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Use of the Riccati Equation On-Line for Adaptively Controlling

a CSTC Distillation Column

J. B. Edwards and S. B. Mohd Noor

Abstract

A third-order CSTC model for the separation dynamics of packed distillation columns is
converted to a form expressed in terms of deviations of input and output from steady-state.
This form has been found to be necessary for the application of the Banks' method of On-line
Riccati Control. The state-dependent coefficient matrices of the process are derived
analytically in terms of the fundamental length, volatility and capacitance parameters of the
process. Having successfully tested the modified model against the original, whole-value,
simulation model and against analytic behavioural prediction, simulation experiments are
conducted, comparing the responses and costs of the Banks'-controlled system with linear
output feedback. The optimal control is found to be significantly superior to linear control
for equal input excursions, in terms of cost-function-value, energy consumption and, for
large-turn-down ratios, speed-of-response. The results offer promise for the control method
when applied to tubular columns in the future.

1. Introduction

This report is the fourth of the series ACSE RR573(1], 576121, 630131 devoted to the analytical
modelling and optimal control of distillation columns and chemical reactors. The Banks'
method[4] of on-line application of the Riccati equation to current values of the state-
dependent coefficient matrices to produce state-varying feedback coefficients has been the
control target of this series. RR576 applied the method to a 1st-order, isothermal model of a
chemical reactor and Rowlandsl3] extended the application to a 2nd-order reactor model that
included varying temperature effects.

Since the On-Line Riccati equation demands a model from which to compute the current
process coefficient matrices, it is important that the model to be used is validated a priori. In
RR630 therefore, the parametric model for the CSTC column derived analytically in RR573,
was comprehensively tested using simulation under open-loop and linear closed-loop control
to confirm the behavioural predictions derived from the model. In particular, its closed-loop
stability margins, etc. were checked against analytic prediction for a wide range of the basic
process parameters L, the normalised length of the column, a, related to the mixture's relative
volatility and T, the normalised time-constant of the end vessels. The model was validated
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For the Banks methodl4], a first-order matrix differential equation representation is required,
(the state- and input-coefficient matrices being allowed to be state-dependent). Although the
original report (RR573) was aimed primarily at parametric transfer-function derivation, a
parametric matrix d.e. representation of the unlinearised source equations was also derived in
preparation for attemps at future On-Line Riccati Control; together with an approriate integral
quadratic cost function. The model, however, contained a feed disturbance term that is not
readily accomdated. Buiding on experience from the CSTR chemical reactorl2].[5] therefore,
the model is first modified in Section 2 of this report into a more readily applicable form.
Before proceeding with the application in Section 4, the modified model was first tested
alongside the original parametric representation of RR573 and 630 as described in Section 3 in
order to ensure the absence of errors in manipulation to which analytical work of this sort is
always prone.

Conclusions are drawn in Section 5.

2. Conversion to Error Co-ordinates
2.1 The Original Model
In ACSE research report 573 [11, the CSTC column model was derived in the form :

S S
S. | =A| S, |+BV, +]JF (1)
S.(1) S.(1)

in which S(t) denotes the product separation, S.(t) its associated equilibrium value, and
Sc(1)(t) that of the fluids recycled through the column from the end vessels. V(t) is the
manipulable vapour rate in the stripping section and F(t) the feed flow rate of liquid (= also
to that of the feed vapour).

State coefficient matrix A was shown to be constant at :

__La+a 1 0
Lo
A = 1 -1 0 (2)
0 0 0

where L is the normalised column section length given by :




L = (3)

in which L' is the actual length, k the evaporation constant (expressed in mols p.u. length p.u.
time p.u. departure from equilibrium mol-fraction) and V (here a constant) is the designed
vapour rate for the rectifier section. Parameter @ is the slope of the linearised equilibrium
curve in the stripping section and

e=o -1 “
The designed value for feed F is related to V thus :

V= — (5)

State-dependent input coefficient matrix B was derived to be :
E-5-0S,
LV

ofS.()-S.]
LV

|
I

(6)
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where T is the normalised time constant of the end-vessels, whilst disturbance coefficient
matrix J was shown to be given by :

S -
(aa+1)LV

] = 0 (7)

[s—as.)+¢]
L oTV

In the light of experience gained in applying the Banks' on-line Riccati method[#] to a CSTR
chemical reactor(21[5] the proposed cost function was expressed in terms of deviations :

AS =§-8§, (8)
and AV =V;- 3, ©)]
o




. i A : v
from reference steady-state separation, S, and its associated design vapour rate, —, for the
o

stripping section respectively. Formulae for the steady state separation value and its
associated equilibrium values were derived in terms of L, o, € and V in the ealier reportl].

The proposed cost function was, and remains :

0 = JM{(AS)"' + A (%)z}dt (10)

where A is some weighting factor, possible values for which were estimated from derived gain
formulae.

The Bank's method as presently formulated(4l does not admit the disturbance term J F in eqn.
(1) and it is therefore necessary to attempt to reformulate the model to avoid such a term. We
therefore derive the model in terms of the deviations AS and AV rather than the absolute
values of the variables S and V.

2.2 Obtaining a Model in Error Coordinates : Generalised Treatment
Consider the system :

x=AX)x+BXx)u + Jx)d (11)
in which d is the disturbance vector.
Let A(x) be constant but let B(x) and J(x) take the linear, state-dependent forms :

B(x) = B, + B, x (12)

and  J(x) = ], + ], (x) (13)

in which By, B,, J,, J, are constant (as in the case of the column model of eqns. (1) - (7)).

We confine attention to scalar u' and d (also as with the column model) so that, for an n-th
order process, A, B, and J, are n x n matrices whilst B, and J, arenx 1.

Now if x . and u' | are associated steady state values in the presence of a constant disturbance
d, then :

0 = Ax, + Bou', + J,d + Bx,u', + J;x.d (14)




whilst, in general :

the solution of eqn. (14), from (15) yields :

Ax = AAx + ByAu + J,Axd + B(xu - x,

Eliminating whole values x and u' in favour of deviations Axand Au', together with

constant references x, and u'; we therefore obtain :

8% = (A+, B, +J,)Ax + (B +B,x, +B,Ax)Au

Thus, the model may be expressed as a bilinear deviation system :

Ax = A Ax + (By+ B, Ax)au

where the constant coefficient matrices are given by :
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and B';

I
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2.3 The CSTC Model in error coordinates
In this application we set :
u'(t) = V(1)

\Y%
ur:_
o

(15)
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[s s. s.0] (26)

d=F 27)

Thus, from eqns. (21), (2), (6) and (7) as shown in Appendix 1 we deduce the constant
coefficient matrix A' to be given by :

-&(L+1) L__l_ 0 i
L L
. (L+1) 1
A = 1 =5 T (28)
1+¢ 1+¢
= 0 —
a“T oT

We distinguish the steady-sate (reference) values of separation by suffix r so that :

(29)

r

x, =[S, S. S,

which may be obtained from the separation formulae of the original research reportll]. Hence,

again as shown in Appendix Al :

[ e-S,-0S, |
LV

e
LIRS .

S, —oS,.(1)+e
oVT

By = By+Bix, =

-

But, from eqn. (38) of the original report!!] we find :

aS, (1) -85, =¢ (1)
and also from that report we note, {from the eqn. preceding (39)}, that
SAL+1)lae+1) = 2¢
(Lt ) -

S = T L 1)at1)




so that, as shown in Appendix 1, substituting the derived steady state formula (39)I!] for S,
18

e | Ba+1)L + a-1
S, = (33)
(a+1) (3a—1)L + & +1
in the expression for B'(; in eqn. (30) above, we get
- Ze[e + L(a + 1)]
element Bl()l = (34)
LV (a+1)[(30t—1)L So+ 1]
Similarly, as shown in Appendix 1, we deduce element B', to be :
, o 4oe
B = "_(Scr_s) = (35)
v Vv (a+1)[(3a-l)L + 0+ 1]
and B'3=0 (36)
Hence, in terms of plant parameters, the matrix B, may be expressed :
[ 2adL+D+e] |
LV(a+1)[Go—1)L+0o+1]
4
By = = — @37

= V(o+D[Ba—DL+a+1]

0

Finally, we extract the state dependent coefficients of matrix B (eqn. (6)) to give By, i.e.

-~ =

IR 0
LV LV
o o
B, =| 0 - = 38
=1 LV LV (38)
1
o 0 L
| aVT VT




Thus the CSTC model has been expressed as a bilinear representation involving only
deviations in separation and input flow V(t) with all coefficients algebraically related to plant
coefficients, L, o, €, T and V as required. As an essential check on the algebra, exhaustive
numerical checks on parametric eqn. (28), (37) and (38) have been made by comparing the
elemental values of matrices A', By, and B'; computed (a) from these derived equations
and (b) from the source equations for S;, Se; and S((1) together with eqns. (16) to (23) of
RR630.

3. Testing the Error-Coordinate Model

The above-derived model was simulation tested using the scheme illustrated in Fig. 1 which is
merely an implementation of eqn. (20) with Ax set equal to [AS, AS,, ASe(1)]T and
Au' =AV_, and using the derived parametric equations (28), (37) and (38) for computing
respectively the elements A', B'y and B, (=B,) from given plant parameters L, o, € (=0-1)
and T. The whole values of S, S.., S.(1) and Vg were derived from the computed error signals
by addition of the associated steady-state-consistent reference values S;, Sgp, Se(1) and Vg,
which were computed from the known steady-state solution formulae (again from prespecified
values of L, a, €) i.e. eqns. (33), (A1.6), (A1.10) and Vg =F/e respectively. [The absolute
value of F being unimportant as regards the dimensionless separation variables, this was kept

at unity throughout as in the testing of the whole-value model of RR630 reported
previouslyl31].

A wide range of parameter space was explored and the error-coordinate model was found to
give identical results, for open-loop step tests and for initial condition recovery, as were
obtained for the whole-value model. Since a comprehensive survey of these responses was
presented in RR630 and these were succesfully checked against analytical prediction, those
obtained with error-coordinate model, being identical, are not presented again here.

A trivial point but worth noting is that, in RR630, the pertubing input u was a dimensionless
fractional value defined as :

it (39)

where v is the deviation of vapour flow rate (in the stripping section) from its desired reference
level V; whereas u is its value normalised as shown. Here whole-value input u' is defined as
V and pertubation

Au'=v=V -V (40)
F
Hence Au'= BY . (41)
2 2e
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The relationship (41) and distinction between the process input u, (as defined and used in
RR573 and RR630) and process input Au', (as defined here), is important for the correct
interpretation of gain values used for linear control comparisons with optimal control of given
input weights, A.

Having completely tested the reformulated SIMULINK model, it was then used in conjunction
with MATLAB Riccati solving routine at every simulation time step, and the updated control
law coefficients of feedback matrix D used for optimal control in line with Banks' method[4] as
also indicated in Fig. 1 and as discussed more fully in Section 4.

4. Application of On-Line Riccati Control

The CSTC column deviation model of eqn. (20), was simulated using SIMULINK
representation based on Fig. 1 and the whole values of the observed output and input variables
S(t) and V(t) reconstructed by the addition of the known references Sr and V.. [ From entry
of normalised parameters F (=1), L and o, S; was obtained from known steady-state solution
(33) and V; set to the steady state consistent value of F/(a-1)]. For optimal- (i.e. On-Line
Riccati-) Control, the SIMULINK model was connected on-line to the MATLAB Riccati
Solver as indicated merely by using state deviations AS, AS, and AS(1), at each simulation

T
update, to compute the new driving coefficient matrix B from B'g +B; [AS, AS., ASC(I)] as

indicated in Fig. 1, before passing this to the Riccati Solver. From this, the updated control
coefficients of the D matrix were computed and returned for use in the m.v. simulation
feedback loop as shown. The matrices A (here set = A"), B’y and B'; were calculated from

eqns. (28), (37) and (38).

For comparison purposes a constant coefficient, linear output - proportional feedback control
law

Vs = Vg +(g)(sr - S) (42)

could also be switched in, K being the proportional given as previously defined in RR630 and
elsewere.

4.1 Preliminary Results and Discussion

Fig. 2. shows the response of separation S(t) and associated input response V(t) for L=15,
a=5 [i.e. for case (d) as specified in earlier reports] from initial conditions set at feed
separation z-Z = &/(a+1), here = 0.6667 with reducing input weighting coefficient A in the
cost function. The results are all non-oscillating and increase in speed as A is reduced as




would be expected because the increasing excursion in Vg that results from the reducing A
value. A limit on the maximum attainable Vg =3V (here = 3 x 0.25 = 0.75), i.e. a turn-down
ratio of 3:1 is set in the series of tests which only the lowest two values of A impinge, as seen.
Clearly faster responses could be obtained by further reduction in A, but only at the expense of
higher transient values of Vg(t). Fig. 4 shows the responses from the extreme case of zero
initial conditions i.e. no initial separation whatsoever and in this case larger values of A are
needed, as would be expected, in order to prevent the larger initial error in separation causing
the limit 3V, to be seriously impinged for excessive time periods.

Fig. 4 shows the responses of optimal control from initial separation (S(0)=0.7200) much
closer to the target separation of 0.7531. It is interesting to note that a non-minimum phase
response now results, somewhat similar to the predicted (and observed) open-loop responses
in RR573.

The response of linear control within the same turn-down ratio of 3:1 are shown in Figs. 5, 6
and 7 for feed, zero and near steady-state initial conditions respectively for increasing values
of control gain K. Again the expected increase of speed of response (here with increasing
gain) is observed but with the V, limit imposing an envelope on the maximum speed attainable
as with optimal control. Figs. 8, 9 and 10 are for similar conditions but show the speed-up
effect on increasing the Vi limit from 3Vs to 10V using linear control whilst Figs. 11, 12 and
13 show a similar effect of this relaxation under optimal control.

4.2 Linear v Optimal Control Comparison

A potential pitfall of linear, output-feedback control revealed in RR630[31 (in addition to the
prediction of small signal instability for large gains predicted in RR573[1] and demonstrated in
RR630) was the risk of process moving to an undesired operating condition for long periods
(i.e. the "dwell" phenomenon) before reverting to the target condition. This was the result of
large initial offsets and large gains (> around 50% critical gain) driving the value of V(t)
beyond the peak of the steady state S versus V separation characteristic. This has not arisen
here however as a result of the V-limit imposed (on both linear and optimal control). The
lack of robustness of linear (versus optimal) control only becomes apparent in the absence of
such a limit when K is increased (in the linear case) in an attempt to achieve a very fast
response. The higher speed is achievable with optimal control by reducing A, but only by the
demand for very large input excursions. We therefore confine ourselves here to comparing
linear and optimal controls set for similar speeds of response with similar Vg excursions within
the limit 0 < V, <3V, '

Responses for the optimal and linear cases are compared in Figs. 14, 15 and 16 for feed, zero
and near steady-state initial conditions with K and A set to give near equal maximum Vg
excursion. As can be seen, output response shapes and speeds are very similar. There are,
however, some improvements (a) in the computed cost as defined by eqn. (10) and (b) in the
area under the V(t) curve which is proportional to column energy consumption over the 50-
unit time-interval chosen. Their values are tabulated below :
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Table 1

Cost and Energy Consumptions of Linearly and Optimally Controlled CSTC

Response Cost Energy

Initial Conditions finear Optimal A Linear Optimal %

Improvement Improvement

Feed Conditions 0.0496 0.0351 23.23 15.610 15.071 3.455

Zero IC's 3.1248 2.1843 30.10 15.886 14.930 6.020

Near Steady State 0.0101 0.0072 28.71 15.291 14.822 3.070

An outstanding improvement is apparent when the V-limit is relaxed to 0 <V <10Vs as
shown in Fig. 17 for near steady state initial conditions. The calculated cost function of linear
control is 0.0192 and that of optimal control is 0.0059, which gives 69.36% improvement.
Energy consumption is also remarkably improved by 28.365% (c.f. only 3.070% when the
limit is 0 < V €3V, as in Table 1) i.e. energy consumption in linear control = 23.0490 and in

optimal control = 16.5111. There is a significant improvement also in the speed of response
under optimal control.

Fig. 18 shows that with the 10V limit imposed, the dwell phenomenon (under linear control
only and demonstrated in RR630[3]) begins to manifest itself when the gain is increased to 70.
Note that this instability starts to show when K > 50% critical gain value (of 110.25,
calculated from eqn. (36) in RR630 for case (d) (i.e. L=20, a=2)), which accords well with
that of case (a) (i.e. L=20, =2) as presented in RR630[3]. The calculated cost function of
linear control is 0.0263 and that of optimal control is 0.0057, which give 78.33% improvement
whilst energy consumption of linear control is 30.766 and that of optimal control is 16.845,
i.e. 45.25% better. Even when control signal hits the limit, optimal control can perform better
still and is stable.

5. Conclusions

As would be expected optimal control generates a significant percentage improvement in the
cost (as defined) of the process operation and a noticeable though reduced improvement in
energy consumption when compared to linear output control set for similar peak excursion in
the manipulable vapour rate and at turn-down ratios of around 3:1. Response times are
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similar. Improvements produced by optimal control in terms of cost function, energy and
speed are enhanced vey considerably (compared to linear controls set for the same transient
input excursion) when the turn-down ratio is increased to 10:1.

For the lower turn-down ratio, results for case (d) (i.e. L=15, a=5) have been chosen rather
than case (a) (i.e. L=20, =2 which shows less relative improvement through optimal control).
The reason is that case (d) runs at a considerably larger steady-state separation (0.7531) than
does case (a) (0.4563) giving the improved control less scope to demonstrate its potential.
This observation is encouraging, however, in that the more realistic distributed system models
of tubular columns should reveal greater performance improvements under the optimal (On-
Line Riccati) Control strategy since such models generate even higher separation for given
length and volatility parameters. However, the development is awaited of (a) a suitably
simplified model for incorporation in the on-line Riccati controller for tubular columns and (b)
a simulation of tubular columns. These tasks should now be undertaken, this report having
shown that substantial performance benefits might reasonably be expected.

Finally, a cost function based on whole values of input and output variables seems likely to
generate further improvements in the true cost of the process (of which energy is an important
component). This, however, requires some modification to the zero steady-state P matrix
limitation that the present Banks' formulation requires for the on-line Riccati method.
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Fig. 3. Responses of optimal control from zero initial separation.
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Fig. 7. Responses of linear control with I.C's close to steady state.
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input excursion, V. Feed 1.C's, K=9.0, A=0.011.
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21




e
~
&

separation

— linear

optimal
1 L 1 1 1
20 25 30 35 45 50
T
T T T T T
— linear
optimal| |
1 1 1 1 1
0 20 25 30 35 45 50
T

0.76

e
N
~

separation

o
~
]

0.7
0

Fig. 16. Comparison between linear and optimal control performances under similar maximum
input excursion, Vg : Near steady-state I.C's, K=20, A=0.002

— linear
optim
20 25 30 35 45 50
T
— linear
optimal| -
20 25 30 35 45 50
T

input excursion, Vg : Near steady-state 1.C's, K=65, A=0.00017,

with relaxed Vg-limit to 0 € Vg < 10Vs
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Appendix 1

Derivation of Coefficient Matrices A', B'y and B'; for the Bilinear CSTC Model
Based on Error Coordinates

Firstly it is necessary to split matrix B into its constant and state-proportional components,
ie.

B=B;+B;x

and from eqn. (6) therefore :

[ e-S—aS, | - 5
LV Bl B g o
{ } LV LV LV S
a1S.(1)-S.
B=|—o 2l 0 [+ 0 - = |5,
LV LV LV
1 1 |s (1)
S—aS,(1)+e = R 0 —— | P
—_— aVT VT |L |
oVT aVT I ]
. e
LV LV LV
Therefore, B, = 0 and B, = 0 B &
LV LV
.- L S
VT aVT VT
. L i

Similarly, for matrix J, from eqn. (7), we deduce :

lz-_].0+lll
E = 0 0 0 [
LV(a+1) LV(a+1) 8
I= 0 = 0 +| 0 0 0 S,
S—aS.(1)+¢ £ 1 0 _1_ S.(1)
aVT oVT oVT VT [ -
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0 and

Therefore Io

From eqn. (21)

A'=A+u,B,+dJ,

using eqns. (2), (6) and (7), we get :

[ 1 |- L <«
_aL+eg { 0 LV LV
oL
A=| 1 1ool+Y| o -
S a LV
0 0 0 1
—_— 0
i ] aVT
_ol+e V(1 V(e
al o\ LV al\LV
= 1 ....1_1/. i
al\LV
V(1 Ve 1
——|+— | — 0
al\oVT o \aVT
okt L=l g
L L,
Therefore, A'= 1 il L
L L
1
1 0o L
aT T
L .

This is reproduced as eqn. (28) in the main text.

For the calculation of expression for the elements of matrices B'y and By,

reference vector

0 0 0
L=l 0 0 o0
1 s 1
oVT VT
(A1.1)
0 0O 0 0
2 WY s 0 o
LV o
et \1.7T < _%
VT t
0

(A1.2)

we introduce

23




S
51’ = SC!'
Ser (1)

r

(A1.3)

and note from eqn. (31) {eqn. (38) in RR573}, that aS. (1)—S, =& so that, separating the
constant and state-dependent components of B in eqn. (6) we obtain from eqn. (22) :

E'():EO"'EIEr
[ & 1.1 _e 0 T ]
v LV LV S,
= 0 + 0 _-a_ i Scr
LV LV
E 1 0 ____1_ Ser(l)
L(IVT_ oVT VT |- -
e S, oS, | [ &=S:=%Se ]
LV LV LV Ly
- _(IScr+(lscr(1) _ (I{Sc,-(l)_ser} (Al.4)
LV LV LV
= + S, _Ser(l) Sy~ () +e
aVT oVT VT aVT

This result is reproduced as eqn. (30) in the main text.

For calculating the elements of B'jy in terms of just L, o and €, we restate eqns.(30), (32) and

(33) respectively as :

B'oﬁ% (A1.5)
er:S,(L+1)(a+1)—2t—: (ALS)
(L=-D(a+1)
¢ [(30:+1)L+a—1} (51D
(+1)| Ba-1)L+a+1

Hence,
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1 1)-
5,5, mems, - LD oe]

(L-D(a+1)
_ e(L—1)(a+1)~—Sr(L—1)(a+1)—0LSr(L+1)(0t+I)+20L£

(L-1(o+1)
g(L-D(a+1)+2ae-S, (a+D[(L-1+oa(L+1)]

B (L-D)(o+1)
g(L-D(a+1)+20e-S, (a+1)[L(a+1)+€]

- (L—1)(o+1)
elo+eL—eo—e+20e—S, (a+D[L(a+1)+¢e]

- (L-1D(o+1)
eL(a+1)+e% =S, (a+D[L(a+1)+g]

. (L-1)(a+1)
e[L(a+1)+€] =S, (a+D[L(o+1)+e]

- (L—1)(a+ 1)

[L(a+D+e])[e-S, (a+D)]

- (L-1)(o+1)

Finally, substituting for S using eqn. (A1.7), we conclude that the term :

LI [L(a+1)+ﬁ]{ede{(3(1+1)L+(1—1H

(L-1)(ax+1) Ba-1)L+a+1

(L-D(a+1) Bo-DL+oa+1

_[L@+n+e] [1 1{(3a+1)L+a—1H

_[L@+D+e] -(30L——1)L+a+1—(30L+1)L—a+1}

(L D(a+1) | Bo—-1)L+oa+1

[L(a+1)+e] L{Ga-1)-GBa+1)}+2
C-D+D) | Ga-DL+o+1

_[Letn+e] E' —2L+2
T (L-D(a+1) | BGa-DL+o+1

_ ~2¢[L(a+1)+e|(L-1)
C(L-D(@+D[Ga-D)L+a+1]

~2¢[L(ou+1)+¢]

Therefore By =
LV(a+D[Ba—L+0+1]

(A1.8)
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This result is restated as eqn. (34) in the main text.

Similarly, for elements B',, from eqn. (Al.4)

a{scr (1) - Scr}
LV

0=
and from the RHS of eqn. (35) in RR573
Sc:r 1)- Ser = L(Ser - Sr)

Hence, it follows from eqns. (A1.9), (A1.10) and (32) that :

af S (L+D@+D-2¢ ¢
SV @-D(a+D) b

[ S (L+D(@+1)=S,(L-D(a+1)-2¢
A% (L-D(a+1)

L

al S @+ D{L+n-@L-1}-2¢
v (L-D(o+1)

L

af2s(@+1)-2¢
V| (L-D(a+1)

Substituting for S; using (A1.7) we get :

 « —28{(3a+1)L+a—1}_2
_V(L—l)(0t+1)L {(3(1—1)L+a+1} ¢

2e0 —3aL+L+a—l—3aL+L-—a—l

TVL-Da+D)| Ga-DL+a+1

_ 2eQ [ 2(L-1)
V(L-1)(o+1)| Bo—DL+o+1

|

(A1.9)

(A1.10)
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4e0

Therefore Bgp= ;
V(o+D[(Ba—1)L+o+1]

This is restated as eqn. (35) in the main text.

Finally, for the matrix B' 3, we note from eqn. (A1.4) that

C e+S,—0S, (1)
i ——

and since from eqn. (31) {eqn. (38) in RR573}
aS, ()-S5, =¢

we obtain :

—E+E
- aVT

Bf 03 = O
This equation is restated as eqn. (36) in the main text.

Finally we note that, from eqns. (23) and (38) that :

B'=B,

F ”
L N 0
LV LV
e e o

LV LV
5 L
| aVT VT

(A1.12)

(Al.14)

28




