(µ)||u||2X ≤ α0(µ)||u||2X ≤ a(u, u;µ) for all u ∈ XN .

For efficient and reliable methods of computing both the dual norm of the residual and a lower bound for

the coercivity we refer the reader to [29, 41]. In the greedy basis construction algorithm we usually fix a

priori an error tolerance εRB
tol and then continue the process until the stopping tolerance is achieved

∆N (µ) ≤ εRB
tol for all µ ∈ Ξtrain.
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Once the system (4) has been assembled and solved we want to estimate the error of the solution for a

chosen µ ∈ D. Because of the difficulty of giving a priori error estimates for reduced basis methods for

many problems, we decide to provide a reliable way to compute a posteriori error estimates instead. For

this reason we use the same residual-based estimators. See [41] for details.

We define another concept that is important for the computational efficiency of the reduced basis ap-

proximation; we say that the bilinear form a(·, ·;µ) and the form f(·;µ) are affinely parameterized if they

are of the form

a(w, v;µ) =

Ma∑

m=1

Θm
a (µ)am(w, v)

f(v;µ) =

Mf∑

m=1

Θm
f (µ)fm(v)

(5)

for suitable integers Ma and Mf , and functions Θm
a ,Θm

f : D → R. This assumption allows us to separate

the computation of solutions for (4) into online and offline stages. By substituting the discrete form of (5)

into (4) we obtain
Ma∑

m=1

Θm
a (µ)am(uN

N (µ), v) =

Mf∑

m=1

Θm
f (µ)fm(v) (6)

for all v ∈ XN
N , and as uN

N (µ) =
∑N

n=1 un(µ)ζn for a unique set of coefficients un(µ), this equation becomes

N∑

n=1

un

Ma∑

m=1

Θm
a (µ)am(ζn, ζn′) =

Mf∑

m=1

Θm
f (µ)fm(ζn′) (7)

for all n′ = 1, . . . , N . We see now that the computational effort is split into two parts: a µ-independent offline

stage and an online stage for any chosen µ ∈ D. The basis functions ζn, the matrix forms of am(ζn, ζn′)

(which we denote from now on as Am), and the vectors fm(ζn) are computed in the offline stage and stored.

The small N × N linear system (7) can then be assembled and solved efficiently during the online stage.

Until now we have not discussed the parameterization of the domains, but we have assumed it to be given.

Next we detail one possible way of obtaining a shape parameterization by using free-form deformations that

turns out to have some good properties in shape optimization and engineering design.

4. Free-form deformations for automatic parametric geometries

We consider a free-form deformation (FFD) method [47] based on tensor products of splines. A simple

version of the FFD is defined as follows. For simplicity we cover only the two-dimensional case, extensions

to three dimensions are straightforward. Let D0 ⊃ Ω0 be a rectangle that contains the reference domain,

and Ψ : (x1, x2) 7→ (x′
1, x

′
2) an affine map from D0 to the unit square, Ψ(D0) = (0, 1)×(0, 1). The FFD shall

be defined in the reference coordinates (x′
1, x

′
2) of the unit square. Select a regular grid of control points
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P 0
ℓ,k ∈ (0, 1) × (0, 1) (the unperturbed configuration) where ℓ = 0, . . . , L and k = 0, . . . ,K so that

P 0
ℓ,k =


 ℓ/L

k/K


 .

A perturbation of the control points is given by a set of (L + 1)(K + 1) parameter vectors µℓ,k where the

perturbed positions of the control points are

P ℓ,k(µℓ,k) = P 0
ℓ,k + µℓ,k.

It is possible that not all the control points are allowed to move freely - typically we fix several

rows/columns of control points to obtain desired levels of continuity and to fix certain parts of the do-

main. It is also possible to allow some control points to move in the x′
1- or x′

2-direction, but not both. We

refer to the effectively free scalar-valued parameters using the same variables but different indexing

µ1, . . . , µp, p = 1, . . . , P

and call P the number of degrees of freedom. From now on we assume that the parameterization involves

only those µ corresponding to actual degrees of freedom omitting the parameters that are fixed.

From now on we denote by x the coordinates on the reference domain Ω0 and by x̃ the coordinates on

the parametric domain Ω(µ). We construct a parametric domain map T̃ : D0 → R
2 as

T̃ (x;µ) = Ψ−1

(
L∑

ℓ=0

K∑

k=0

bL,K
ℓ,k (Ψ(x))P ℓ,k(µℓ,k)

)
= x̃(µ), (8)

where

bL,K
ℓ,k (x′

1, x
′
2) =

(
L

ℓ

)(
K

k

)
(1 − x′

1)
(L−ℓ)(x′

1)
ℓ(1 − x′

2)
(K−k)(x′

2)
k

are tensor products of the 1-d Bernstein basis polynomials

bL
ℓ (x′

1) =

(
L

ℓ

)
(1 − x′

1)
(L−ℓ)(x′

1)
ℓ,

bK
k (x′

2) =

(
K

k

)
(1 − x′

2)
(K−k)(x′

2)
k

defined on the unit square with local variables (x′
1, x

′
2) ∈ (0, 1)× (0, 1). A diagram of of the process is shown

in Fig. 2.

Bernstein basis polynomials are used because they have the properties of partition of unity

L∑

ℓ=1

bL
ℓ (x′

1) ≡
K∑

k=1

bK
k (x′

2) ≡ 1 (9)

and positivity

bL,K
ℓ,k (x′

1, x
′
2) ≥ 0 for all x′

1, x
′
2
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Ω0

P ℓ,k(µ)

Ω(µ)

D

eT (x; µ)

Ψ Ψ−1

(0, 1)× (0, 1)

P 0

ℓ,k

Figure 2: Schematic diagram of the control points P ℓ,k, the free-form deformation map eT (x; µ), and the resulting deformation
when applied to the reference domain Ω0.

in (0, 1) × (0, 1). Also, they can be evaluated in a numerically stable fashion by the de Casteljau algorithm

[10]. Extensions of free-form deformations to Non-Uniform and Rational B-Spline (NURBS) basis functions

are available [4, 20, 44, 45, 46]. These permit the exact representation of shapes that are conic sections,

for example. The simple polynomial basis functions have derivatives that are expressible in terms of tensor

products of lower order Bernstein polynomials using the well known derivative formula [10]:

∇bL,K
ℓ,k (x′

1, x
′
2) =




L [bL−1
ℓ−1 (x′

1) − bL−1
ℓ (x′

1)] bK
k (x′

2)

K [bK−1
k−1 (x′

2) − bK−1
k (x′

2)] bL
ℓ (x′

1)




T

. (10)

Denote by JF the Jacobian matrix of any function F : R
2 → R

2. We compute the Jacobian of the map T̃

by using the gradient formula (10) and the partition of unity property (9) and obtain

J eT
(x;µ) = J−1

Ψ

[
I +

L∑

ℓ=0

K∑

k=0

∇bL,K
ℓ,k (Ψ(x))µℓ,k

]
JΨ. (11)

Thus not only the map T̃ but also its Jacobian J eT
can be stably evaluated. Finally, the parameterized

domain Ω(µ) is obtained using the restriction T = T̃ |Ω0
as Ω(µ) = T (Ω0).

Once the parametric map T has been obtained we can use its inverse to transform the problem back to

the reference domain. For example, when equation (3) is the Poisson equation with homogeneous Dirichlet

boundary conditions on a parametric domain we use the transformation map T and its Jacobian JT to

define the transformation tensor of the problem

νT (x;µ) = J−T
T J−1

T |det(JT )| (12)
9



and the problem is transformed to the reference domain as

∫

Ω0

νT (x;µ)∇uN · ∇v dΩ0 =

∫

Ω0

fv|det(JT )| dΩ0, (13)

for all v ∈ XN .

We have now a flexible parameterization method for small deformations of Ω0 that can be adjusted

by the user by choice of the control points and degrees of freedom. Compared to boundary splines, the

parameterization can be chosen to be relatively low-dimensional without sacrificing any of the accuracy in

describing the geometry because the map T is independent of the reference domain.

The tensor νT is not affinely parameterized in the sense of (5) (nor is |det(JT )| appearing in the RHS

in general), so further work is needed to obtain an efficient computational procedure. Assume that we have

for each component i, j = 1, 2 of the transformation tensor an expansion given by

[νT ]i,j =

fMi,j∑

m=1

Θm
i,j(µ)ξm

i,j(x) + εi,j(x;µ) (14)

and for the right-hand side an expansion given by

f(x)|det(JT (x;µ))| =

fMf∑

m=1

Θm
f (µ)ξm

f (x) + εf (x;µ) (15)

where the error terms are guaranteed to be under some tolerance,

||εi,j(·;µ)||∞ ≤ εEIM
tol for all µ ∈ D, (16)

||εf (·;µ)||∞ ≤ εEIM
tol for all µ ∈ D. (17)

We require all the Θm
i,j ’s, ξm

i,j ’s, Θm
f ’s, and ξm

f ’s to be efficiently computable scalar functions. We shall

discuss in Sect. 5 a way of approximating the non-affine transformations with affine ones using the empirical

interpolation procedure as proposed in [5, 22]. Substituting into (13) and dropping the error terms we

obtain for the Laplacian

∫

Ω0

[∂uN

∂x1
([νT ]1,1

∂v

∂x1
+ [νT ]1,2

∂v

∂x2
)

+
∂uN

∂x2
([νT ]2,1

∂v

∂x1
+ [νT ]2,2

∂v

∂x2
)
]

dΩ0

=
∑

m

∫

Ω0

{
∂uN

∂x1

[
Θm

1,1ξ
m
1,1

∂v

∂x1
+ Θm

1,2ξ
m
1,2

∂v

∂x2

]

+
∂uN

∂x2

[
Θm

2,1ξ
m
2,1

∂v

∂x2
+ Θm

2,2ξ
m
2,2

∂v

∂x2

]
} dΩ0

=

2∑

i=1

2∑

j=1

fMi,j∑

m=1

Θm
i,j(µ)am

i,j(u
N , v) =

fMf∑

m=1

Θm
f (µ)fm(v),

10



for all v ∈ XN , where the bilinear forms

am
i,j(w, v) =

∫

Ω0

ξm
i,j(x)

∂w

∂xi

∂v

∂xj

dΩ0

are continuous, as are the linear forms

fm(v) =

∫

Ω0

ξm
f (x)v dΩ0.

Now we have an efficient online-offline computational procedure for the matrix assembly. In the offline

stage the matrices A
m
i,j corresponding to the bilinear forms am

i,j are computed and stored. The complete

stiffness matrix can then be cheaply assembled in the online stage. For any given µ we evaluate the Θm
i,j

and Θm
f , and sum together the contributions from each A

m
i,j and respectively F

m. The same thing is done

for the vectors F
m representing the right-hand side. Note, however, that the dimension of the system is

still N ×N , and even with optimal multigrid solvers costs O(N ) to solve online. This is too expensive for

a repeated evaluation design environment. The solution is therefore approximated with the reduced basis

method and equation (7), so that the final form of the reduced basis problem with affine parameterization

can be written as
N∑

n=1

un

fMi,j∑

m=1

2∑

i=1

2∑

j=1

Θm
i,j(µ)am

i,j(ζn, ζn′) =

fMf∑

m=1

Θm
f (µ)fm(ζn′), (18)

for all n′ = 1, . . . , N . In practice N and the M̃i,j , M̃f can be chosen to be quite modest and the solution

of this system will still be close to the finite element solution. This is especially true if the number of

parameters P is small (say 10-20), as is the case when we use free-form deformations.

5. Empirical interpolation method for nonpolynomial affine approximations

For many linear PDEs modelling physical phenomena the parameters µ enter affinely into the bilinear

form. However, with shape design this is not usually the case unless we are dealing with a pure optimal

sizing problem. The possibility of finding good affine approximations of the form (14) for the coefficients of

generic parametric PDEs has been considered in [5, 13, 22, 25, 26]. Applications of the proposed empirical

interpolation method for reduced basis methods can be found in [16, 40, 51].

The empirical interpolation method has two stages. In the first stage a set of hierarchical interpolation

spaces is constructed. For each term i, j = 1, 2 of the transformation tensor [νT ]i,j ∈ C∞(Ω0 × D, R) we

choose an initial parameter value µ1
i,j and define the first shape function as ξ1

i,j(x) = [νT (x,µ1
i,j)]i,j , and

the interpolation space W 1
i,j = span{ξ1

i,j}. The hierarchical interpolation spaces W
fM
i,j , M̃ = 2, . . . , M̃i,j are

then built iteratively by solving the problem

µm
i,j = argmax

µ∈Ξtrain

inf
w∈W m−1

i,j

||[νT (·,µ)]i,j − w||L∞(Ω0) (19)
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to obtain the parameter values µm
i,j . Here Ξtrain ⊂ D is a finite training set of parameter values and

thus the problem (19) is a linear programming problem. The M̃i,j ’s are chosen so that the tolerance

criteria (16) is achieved for each component of the tensor νT . We then define the mth shape function

ξm
i,j(x) = [νT ]i,j(x,µm

i,j) and the M̃i,jth interpolation space W
fM
i,j = span{ξm

i,j , m = 1, . . . , M̃i,j}. By M̂ :=
∑2

i,j=1 M̃i,j + M̃f we denote the total number of terms in the expansion of the transformation tensor and

right-hand side.

The interpolation spaces W
fM
i,j having been constructed, we define a set of Lagrange interpolation points

also known as “magic points”. The first interpolation point is chosen as

z1
i,j = argsup

x∈Ω0

|ξ1
i,j(x)|

and the corresponding normed basis function as

ξ̂1
i,j(x) = ξ1

i,j(x)/ξ1
i,j(z

1
i,j).

For 2 ≤ M̃ ≤ M̃i,j we obtain the interpolation points iteratively by solving the interpolation problem at the

already obtained magic points

fM−1∑

m=1

σm
fM−1,i,j

ξ̂m
i,j(z

m′

i,j ) = [νT ]i,j(z
m′

i,j ,µ
fM
i,j) for 1 ≤ m′ ≤ M̃ − 1

for the coefficients σm
fM−1,i,j

, m = 1, . . . , M̃ − 1, and then looking at the residual function

r
fM
i,j(x) = ξ

fM
i,j(x) −

fM−1∑

m=1

σm
fM−1,i,j

ξ̂m
i,j(x).

The other interpolation points are obtained from

z
fM
i,j = argsup

x∈Ω0

|r
fM
i,j(x)|

and the corresponding normed basis functions

ξ̂
fM
i,j(x) = r

fM
i,j(x)/r

fM
i,j(z

fM
i,j).

Denote by Bi,j the interpolation matrices

[Bi,j ]m′,m = ξ̂m
i,j(z

m′

i,j ), 1 ≤ m, m′ ≤ M̃i,j

and by zi,j the vector of all the interpolation points. Finally, the non-affinely parameterized bilinear form

is replaced with an affinely parameterized approximation

a(u, v;µ) ≈
2∑

i=1

2∑

j=1

fMi,j∑

m=1

Θm
i,j(µ)am

i,j(u, v), (20)

12



where the matrix versions of

am
i,j(w, v) =

∫

Ω0

ξ̂m
i,j(x)

∂w

∂xi

∂v

∂xj

dΩ0 (21)

are computed once in the offline stage, and the coefficient functions Θm
i,j(µ) can be evaluated by solving

M̃i,j × M̃i,j , 1 ≤ i, j ≤ 2, linear systems of the form

Bi,jΘi,j(µ) = [νT (zi,j ;µ)]i,j

for each desired value of µ, where Θi,j(µ) is a vector of the values Θm
i,j(µ), m = 1, . . . , M̃i,j . The same

treatment can be performed to the right-hand side to obtain expansion (15), which we omit for brevity. The

efficient online-offline decomposition leading to equation (7) is then recovered.

We make some remarks about the empirical interpolation method:

• The interpolation points zm
i,j are chosen by a greedy procedure and are suboptimal, but in effect are

not far away from the optimal interpolations points (in cases where these can be computed); for a

demonstration see [22].

• The basis functions ξ̂m
i,j only need to be evaluated offline at the mesh points. Compared to the analytical

expressions for the [νT ]i,j ’s, which are complicated rational functions1 and expensive to evaluate even

with the recursive algorithm, they are also computationally more efficient.

• In our case the transformation tensor νT is constructed with Bernstein polynomials and the interpo-

lation basis functions ξ̂m
i,j are rational functions. If the greedy procedure for constructing the inter-

polation spaces uses a large enough training set Ξtrain, we can expect that approximation (20) is not

worse than those given by standard rational interpolation techniques.

6. Inverse airfoil design in the NACA family

We provide a possible application of the computational methods presented in the previous sections by

considering an inverse airfoil design problem in 2-d potential flow. Fig. 3 shows one reference domain Ω0

that surrounds a NACA0012 airfoil [1] with 5◦ angle of attack.

The potential flow equation around the airfoil follows from the (unphysical) assumption that the flow

field u is steady and irrotational, i.e. ∂tu = 0 and ∇× u = 0. Then there exists a scalar function ϕ such

that u = ∇ϕ. This is called the flow potential and is given as the solution of the Laplace equation

div(∇ϕ(x)) = 0, on Ω(µ). (22)

1For our test problem with eight parameters a function that computes the first component [νT ]1,1 using the analytical
expression is 20 pages long. While the code that evaluates the same function using the de Casteljau algorithm is much shorter,
it is not computationally more effective.
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Γ
in

Γ
out

Figure 3: Initial configuration of a NACA0012 airfoil and the surrounding mesh. The mesh has N = 8043 nodes.

An equation for the pressure is obtained using the assumptions of incompressibility and irrotationality as

∇p(x) = −∇ 1
2 |∇ϕ(x)|2

and finally

p(x) = p0 −
1
2 |∇ϕ(x)|2,

where p0 is a reference pressure. This is the Bernoulli equation [28]. We have the following boundary

conditions:
∂ϕ

∂n
= 1, on Γin

ϕ = 0, on Γout

∂ϕ

∂n
= 0, elsewhere.

The exterior flow velocity is imposed with Neumann conditions, while the Dirichlet condition fixes the

solution of the potential flow problem to be unique.

The inverse design problem of an airfoil involves prescribing some properties of the target airfoil, in our

case the pressure distribution on the airfoil surface, and then trying to generate an airfoil that has the desired

property. We performed two test cases. In Case A the initial guess was the NACA0012 airfoil and the target

airfoil was the NACA4412 airfoil, which is a slightly thicker, nonsymmetric, and has increased camber. In

Case B we took NACA4412 as the initial guess and NACA0012 as the target airfoil. This demonstrates

going from a symmetric initial airfoil to a nonsymmetric target airfoil, and vice versa. The proof-of-concept

solver was implemented in Matlab by using the symbolic toolbox for building the FFDs and constructing

the empirical interpolation basis functions. The FFD configuration used was a 6 × 4 grid of control points
14



Figure 4: The reference configuration, the control point lattice, and a perturbed configuration in Case A with a NACA0012
initial airfoil.

Table 1: Approximations details

Approximation property Value

Number of mesh nodes N 8043
Lattice of FFD control points P ℓ,k 6 × 4
Number of DOFs/design variables K 8
Error tolerance for the RB greedy εRB

tol 1e-4
Number of reduced basis functions N 52
Error tolerance for the EIM greedy εEIM

tol 2.5e-3

Total number of EIM basis functions M̂ 165
Parameter range for free µk’s [−0.5, 0.5]

on the domain of which the eight central ones were allowed to move in the x′
2-direction, giving a total of

8 degrees of freedom. In Fig. 4 we show the lattice of control points and an example of the deformation

obtained by moving the control points. In reality the mesh remains fixed at all times, thanks to the inverse

transformation T−1 that allows us to return the potential flow problem (22) to the reference domain Ω0.

Table 1 lists the relevant dimensions of the approximation spaces for the finite element, reduced basis, and

empirical interpolation approximations respectively for Case A. The results for the other case are similar

and details are omitted. The tolerances for the greedy algorithm and the empirical interpolation are chosen

such that the error on the interpolation is not dominating over the reduced basis convergence of the greedy

algorithm (see [40]).

In this way, the number of affine terms M̂ and the size of the reduced basis N are chosen so that the two

tolerances for the empirical interpolation εEIM
tol and reduced basis greedy algorithm εRB

tol are satisfied. We also

remark that, since the inhomogeneous boundary condition ∂ϕ
∂n

= 1 was chosen on an edge perpendicular to the

x1-direction, the FFD-parameterization does not enter into the boundary term given by integration by parts

and thus there was no need to perform the EIM on the right-hand side in this particular parameterization.

In the offline stage we perform all the procedures to prepare the parameter dependent calculations. All the

15



parameter independent quantities are computed and stored. In more detail, we:

1. Compute the symbolic expression for the transformation tensor νT given by (12);

2. Perform the empirical interpolation to obtain the expansion (20). The stopping tolerance for the greedy

procedure was εEIM
tol = 2.5e-3 and this was satisfied with a combined total of M̂ = 165 terms in the

expansion;

3. Perform a greedy procedure for choosing the reduced basis snapshots µn and compute the corresponding

basis solutions ζn. For this part we have utilized the rbMIT package [18] in order to implement the

reduced basis algorithms, i.e. for basis construction and offline-online computations, as well as the

affine decompositions. The error estimates for the potential are computed according to the methodology

proposed in [19, 39, 41] for coercive problems. The nonaffine parameterization and use of the EIM

together with these estimates leads to error bounds that are not necessarily rigorous. However, as long

as the tolerance for the EIM is chosen small enough that the empirical interpolation error does not

dominate over the reduced basis approximation error, a sufficient guarantee of approximation stability

is obtained in our experience. It is also possible to extend the error estimator for the nonaffine case by

including a correction term coming from the error of the EIM, see e.g. [25]. For potential flows, given

the error bounds on the potential solution, it is possible to get readily error bounds on the pressure

and/or velocity (see [39]) obtained by the Bernoulli equation. In both cases we chose by the greedy

procedure N = 52 basis functions, which was achieved with tolerance εRB
tol = 1e-4 for the noncorrected

error bound.

4. (a) Assemble the finite element matrices A
m
i,j ∈ R

N×N corresponding to the bilinear forms (21) and

the right-hand sides F
m ∈ R

N ;

(b) Pre- and post-multiply the matrices with the reduced basis representation to obtain the reduced

size system matrices Am
i,j ∈ R

N×N such that

Am
i,j = Z

T
A

m
i,jZ

and the reduced right-hand sides fm ∈ R
N such that

fm = Z
T
F

m,

where

Z =
[

ζ1 ζ2 . . . ζn

]

is a N × N matrix with the basis vectors ζn as columns.

The offline stage is dependent on the reference domain Ω0, the boundary conditions, and the FFD

setup. Therefore for both Case A and Case B we had to perform the offline stage separately. The FFD

and EIM steps are independent of the reference shape (in this case the initial shape of the airfoil), so
16



(a) NACA0012

(b) NACA4412

Figure 5: The dynamic pressure field around the airfoils for the FEM and RB solutions for N = 52 basis functions.

these had to be only performed once for both cases. In total the work that had to be done in each case

consisted of matrix assembly and greedy algorithms for snapshot selection, together with the Successive

Constraint Method for estimation of the lower bound of coercivity constant.

The online stage is driven by the the optimization algorithm that involves an order of 102 evaluations of the

cost function and the underlying state equations, and consists of using the stored matrices Am
i,j and vectors

fm to assemble and solve the system (7). For the flow potential computation of the snapshot solutions

with the FEM we used linear triangular elements and then performed patch averaging [55] to post-process

the solution and recover the solution gradients in order to compute the dynamic pressure. In Fig. 5(a) we

display the dynamic pressure fields for the reference airfoil (µ = 0) for both the FEM and RB solutions in

Case A, and in Fig. 5(b) for Case B. The error between the “truth approximation” FEM solution and its

RB approximation is ||ϕN −ϕN
N ||X = 1.12e-5 at this parameter value for Case A (relative error 5.56e-7) and

||ϕN − ϕN
N ||X = 8.9263e-6 for Case B (relative error 4.44e-7).

To enable the comparison of pressure distributions on the surfaces of two different airfoils, define γµ :

[0, 1] → Γairfoil(µ) to be a closed curve with counterclockwise parameterization such that γ′
µ ≡ constant

almost everywhere. The scaled pressure distribution on a parametric airfoil Ω(µ) is then defined as

p̃(r, µ) := p0 −
1
2 |∇ϕ(γµ(r),µ)|2 for r ∈ [0, 1]. (23)

The pressure field is recovered in the online step by first recovering the gradient of the reduced basis solution
17



of the flow potential and then using the Bernoulli equation. Using the scaled pressure we can write the L2-

defect functional for the pressure distribution

J(µ) =

∫ 1

0
|p̃(r, µ) − p̃target(r)|

2 dr
∫ 1

0
|p̃target(r)|2 dr

+ η [α(µ) − 5◦]
2
,

where p̃(r, µ) is the scaled pressure distribution on the perturbed airfoil surface, p̃target is the scaled pressure

distribution on the target airfoil surface given by the finite element method, and α(µ) is the desired angle

of attack of the parametric airfoil. The penalty term was added to ensure that the optimized airfoil has the

desired angle of attack. We used a fixed value of η = 102 for all tests. The penalty approach works well for

this problem, but is limited to local optimization where the optimal design is close to the initial design. We

also introduce the reduced defect functional

JN (µ) =

∫ 1

0
|p̃N (r, µ) − p̃target(r)|

2 dr
∫ 1

0
|p̃target(r)|2 dr

+ η [α(µ) − 5◦]
2
, (24)

where the reduced pressure p̃N is computed from (23) by replacing ϕ with ϕN
N the reduced basis approxima-

tion of the flow potential for the purpose of evaluating the cost functional (24) in a highly effective fashion.

The classical inverse design optimization problem in the parametric setting is then to find µ∗ the solution

of

min
µ∈D

J(µ), (25)

a highly nonlinear programming problem but with relatively few parameters. The reduced version of this

optimization problem uses instead the reduced functional and is to find µ∗
N the solution of

min
µ∈D

JN (µ), (26)

Both minimization problems were solved using Matlab’s nonlinear programming routines. For problem

(26) the minimization algorithm converged to an optimality tolerance of 1e-6 with 19 SQP iterations using

numerical Jacobians and a total of 192 reduced basis solutions in Case A, and with 20 SQP iterations and

199 reduced basis solutions in Case B. The final value of the reduced cost functional was JN (µ∗
N ) = 4.7e-3

in Case A (from an initial value JN (µ0
N ) = 0.53) and JN (µ∗

N ) = 1.3e-3 in Case B (from an initial value

JN (µ0
N ) = 0.76). When computing with the full cost functional we obtained the final cost J(µ∗

N ) = 5.28e-3

in Case A, and J(µ∗
N ) = 1.25e-3 in Case B. Thus it can be observed that for these test problems the reduced

optimization problem (26) was successfully solved and, while the obtained solutions are suboptimal, they

are reasonable also approximations for the solution of the full optimization problem (25). In Table 2 we

give the initial and final values of the reduced cost functional, and measure the suboptimality of the inverse

design by looking at the relative error
J(µ∗

N ) − J(µ∗)

J(µ∗)
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Table 2: Comparison of the reduced optimal solution µ∗

N
and the true optimal solution µ∗

Case A Case B

Initial value JN (µ0
N ) 5.32e-1 7.60e-1

Reduced optimum JN (µ∗
N ) 4.71e-3 1.30e-3

True cost at µ∗
N J(µ∗

N ) 5.28e-3 1.25e-3
True optimum J(µ∗) 4.63e-3 1.19e-3

Suboptimality
J(µ∗

N )−J(µ∗)
J(µ∗) 14.0% 5.0%

between the true optimal value and the value of J at the reduced optimum. As we can observe, the reduced

optimization solutions are suboptimal, but only by less than 15%.

The pressure distributions on the surface of the designed airfoil compared to the target are displayed in

Fig. 6(a) and Fig. 6(b). The dynamic pressure fields around the target airfoil and the final inverse design

obtained from the optimization procedure are shown in Fig. 7(a). Both solutions were visualized with the

FEM. Already with eight degrees of freedom the pressure field around the airfoil is qualitatively near the

true one, and the airfoil shape is close to the target airfoil chosen to test the method.

The error of the reduced basis solution for the inverse design was ||ϕN − ϕN
N ||X = 3.78e-4 in Case

A (relative error 2.03e-5) and ||ϕN − ϕN
N ||X = 6.44e-5 in Case B (relative error 3.35e-6). While the a

posteriori estimators used to control the greedy basis selection are not strictly rigorous for this nonaffinely

parameterized problem, the obtained approximations are below the specified error tolerance at least for

these parameter points.

A few words about the computational cost are in order. The offline stage of the reduced basis is expensive,

and took several hours of computation time to perform for this single problem. The online stage is much

more effective, taking only 0.06 s for each matrix assembly and solution of the system (18). We estimate this

to be about 300 times faster than assembling and solving the same equations with the FEM. This means

that solving the reduced inverse design problem (26), which typically requires an order of 102 function

evaluations during the nonlinear programming loop, takes only 50 s on a typical desktop computer. In

comparison, solving the inverse design problem (25) with the full FE solutions used to evaluate the pressure

takes about 1.5 hours on the same setup. The reduced optimization is roughly 100 times more efficient (and

not 300 times as expected) due to the fact that in addition to cost functional evaluations we also have to

perform post-processing to recover the pressure and the complexity of this depends on N . The offline stage

is also independent of the target pressure distribution chosen and even the cost functional used. We could

therefore opt to solve other CFD optimization problems, such as lift-drag optimization, without incurring

any additional costs in the offline stage.
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(a) Case A (target = NACA4412)
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(b) Case B (target = NACA0012)

Figure 6: Pressure distributions on the airfoil top and bottom surfaces on the target airfoil (solid line) and the inverse design
(dashed)

(a) Case A (target = NACA4412)

(b) Case B (target = NACA0012)

Figure 7: The dynamic pressure field around the target airfoil (NACA4412) and the inverse design. Both visualizations were
obtained using the FEM.
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7. Conclusions

We have presented a method for efficient shape design of PDE-modelled systems. We combined free-

form deformations to generate the parametric geometry and reduced basis methods to solve the resulting

parameterized PDEs in an inverse problem framework of shape optimization. To demonstrate the appli-

cability of the proposed approach we considered an inverse airfoil design problem in 2-d potential flow. It

was confirmed that using free-form deformations to generate the parametric domain deformations a small

number of design variables is sufficient to solve already quite challenging inverse airfoil design problems. The

reduced basis methods can then be used to obtain an efficient online procedure for shape optimization, where

several iterative evaluations of the state equations are needed and computational efficiency is appreciated.

The free-form deformations are independent of the mesh, geometry, and even the PDE model. Thus we

believe that in the future it will be possible to extend the proposed methods to more realistic and interesting

problems using different viscous flow models.
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