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Abstract

When artificial neural networks are used to model nonlinear dynamical systems,
the system structure which can be extremely useful for analysis and design, is
buried within the network architecture. In this paper explicit expressions for
the frequency response or generalised transfer functions of both feedforward and
recurrent neural networks are derived in terms of the network weights. The
derivation of the algorithm is established on the basis of the Taylor series
erxpansion of the activation functions used in a particular neural network. This
leads to a representation which is eguivalent to the nonlinear recursive
polynomial model and enables the derivation of the transfer functions to be based
on the harmonic expansion method. By mapping the neural network into the
frequency domain information about the structure of the underlying nonlinear
system can be recovered. Numerical examples are included to demonstrate the
application of the new algorithm. These examples show that the frequency response
functions appear to be highly sensitive to the network topology apnd training, and

that the time domain properties fail to reveal deficiencies in the trained
network structure.

Keywords

Generalised transfer function, generalised frequency response function, frequency
domain analysis, multilayered perceptron network, system identification,
nonlinear dynamical system modelling.
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Abstract

When artificial neural networks are used to model nonlinear dynamical systems, the system
structure which can be extremely useful for analvsis and design, is buried within the network
architecture. In this paper explicit expressions for the frequency response or generalised transfer
functions of both feedforward and recurrent neural networks are derived in terms of the network
weights. The derivation of the algorithm is established on the basis of the Taylor series expansion
of the activation functions used in a particular neural network. This leads to a representation which
is equivalent to the nonlinear recursive polynomial model and enables the derivation of the transfer
functions to be based on the harmonic expansion method. By mapping the neural network into the
frequency domain information about the structure of the underlying nonlinear system can be
recovered. Numerical examples are included to demonstrate the application of the new algorithm.
These examples show that the. frequency response functions appear to be highly sensitive to the
network topology and training, and that the time domain properties fail to reveal deficiencies in the
trained network structure.

Keywords

Generalised transfer function, generalised frequency response function, frequency domain analysis,
multilayered perceptron network, system identification, nonlinear dynamical system modelling.
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Introduction

Artificial neural networks (ANN’s) have been widely accepted as a powerful alternative tool for
modelling nonlinear dynamical systems and provide an alternative to existing nonlinear
identification techniques such as the Volterra series and NARMAX (nonkinear auto-regressive
moving average model with exogenous inputs) methodologies. Numerous authors have studied the
modelling and control of nonlinear dynamical systems using ANN’s [18][16]. However, several
authors [6] have pointed out that although ANN’s can give excellent predictions after proper
traming, one disadvantage of using ANN’s to model nonlinear systems is that they tend to destroy
the system structure which can be important for system design and control, In the extreme case, if
the underlying system happens to be linear, and an ANN is blindly used to model the system, the
fact that the system is linear will not be evident after the network has been trained. In this case the
system can be modelled using a simple pulse transfer function model and analysis and control can
be achieved using conventional linear systems theory. But this will not be apparent from the trained
ANN which is likely to be a nonlinear model fitted to represent a linear dynamic relationship.
Similar scenarios can also arise in nonlinear systems where typical nonlinearities such as square or
cubic law devices could be physically meaningful to the understanding of the systems but which
will not be evident in the trained ANN model. Although the concept of parsimonious models is
fundamentally important in the context of system modelling, unfortunately this issue has been
largely ignored in the majority of neural network applications. The potential recovery of structural
information buried within a trained network model has rarely been addressed.

The impulse response function is a standard model for characterising linear systems in classical
control theory. The advantage of using the impulse response is that this gives a concise quantitative
description of the system in the time domain which can easily be transformed into an equivalent
frequency domain transfer function description. Furthermore, both the impulse response and the
transfer function descriptions are independent of the input signal so that they provide a universally
valid mathematical description which can be used for system analysis and design.

When these ideas are extended to nonlinear system analysis, the usefulness of the impulse
response or transfer function description depends critically on the way the nonlinear system is
represented. One of the most commonly used representations in nonlinear modelling and
identification is the Volterra series [22] which expresses the system response in terms of
generalised impulse response functions or Volterra kernels. By using the Volterra series
representation the advantages of the linear impulse response concepts can be carried over to the
nonlinear case. The equivalent nonlinear frequency domain representation can also be obtained by
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applying the (multivariate) Fourier transform to the Volterra kemels to yield the generalised
transfer functions (GTF’s) or generalised frequency response functions (GFRF’s). Of course, the
Volterra series representation has its limitations see for example Wray and Green [27].

In practical identification, Volterra series representations are rarely used because of the well
known curse-of-dimensionality problem and the practical computational difficulties associated with
the estimation of the Volterra kernels [27]. Polynomial NARMAX model (nonlinear autoregressive
moving average model with exogenous inputs) representations are found to be significantly more
economical in the number of terms required because delayed output variables are included in the
representation. As a result, NARMAX representations have been widely used in nonlinear system
identification [3][2].

Although the usefulness of Volterra series representations are in practice largely confined to
theoretical analysis, the idea of interpreting the Volterra kemnels as impulse response functions can
cﬁ"ectivel} be extended to polynomial NARMAX models. Such an extension is important in the
derivation of the GFRF’s for polynomial NARMAX models via the harmonic expansion method
which has been documented in [8].

When artificial neural networks are used to model a nonlinear system, the GFRF’s become
particularly important in the context of information recovery. The GFRF technique, when properly
mterpreted, can be taken as an auxiliary validation tool to minimise the risk of obtaining an under-
or over-fitted network model. The basic principle of the denivation of the GFRF’s for an ANN is
motivated by the fact that a functional equivalence can be established between the underlying
network model and the Volterra series representation as shown by Wray and Green [27]. It can
therefore be shown that techniques similar to those used to compute the GFRF’s for Volterra series
and polynomial NARX' models can also be applied to the derivation of GFRF’s for neural network
models [27].

In the present study GFRF’s are derived for both feedforward and recurrent networks in an
attempt to reveal useful information about the underlyving system. The analysis is focused upon the
denivation of GFRF’s for three layered perceptrons because of the simplicity and relevance of this
architecture in system modelling. Analytical expressions are derived to relate the GFRF’s to the
weights for networks of this form and simulated examples are used to demonstrate the application
of the results. The examples appear to suggest that the reconstruction of the GFRF’s for neural

networks are extremely sensitive to slight changes in the network topology and the training
procedure.

T NARX refers to a NARMAX mode! where the MA or noise terms have been discarded.
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2. Generalised Frequency Response
Functions for Nonlinear Systems

It is a well known fact that for a single-input, single output, analytic continuous time invariant
causal system, the system input x(r) and the system output y(t) at time 7 can be related by

YO =hy+ [ ulr-7)dn + | J”'z('fl_,Tz)u(f-Tl)U(f-Tz)dTldfz+'"
0- 0- 0-
ot [ oo [y (gt e =1y oot =1, )y ooy + oo M

! 0— 0-
where h,(1),-+-,17,)€ @ is the n-th order Volterra kernel. The system representation given by
equation (1) is generally referred to as the Volterra series [22]. Notice that the constant term h, has
been deliberately included as a dc offset since this often affects the dynamics of nonlinear systems
[8]. Alternatively, equation (1) can be written in the following form

Y(O)=yo+ (1) + o+ 3, (1) + - )
where y,(7) is the #-th order output which is produced by the »n-th order Volterra operator v,(-)
defined by
Yo (1) = (%))
ko if n=0

81 [ [l il =)ot iyt i mzl 5

0- o0-
Inspection of equation (1) suggests that the Volterra kernel, k,(1;,-,7,,), can be regarded as the n-
th order generalisation of the conventional impulse response function associated with a linear
system. A wide class of nonlinear systems encountered in science and engineering can be modelled
by the Volterra series and this model has been used in many applications. A system with a Volterra

series representation can be described, equivalently, in the frequency domain by applying the
multivariate Fourier transform to the Volterra kernel 4,(1;,-+-,1,,). Define the Fourier transform of

hn("l,"'r'tn), Hn(ﬁ="‘=fn)€@, as

Hn(fs'“:fn)é j o J'h"(‘r]:"':Tn)e-jzn(fl‘cr'm*ﬁ;rn)dtl'"dtn: nzl (4)

where j=+/-1. This alternative description characterised by H, ( fis+ f,,) is commonly called the

n-th order generalised frequency response function or sometimes the generalised transfer function.
Notice that equation (4) is consistent with the conventional definition of standard transfer functions
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and reduces to H,(fj) for the case when n=1. The importance of the higher order transfer function

has been recognised since the early sixties [10][ 1] because of applications in the frequency domain
analysis of nonlinear systems. Both h,(1).--.1,) and H,(f.---.f,) provide an invariant-

description which is independent of the system excitation. Indeed, since the n-th order impulse
response (or Volterra kemel) h,(t;.---.1,) and n-th order GFRF H,(f;.---.f,) are Fourier

transform pairs. The n-th order system output. ¥,,(r). defined in equation (3) can also be written as

y(1)= J' J H"(fl""'fn)HU(ﬁ)Cjzn(ﬁ+"'+f")!dﬁ-~-Qf,,, sy )
—00 —0O i=1

where U(f;) denotes the Fourier spectrum of the system input u(r).

Based on the properties of the Fourier transform. the GFRF's in equation (4) can be adopted
for both continuous and discrete time cases. In the present study, all the systems under investigation
will be djscrete time physically realisable sysiems with a Volterra series representation given by the
discrete time equivalent to equation (1)?

(==} oo n
YK =ho+ Y m(kulk =)+ -+ D by (keek, )] Julk = k) + - (6)
k=0 ky o -oky=0 =1

where u(k) and vy(k) are the (sampled) system input and output variables at time step &,
respectively. Boyd and Chua [9] have rigorously proved that any finite memory nonlinear system
with memory length. say N samples. can be represented, with arbitrary degree of accuracy, by a

truncated Volterra series. Therefore, a system with finite memory can be expressed as

M M N
Yk =ho+ Dk ulk=k)+ -+ Y bk k) [ Julk = 4;) )
i=1

k=0 Ky =0
where M <o, Finite term Volterra series have been found to be extremely useful in modelling
many practical nonlinear dynamical systems in diverse disciplines ranging from electrical
engineering to physiology.
For a discrete time system with a Volterra series representation given by equation (7), the n-th

order GFRF can be defined by taking the (multivariate) z-transform of the Volterra kemel,
Rk - k) 10 yield?

. . oo oo o0 - ¢
¥ The n-tuple summation is denoted as zk,.---.k,;]( )= Z4=1 -'-an___l( - ). The same notional convention
applies throughout.

* From this point onwards. all frequency variables will be assumed 1o be normalised to their respective

sampling frequencies by adopting the principal values in [-1/2. 1/2].
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Ar 2 . T .
Hn(fl*""fn)é z I???(kl""'kn)c-ﬁx(fm*- +f"An)- nzl (8)
Ky -k, =0

In contrast to the definition given in equation (4) for continuous time systems, non-negative time
indices have been used 10 enforce system causality in equation (8).

3. Generalised Frequency Response
Functions for Feedforward Networks

To derive the transfer function for ANN's, consider initially a multilayered perceprron (MLP) in
the simplest form as depicted in Figure 1. It is a well known fact that a MLP with a single hidden
layer can approximate arbitrarily well any continuous function on a compact support provided that
a sufficient number of hidden units are included [13]. The network shown in Figure 1 consists of an
input layer of » input units, a hidden layer of », units and an output layer of one unit. At time step
k, the m input units receive input signals {.\'j(k): 1< m}. These input signals are weighted and
summed appropriately, according 10 a set of connection weights to produce the input to the i-th
hidden unit, v;(k), such that

V;(k) =033 (k) +0; 252 (k) + -+ +8; pxp (k). ie{l 2, m} ©
where 6; j (1< j<m) denotes the connection weight between the i-th hidden unit and the j-th input
unit. Thus, the output of the i-th hidden unit, ¢;(k), is obtained by mapping v;(k) together with the

bias term b; via a nonlinear acrivarion function o: 3 — & which is commonly taken as a sigmoid or

X, (k)
x,(4)

(k)

Figure 1 m-input. single output three-layered perceptron. 5
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hyperbolic tangent function to yield

gk =olv+5). ie{l.2,-m} (10)
At the output layer, the network output, y(£). is obtained by taking the weighted sum of these

hidden layer outputs according to

y(k)=e](pl(k)+82(p2(k)+ "'+Bnh(<pnh(k) (11)
where 6; denotes the connection weight between the output unit and the i-th hidden unit. Equation

(11) can therefore be expanded to yield
"h
y(k ) = ZB,-G(BJ-_J_\'I (A) + 9,2.‘1.2(#) + e e‘;‘m.).'m (k) + bj ) (1 2)
i=1
For the sake of efficient training. the activation function, (- ). is usually chosen to be analytic.

Based on the well known Weierstrass' theorem, it is realistic to assume that o(-) can be

approxir%aled. uniformly, with arbitrary degree of accuracy, by an algebraic polynomial on a
closed interval. In fact, some ANN's simply use polynomials as their activation functions [26][27).
Of course, these types of network have poorer function approximation properties since they can
only produce a Volterra series within a finite number of terms [27]. By adopting this point of view,
it will be assumed that the activation function can be approximated by

o(v; +b)= \yfo) - q;f’)ul- + ot w(r)uf + oty

(FhyF (13)

where P is a sufficiently large positive integer which gives rise to the maximum degree of the
polynomials in the expansion of the activation function. Notice that the bias term b; has been
incorporated into the polynomial coefficients. For a given activation function, o(-), the coefficient

of the r-th degree term, wfr). in the polynomial can be determined by a Taylor expansion of the

activation function about the bias such that

.
fip 00 F=0,1,2,, P (14)
= f‘ de v.=bh
Combining equation (12) and equation (13) gives
ny P ) ni i
) =20 2w Y8 (k) (15)
i=l =0 j=1 x

Before the derivation can proceed further it is important to note that in order to maintain the
validity of equation (15), which subsequently plays a crucial part in determining the final form of
the GFRF’s for both feedforward and recurrent networks, the input signals to the network must

satisfy the convergence conditions required for the Taylor series expansion of the activation




GENERALISED TRANSFER FUNCTIONS OF NEURAL NETWORKS

function. In other words, the Taylor scries represented by equation (13) must be convergent as
P — oo, Obviously. convergence depends on the pariicular activation function being employed.

Taking the most commonly used hyperbolic tangent as an example, the Taylor series expansion
requires the range of input signal 10 be within the radius of convergence in (—mn/2, n/2) or

|U,-| <m/2. This highlights one of the limitations in expanding an ANN in terms of a Taylor series.

Although this condition can easily be met in typical nerwork design it does not universally hold in
general. When this condition is violated, equation (15) will no longer be valid and consequently, an
incorrect expression for the GFRF will result. |

When a feedforward nerwork is employed in dynamical system modelling, the input nodes are
often assigned to be the delayed samples of the system inputs, u(k—1), u(k—-2),---. Such a
network structure is referred 1o as a fime-delay neural nenvork [23). Denote x(k)e B™, as the
network input vector whose j-th component, x j{k). is given by

-

xilk)=u(k=j), je{l.2.:.m) (16)
Thus,

x()ALuCk = 1), 1k =2), -+, uCk = m)]T an

equation (15) then becomes

ny, P m r
.3'(1():2952\”51‘) z Hei.p‘.“(knpm‘) (18)

=l r=0 peepe=l =l
Comparing equation (18) with equation (7) shows that equation (18) can be viewed as a finite
memory (with memory length m) discrete time Volierra series. This shows that under the conditions
given above a feedforward neural nerwork can be expressed as an equivalent Volterra series [27] in
which the n-th order Volterra kemel is given by

fyy

> 8;0(h;) if n=0
-
hn(preepn) =1 ) (19)
h
> 0w T8 if n21
i=] =]

Using the definition of equation (&), the n-th order GFRF of equation (19) can be written as

S P T -2n(fipyet fopa) ‘
Hofiondd= Y Y 0w []6ipe el pzl (20)

Presap,=li=l =]
Notice that this includes contributions from. and only from, all the n-degree pure input product
terms. The resulting GFRF is a continuous function of the n frequency variables f}, f>, ", f;.
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Once a multilayered perceptron has been trained all the weights 6; are known and equation (20)

can therefore be used to map the network into the frequency domain.

Generalised Frequency Response
Functions for Recurrent Networks

A procedure similar to that given in Section 3 for feedforward networks can be used to derive the
GFRF’s for the case where the network input vector consists of both delayed system inputs and
delayed network outputs y(k-1). y(k=2), ---. For an m-input recurrent network, the network

input vector, x(k), is redefined as

-

x(k)é[u(k —Doulk=2). o, ulk—n, ). y(k=1), y(k=2), -+, y(k = n_\,)]T (1)
where n, and ny are, respectively, the highest lag in the network input and output variables with
n, +ny=m. In the context of the present study, network structures with delayed feedback outputs
as part of the network input are referred to as recurrent networks [14][7).

The inclusion of the feedback components in x(k) means that the derivation of the GFRF's for
recurrent networks is more complicated because the extraction of the Volterra kernels is no longer
straightforward. In addition, as will become clear later, the presence of non-zero bias terms at each
of the hidden nodes generates a non-zero de offset which contributes to the overall network output
as a mean level and this dramatically increases the complexity of the analytical expressions for the
underlying GFRF's [20](8]. Fortunately, by reformulating the recurrent network in terms of a
polynomial NARX model. the task of the derivation can be greatly reduced by utilising similar
features from the derivation based on the established polynomial NARX model. Adopting this
strategy, the derivation of the GFRF s for recurrent networks can be carried out in two stages.

In the first stage. the network response is decomposed into a number of different groups of

signal categories which are classified according to the source of each contribution. With the
definition of the network input vector in equation (21), the network output, y(k), can be written as

n P n,
y(k)= zh,ef ngr) ZGJ'JU(A‘ - )+
j=1

i=l =0

Ay

r
ei.h+n“ }’(k = h) (22)
h=1

Using the binomial theorem, the entry within square brackets can be expanded to yield
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r r=lI !

n" 1’?_\, r ﬂ-\.
zei.ju('{' - JI# Zei.hd—ﬂ”.r(k = Z[ J Zea ;u (k= j) Zei.h-o-nu.v(k -h)| (23)
J=1 =1 =0 h=]
Likewise, the two power lemns on the right hand side of equation (23) can be further expanded to
yicld
= nz [16i,u(k-p,)  ifOsi<r-1
Ty UK =P, 1o=sisr-
X L 1
Ze!‘.j“(k - J) = PesPra=1v=l (?‘4)
o I if =7
and
: I if1=0
"_'r
Onen k=) | ={ & o . (25)
Z; i Y Il6igenylk-q) if1sisr
= =l =1

It is clear that equations (24) and (25), respectively, comprise all the possible combinations of
(r=1)-th degree pure input and /-th degree pure output product terms. These results can now be

combined and substituted into equation (23) so that the power of the sum of the input and output
components can be expressed in terms of the sum of three signal aggregates as

]
Ty ny ny r
Eei.j”(": - zef.ffi'n"y(k —h)| = Z Hef.p‘_”(k = py)

J=1 h=1 pyenp=le=l

E=] 5 #y ik -
2], 3 Hoseon| $ Hotion)

I=] Ppecpr=le=l qp =1 5=1
n, 2 -
+ Y, [T8ignk=q,) (26)
@171 =1

Replacing the square bracket term in equation (22) with equation (26), the network response can be
fully expanded to yield

ﬂ“ r .
y(k)= 290 b)+29 Zw(” > T18ipmlk=p,)

:-] r=l pypp=01=l

constant tenn pure input term

n, r—1
+3, war)z() > 16 k-p.) Z He,qﬁn wlk-g,)

=l r=2 P prag=0v=l =1 5=

(-

cross product lerm
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iy r

n r )
+Zh oY v Y T]68igen (k—q,) @7)
=l r=1

i<, =h 5=1

pure uu?}rwu: ierm

From equation (27), it is clear that the network output is composed of four categories of signal.
These are labelled as the constant term, pure input term, cross product term and pure output term.
Despite the awkward form of the expression the input-output relationship expressed above is in fact
a polynomial NARX model [17]. Equation (27) shows that the constant term is solely due to the
contribution from the 0-th degree terms, wf(n(s o(h)) (i=1,2,---,m), in the Taylor series
expansion for the activation function. The effects of the presence of constant terms in nonlinear
systems has been fully studied elsewhere [20). By applying the results presented previously in [8],
the derivation of n-th order GFRF for a recurrent network based on equation (27) is rather
straightforward using the harmonic expansion method [12][4][19]. Such a method has recently
been exf;,nded and generalised to accommodate the case where a non-zero constant term arises in
the time domain model [8](28]. Using the harmonic expansion method, the procedure required to
derive the n-th order GFRF involves substituting the harmonic input (which is a sum of complex
exponentials)

u(k)= ek 4 2k 4 L I (28)

into the Volierra series defined in equation (6) 1o give

y(k)=hy+ Z hy (ky ){ejznf’ (k=k) + epﬂfl(k—ki} +. 4 ejzrq"(k-k‘)}+

k=0
o2 s 1 - - S H o
-t ,]”(ki‘__,‘k”)H{eﬂnflu k) gemhlk=k) L e (k A,)}+.__(29)
Ky ok, =0 i=]

Under the excitation of the harmonic input specified in equation (28), the response of the recurrent
network expressed in equation (27) can be obtained by substituting equations (28) and (29) into
equation (27) to yield

n
y(k)= iﬁ,—c +29 Zw(” Z He, ,,‘Hz g (k=p.)
i=1

Py, =01=l

constant term pure input term

+29 ZWE’)Z{ H z Help +12 g Jl i li:[el'-qs+nu+1 hy +

i=] r=2 =1 et ,-—01"1 |."'.q,l=1 s=1

L

Cross producl lenn
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Ehx k Z Pkl Ly E bbby ) T 3 6200570
e

k=0 ky -k, =0 i=1 ¢=1
cont'd
ny, P ny r ad oo
F ; i2nf (k-q—ky)
+3.8; v ) z [18ig4n+]t+ Y, mk)D e ’
=l r=1 qyv-q,=1 5=1 k=0 £=]

pure output tenn

[= =]

weih Z hn(k]‘....k")ﬁieﬁﬂﬁ(k-q,-—&) o s (30)

ky -k, =0 i=] =1

cont'd
12 i
The n-th order GFRF can now be obtained by equating coefficients of eJ'n(f’+ ik after

. o AT
collecting the relevant terms associated with e’ wfieetf)

in equations (29) and (30).
The procedure described above outlines the basic steps involved in applying the harmonic

expansion method to extract the required GFRF's from a given nonlinear system. To simplify the
arithmetic operations, a so called extracrion operator, €,{-}. is defined to represent the above

procedure [28]. It can be shown that €,{-} is a linear operator in the sense that results produced
by the operation follow the superposition principle [ 19].

In the second stage of the harmonic expansion method, a transformation of equation (27) to the
frequency domain is required. But since equation (27) consists of four categories of terms, these
can easily be dealt with by applying €,{-} 1o each in tum. Furthermore, because of the linearity
property of the extraction operator, only the product terms associated with the input and/or output
variables (including the constant term) will be directly involved in the transformation. Thus, the
amount of algebraic manipulation required can be greatly reduced. Details of this are given below.
Finally, equation (27) can be transformed to a frequency domain representation by combining all
the individual results.

Consider the transformation of each individual term in equation (27). For the constant term, the

n-th order transformation can be obtained directly by applying the extraction operator to yield

n{ieob} f;)nz olb), n21 (31)

i=1

where 8(f,--, f,) is defined by

J JB £ K df,,:{é) if fij=fr=£,=0 4

otherwise

Likewise, for the pure input term, the ni-th order transformation gives

11
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ifn=zr

. 'jzn(ﬁf’]'*""i'fnf’u) . —_
Eu{l Ifi(k—p‘.)}={; ffn-—r.nzl (33)
=]

When the extraction operator is applied to the pure output term, the transformation
a,,{]'i;:, y(k—qs) . however, needs 10 be computed in a recursive manner [8). For notional

convenience, define the auxiliary variable Hn‘,(ﬁ.---.fn:ql.---.q,) as the contribution to the n-th

order GFRF that is generated by the r-th degree nonlinearity in the output, that is

Hn.r(-ﬁ"'"fn:ql""*qr)éan{n."(k—‘?.s‘)}~ nz0,rzl (34)

Using the results from [28), H,, . (fi.-*. f,:41.-+-.q, ) can be written as
Hur(five S r) = HoHppoy (fio o St G1e -Gy

n - ot )i
-EZHJ-(]‘],---.]S)H”_J-.,_](f_,-+1.---.ﬁ,:qJ.---.q,_l)eJ i+ n20.r21 (35)

Notice that H,”(f] £iqp.+.q, ) in equation (35) has been recursively defined and can be

further expanded to yicld

Hp (e S eoq, ) = HET H,y Z -2n(fi+-+1,)g

r—1 = - 127:(f] i '+fj)f1r-;+1

+:2H0 E‘H( S oo B ﬁﬁfh-----qr_f)e‘ . n20,r21 (36)
=1 J_.],

after (r - 1) self-iterations. The recursive relationship given in equation (36) finishes at r =1 with

Hus(firen fuin)= By gy e PRI 00 s 37
and Hg, (r21) is defined as

r

Ho.rgﬁn{n.\‘(k —fh)}-—- Hy,  rzl (38)
s=1

where H(, can be physically interpreted as the steady state response of the network. The value of
Hy can be detlermined by solving the input-output relationship of the network in equation (27) in
the limiting case when 4 — o0 and u(k) =0 such that

ﬂ}. r
HO - 26 9 b" * Ze Zw(r] E He‘.-q:";’nnHE' (39)

i=] 4 q,=15=1
Equation (39) is a nonlinear algebraic equation which can be solved numerically using some of the
well known numerical techniques such as the Laguerre method. In general, this will give a number
of real and complex solutions. For the sake of physical interpretability, all complex roots will be
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discarded. Unfortunately there is no known systematic mechanism to determine which of the
remaining solutions to use for a particular model with given specifications. Therefore, all the real
solutions must be treated as candidates which are considered in tum in the computations of the
GFRF’s. The resulls of the computations must then be assessed on an individual basis by using
known a priori knowledge of the underlying system.

By using the altenative interpretation expressed in equation (34), the definition of
Hn.r(.ﬁ.---._ﬁ,:ql.---,q,)infers

> 8i5(t) ifn=0
Hh T
HJJ.O = En{zeio(b[)] =+ - 40)
; Ny
o S(fiv-f)Y Bi0(l) ifn21]
i=]

Using the product identity derived from the basic properties of €,{-} given in [28]. the cross

product contribution a,,{l'l\’;{ ulk = p )T, )-‘(k-—qs)} can be factorised into products of pure

input and pure output term contributions in the following form

r-/ / r—[ !
- e,,{Hu(k-—p‘.)Hy(k—qs)lEarh,{nu(k—p\.)lsn_H;JH}'(k—qs) ,  n2l (@4l
v=] s=1 J v=] j l s=1
From equations (33) and (34). the cross product term contribution can therefore be written as

r—I
&, {H“(‘( - p\')ﬁ}'(k - QJ)}
1 s=1

Rl d g 1P .
PRGBS LTI LR SR, R 42)

By combining the results of the transformation for each of the constituent terms in equation (27),

the n-th order GFRF can be obtained by substituting equations (33), (34) and (42) into equation

(27) to yield
1y ny, {”) n, n ‘j:)-n{ ﬁpl . .+f" ."Jn)
Ho( oo fu) =8 £u) D 0i0(0)+ D 0w S T80 pme™™
. i=1 i=! P -"'-Pr=0 v=]

constant term contribution pure input term contribution

ny P "y N
+ZB‘.Z\V5"J Z Hei.q_,-l-nan.r(ﬂ""‘j;l:ql""’qr)

=l r=l gy g, =1 5=1

pure oulpul tenn contribution

13




FUNG, BILLINGS AND ZHANG

n, r=l )
R

=t r=2 = Py o=l v=l

Bl et
cross product tenn contribution

x Z Hei.q_‘ﬂ!u Hﬂ—r+1.i (.ﬁ'-—l-é-l""-ﬁa:%""'ql)‘ nzl 43)

q =1 s=1

(cont'd)

It is interesting to note that when equation (27) is transformed into the GFRF s, following equation
(20), only the pure n-th degree polynomial input terms contribute 1o the n-th order GEREF.
Therefore, the choice of the maximum degree, P. in the polynomial in equation (13) has a direct
impact on the richness of the higher order frequency response functions of the underlying network.
In general, the larger the value of P, the longer the (truncated) Taylor series expansion of the
activation function is and thus the computed GFRF's will be more accurate. Unfortunately, the
determination of the coefficients in the Taylor expansion is computationally intensive for large P
because of the computation of the required higher order derivatives. Nevertheless, experience
suggests that satisfactory results for low order (up to third) GFRF's can generally be obtained with
a typical choice of P in the range from 6 to 10 which is computationally manageable on a standard
workstation. An account of the effects of the choice of the largest polynomial degree on the
computation of the Volterra kemels has been discussed in [273.

Finally, combining equation (43) and equation (36) and rearranging terms gives

) My, n, n _ .
Hn (.ﬁ' "»f;;)= 6(fl- ".f;,)ze,'ﬁ(b,‘)+ Zei‘l’f") z Hei.lﬂ,.e-ﬂn(hpl+m+f"P")
i=l

i=] prep=lv=l

3 r r—=1 n-1
03w 3 [Toigen 2 H Y Hil 1)
J=1

=l r=2 gy, =1 s=1 5=

n=1

XZH_,I'(ﬂ~' "~f;")Hn-j.r-:(fj+] Al "~fn:(h Cy "-qr—s)ﬂ-jzn(fl +”I+fj)fh_s+l

=
Y ZwEU > ot in)
¢ v
=l r=2 I=] ! Preeprop=lh=l

’T".
X 2 Hei.qa+n,,Hn-r+1J(];’—!+1" o Jar g "~(!'1)

gy engy=1s=l
-1
n
x{l-i SR Z Hewm Ze’" iemshidas Ly (44)
=l r=] ooy, =1 s=1
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The analytical expression in equation (44) is order-recursive. The recursive equation (44) can be
p taken, together with equation (36), as the algorithm for computing the #-th order GFRF of a neural
network model.

In practice, the computation of H,,( b f,,) is implemented by encoding the recursive
algorithm expressed in equations (36) and (44) on a digital computer with the initial conditions
defined above so that the n-th order GFRF for an ANN can be evaluated automatically. Because of
the order-recursive nature of the algorithm, the computations of the higher order GFRF’s are
always based on the results obtained for the lower order functions. For the vast majority of
applications computation of just the first two or three GFRF s is sufficient to characterise the main
fréquency domain features although the higher order GFRF's do provide additional information in
some cases. To minimise the computational burden, Wray and Green [26) suggested that finite
polynomial output functions can be used as altemative nodal functions to the conventional sigmoid
or hyperbolic -#lang,em activation functions considered above. But this can degrade the
approximation capabilities of the multilayered perceptron network and therefore errors can easily
be introduced.

9 Numerical Examples

Nonlinear system identification is one of the application areas of ANN. The greatest advantage of
using ANN's lies in the fact that they provide a standard architectural framework which can be
used as a universal approximator to provide an approximation to the underlying system dynamics.
However, the advaniage of such flexibility is ofien offset by the loss of structural information. As a
result, over-fitling is not uncommon. In addition, it is commonly believed that the training of
MLP’s is highly problem dependent. In the absence of detailed a priori knowledge about the
undertying system specifications. optimal training can be difficult to achieve without an extensive
trail-and-error study to select the appropriate network configuration and algorithmic settings such
as the learning rate and the momentum constant. Furthermore. the multi-modal nature of the (non-
convex) cost function means that local minima are a common problem when the widely adopted
back propagation algorithm is employed. These are some of the subtle issues wfn’ch have been
documented in numerous studies [15]] 14].

In the following subsections. two examples will be given to illustrate the computation of the
GFRF’s for ANN’s and to demonstrate how the network configuration and training influencg
these results. In all the simulated systems, 10,000 system input-output data samples were
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generated. In each case. an MLP with hyperbolic tangent activation functions
was then trained exiensively using the conventional generalised delta rule for 100 passes.
Therefore, a 1012l of one million (=10.000% 100) system input-output data were actually scanned
to allow sufficient training. Whenever appropriate, the Jeaming rate and momentum constant were
manually fined tuned in order 10 obtain the best possible training results. Before a training session
was started, all the network weights were randomly initialised to some small arbitrary values in the
range [—1/2, 1/2] to avoid numerical degeneracy.

Once a training session was completed. the first 12, 8 and 6 terms in the Taylor series
expansion of the activation function were used. respectively, in the computations of the first, second
and third order GFRF's of the trained network. During the computation of the GFRF’s, all the
possible (real valued) sieady state responses were considered and only the one with sensible
supporting arguments was adopted. Obviously while this can easily be determined in simulated
systems"it may present practical difficulties in selecting the proper solution when real data sets are
encountered. Further investigation on this issue is necessary to enhance the usefulness of the
algorithm. To assess the quality of the trained network, the mean squared errors were also
computed (in decibels) using the 10000 output data in the 100-th training pass thus ensuring all the
transitory effects were completely ignored.

5.1. Example1: Feedforward Network

for Linear System Modelling

In the first example, the effects of overfitting an MLP model was investigated by considering the

identification of a simple linear system which is defined by the first order ARX process described
as

V(k)=0.5ulk=1)+0.6y(k-1) (45)
where {u(k)} is a uniformly distributed random sequence in [-1/2,1/2]. This example was
specifically chosen to demonstrate how easy it is to overfit a neural network.

Assume that the physical structure of the underlying system is not known in advance. This
would be the situation that exists for most real data sets. An 18-hidden node, three layered
feedforward network with an input vector x(k)=[u(k—!). u(k=2), -, u(k—lO)]T was blindly
used to represent this system. The network was trained using the generalised delta rule [24][21)

with the leaming rate chosen to be 0.05 and a momenwm constant of 0.2. A mean squared error of
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-32.44 dB was achieved in the final pass of the training process. A set of traces from the training
process are given in Figure 2 and these show that the network accurately predicts the system output
but there is no indication that the network is grossly overfitted. A comparison of the true transfer
function of the linear system in equation (45) and the first order GFRF of the trained network is
shown in Figure 3 which shows that these are almost coincident. The trained network clearly
. approximates the underlying linear system within the entire frequency range.
~ During the experiment, the network was manually optimised by varying the network topology
in terms of the number of hidden nodes and the largest input lag used in the input node assignments
in order to obtain the best possible GFRF’s which matched those of the true linear system.
Similarly the learning rate and momentum constant were fine tuned during the training process. It
should however be noticed that in this particular example the linear system has been deliberately
modelled by an overfitted model structure. This results in a model mismatch in the sense that the
recursive linear szstem has been represented by a feedforward nonlinear model. Thus, it can be
expected that despite the attempt to optimise the system representation, the resulting model exhibits
non-vanishing higher order nonlinear dynamics which is reflected in the second and third order
GFRF’s.

(=) sysream inpu
T T
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Eigure 2 Traces of the training process for example 1; (a) system input, (b) system

6utpug (c) network one step ahead predicted output and (d) innovation sequence of the
network.
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Figure 3 Transfer function of the linear recursive filter (solid line) versus the first order

GFRF of the trained network mode] (dashed line) used for example 1; (a) gain and (b)
phase.

The second and third order GFRF’s of the trained network are shown in Figures 4 and 5,
respectively. Because the real system equation (45) is linear both these should ideally be zero. The
estimates reveal that both the second and third order GFRF’s exhibit non-zero responses but these
are small in absolute gain levels. This suggests that the model in question exhibits some degree of
nonlinearity which of course cannot possibly be generated by any kind of linear system. In other

words, this is an indication that the underlying (linear) system defined in equation (45) has been
overfitted.
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{t) H2(1,2) in magnitude contour
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Figure 4 Second order GFRF of the trained network model for example 1; (a) gain in

dB, (b) gain contour, (c) phase in degrees and (d) phase contour.
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() H3{11 2.1) in magnitude (b) H3(M.2.M) in magnitude contour
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Figure 5 Third order GFRF with f3 = ; of the trained network model for example 1; (a)
gain in dB, (b) gain contour, (c) phase in degrees and (d) phase contour.

5.2. Example 2: A Recurrent Network for
Polynomial NARX System Modelling

As a second example consider a nonlinear system defined by the nonlinear difference equation
y(k)=0.13597+0.06149u(k —1)+1.6021y(k — 1)-0.94726y(k - 2)

~0.013829y%(k —1)- 0.0025225y3(k - 1) (46)

20
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where {u(k)} is a uniformly distributed random sequence in [~1/2, 1/2]. A three lavered recurrent
network with an input vector correctly assigned as x(k)=[u(k-1), y(k-1), y(k—2)]T was used
to represent this system. This system has previously been studied in the identification of nonlinear
circuits and the first and second order GFRF’s can be derived analytically [8].

In this experiment, the influence of the network model structure was investigated by comparing
the dynamical responses of two networks both in the time and the frequency domains. This example
was designed to show the sensitivity of the trained network GFRF’s, which characterise the
dynamical properties of the network to small changes in the network structure. The experiment was
carried out initially for an 11-hidden node MLP and then for a 12-hidden node MLP while keeping
the rest of the experimental conditions unchanged. In both cases, a generalised delta rule with a
learning rate of 0.05 and momentum constant of 0.3 were used after an extensive trial-and-error
search to optimise these parameters. Figure 6 depicts a set of traces of the training results for both
the 11 and 12-1;idden node MLP’s. The former achieved a mean squared error of -68.08 dB
whereas the later achieved a remarkably close -68.31 dB. The one step ahead predictions, Figure
6(c) and Figure 6(d), of these networks and the associated innovation sequences as shown in
Figures 6(€) and 6(f) are virtually identical and both provide excellent predictions of the system
output. Based on these traces, it would be quite impossible to differentiate the relative merits of
these trained networks.

(=) systerm input
T T
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Figure 6 Traces of the training process for example 2; (a) system input, (b) system
output, (c) network one step ahead predicted output of the 11-hidden node MLP, (d)
innovation sequence of the 11-hidden node MLP, (e) network output of the 12-hidden
node MLP and (f) innovation sequence of the 12-hidden node MLP,

The true GFRF’s associated with the model of equation (46) are shown in Figures 7(a), 7(b)
and Figures 8(a) to 8(d) [8].
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Figure 7 First order GFRF of the system described by equation (46) for example 2; (a)
gain in dB and (b) phase in degrees.
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Figure 8 Second order GFRF of the system described by equation (46) for example 2; (a)

gain in dB, (b) gain contour, (c) phase in degrees and (d) phase contour.
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When the trained networks are mapped into the frequency domain using the results derived
above there are considerable differences between all orders of GFRF’s. The 12 hidden node MLP
comes closest to reproducing the correct frequency response effects. But notice how the resonant
frequencies in the H,(f;) plots of the two networks Figures 9(a), 9(b) and Figures 12(a), 12(b)
move despite the tiny difference in the mean squared errors of -68.08 dB compared to -68.31 dB. A
comparison of Hz( h» fg)’s (Figures 10(a) to 10(d) and Figures 13(a) to 13(d)) and
Hs ( s f3)’s (Figures 11(a) to 11(d) and Figures 14(a) to 14(d)) of the two networks also show
a large apparent sensitivity of these functions to the slight changes between the networks. This is

despite the fact that the performance in the time domain of both the 11 and 12 node networks
ol : =
Kvu’tually identical.

(8) HIM) o maprmuss
T T T

) HIM) n phass
T T

Phase fn dogons)

i i H i i H
I I T © 01 0.2 o3 D4 os R
n

Figure 9 First order GFRF of the 11-hidden node MLP network model for example 2;
(a) gain in dB and (b) phase in degrees.

We have carefully rechecked these results to confirm that they are correct. Other simulations
provided results which were also sensitive to‘ minor changes in the network training. The
approximation in equation (13) will be an influence on the estimates but our results suggest that the
effects are probably caused by overparameterisation. That is the networks can provide good time

domain predictions but they have not captured the underlying dynamics of the system as defined
by the GFRF’s.
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Figure 11 Third order GFRF (with f3= ;) of the 11-hidden node network model for

example 2; (a) gain in dB, (b) gain contour. (c) phase in degrees and (d) phase contour.
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Figure 12 First order GFRF of the 12-hidden node MLP network model for example 2;
(2) gain in dB and (b) phase in degrees.
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(b) H2(f1,2) in magnitude contour
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Figure 13 Second order GFRF of the 12-hidden node MLP network model for example
2; (a) gain in dB, (b) gain contour, (c) phase in degrees and (d) phase contour.
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{a) H3(f1,2.f1) in magnitude

- T

4 i
& ] ATy
w04 - IR “",““\ﬁﬁ‘“‘-llll k
ol ffr,z“«‘(m{lli'% i’iﬁ"""“‘“ .-
] &L ‘\ '8 = ‘\\\
1 u}!’l’l”"“

/

J
e }"
<

5 B

phase (in degrees)
=]

il

o

(&) H3( 2f1)

G

in magnitude contour
1

Figure 14 Third order GFRF (with f3 = f;) of the 12-hidden node network model for

example 2; (a) gain in dB, (b) gain contour, (c) phase in degrees and (d) phase contour.

6. Conclusions

A new algorithm has been derived which maps feedforward and recurrent networks into the
generalised frequency response functions (GFRF’s). This allows the trained time domain neural
network model to be transformed into the frequency domain and provides insight into the internal

dynamic characteristics of the network.
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However, the simulation results suggest that the form of GFRF’s obtained are sensitive to both

the user selectable traming parameters and the network topology. Even slight changes in the mean
squared errors, for example, -68.08 dB compared to -68.31 dB can provide important changes in
the GFRF’s. This suggests that selecting networks based on the mean squared error performance
will be very difficult if the objective is to construct a model which characterises the dynamics of the
underlying system rather than to provide good time domain predictions. Initial investigations
suggest that these effects may be caused by overparameterisation but further studies are underway
to establish if the results reported here are representative and what causes them.
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