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Abstract 

To reconstruct the cycling of reactive phosphorus (P) in the Bering Sea, a P 

speciation record covering the last ~4 Ma was generated from sediments recovered 

during Integrated Ocean Drilling Program (IODP) Expedition 323 at Site U1341 

(Bowers Ridge). A chemical extraction procedure distinguishing between different 

operationally defined P fractions provides new insight into reactive P input, burial and 

diagenetic transformations. Reactive P mass accumulation rates (MARs) are ~20-

110 µmol/cm2/ka, which is comparable to other open ocean locations but orders of 

magnitude lower than most upwelling settings. We find that authigenic carbonate 

fluorapatite (CFA) and opal-bound P are the dominant P fractions at Site U1341. An 

overall increasing contribution of CFA to total P with sediment depth is consistent 

with a gradual “sink switching” from more labile P fractions (fish remains, Fe oxides, 



organic matter) to stable authigenic CFA. However, the positive correlation of CFA 

with Al content implies that a significant portion of the supposedly reactive CFA is 

non-reactive “detrital contamination” by eolian and/or riverine CFA. In contrast to 

CFA, opal-bound P has rarely been studied in marine sediments. We find for the first 

time that opal-bound P directly correlates with excess silica contents. This P fraction 

was apparently available to biosiliceous phytoplankton at the time of sediment 

deposition and is a long-term sink for reactive P in the ocean, despite the likelihood 

for diagenetic re-mobilisation of this P at depth (indicated by increasing ratios of 

excess silica to opal-bound P). Average reactive P MARs at Site U1341 increase by 

~25% if opal-bound P is accounted for, but decrease by ~25% if 50% of the 

extracted CFA fraction (based on the lowest CFA value at Site U1341) is assumed to 

be detrital. Combining our results with literature data, we present a qualitative 

perspective of terrestrial CFA and opal-bound P deposition in the modern ocean. 

Riverine CFA input has mostly been reported from continental shelves and margins 

draining P-rich lithologies, while eolian CFA input is found across wide ocean regions 

underlying the Northern Hemispheric “dust belt”. Opal-bound P burial is important in 

the Southern Ocean, North Pacific, and likely in upwelling areas. Shifts in detrital 

CFA and opal-bound P deposition across ocean basins likely occurred over time, 

responding to changing weathering patterns, sea level, and biogenic opal deposition.  

Keywords: Integrated Ocean Drilling Program, Bering Sea, phosphorus, sequential 

extraction, biogenic opal, carbonate fluorapatite.  

 

 

 



1.1 Introduction 

Phosphorus is a key biolimiting nutrient that exerts a major control on marine primary 

productivity over geological - and potentially shorter - time scales (Redfield, 1958; 

Codispoti, 1989; Krom et al., 1991; Van Cappellen and Ingall, 1996; Cotner et al., 

1997; Tyrell, 1999; Benitez-Nelson, 2000; Filippelli, 2008). Marine productivity in the 

photic zone is, in turn, a key factor for the photosynthetic sequestration of the 

greenhouse gas CO2 in the ocean interior and eventually in the sediments. Therefore, 

the amount of bioavailable P in the photic zone may directly influence the global 

carbon and nutrient cycles, and thus Earth’s climate. In the upper layer of the oceans, 

P is taken up by phytoplankton that settles through the water column, is partially re-

mineralized during sinking (Paytan et al., 2003), and eventually deposited at the sea 

floor (Froelich et al., 1982; Benitez-Nelson, 2000). In addition, P is delivered to the 

sea floor as hydroxyapatite fish remains (Suess, 1981; Posner et al., 1984; Schenau 

and de Lange, 2000, 2001; Matijevic et al., 2008), adsorbed to Fe (oxyhydr)oxides 

(Einsele, 1938; Berner, 1973; Slomp et al., 1996; Delaney, 1998; Poulton and 

Canfield, 2006), and as detrital P minerals (Faul et al., 2005; Paytan and Faul, 2007; 

Lyons et al., 2011). Phosphorus associated with opal frustules of marine algae is 

another, currently understudied, component of the oceanic P cycle where diatoms 

dominate primary productivity (e.g., North Pacific, Southern Ocean) (Latimer et al., 

2006; Tallberg et al., 2008, 2009; Küster-Heins et al., 2010a; Lyons et al., 2011).  

An important factor in the global P cycle is its burial into marine sediments, which 

regulates the oceanic reservoir of bioavailable P. Current calculations of the pre-

anthropogenic oceanic P residence time range from 8,800 to 36,000 years, based on 

different estimates of reactive marine P sources, sinks, and reservoirs (e.g., 

Ruttenberg, 1993; Delaney, 1998; Benitez-Nelson, 2000; Ruttenberg, 2001; Baturin, 



2003; Wallmann, 2003, 2010). In these calculations, the sink term (i.e., the burial 

rate of reactive P into marine sediments) is a major uncertainty because reactive P 

phases are affected by various biogeochemical transformations at and below the 

sediment-water interface.  

Under oxygen-depleted conditions, organic and Fe-bound P may be released into 

the water column (Ingall et al., 1993; Ingall and Jahnke, 1997) due to the inhibition of 

P uptake by microbes (Gächter et al., 1988;Jilbert et al., 2011; Steenbergh et al., 

2011) and the dissolution of Fe (oxyhydr)oxides (Sundby et al., 1992; Anschutz et al., 

1998; Virtasalo et al., 2005; Jordan et al., 2008).This can result in an overall 

depletion of reactive P from the sediment under anoxic conditions (Filippelli, 2001; 

Algeo and Ingall, 2007; März et al., 2008; Kraal et al., 2010). Post-depositional 

processes (“sink switching”) also affect reactive P burial on the long term by 

transferring P between different particulate forms within the sediments (Ruttenberg 

and Berner, 1993; Filippelli and Delaney, 1996; Delaney, 1998; Anderson et al., 

2001). Sink switching transforms P from labile phases (e.g., adsorbed/Fe-

bound/organic P) via an amorphous Ca-phosphate precursor (Van Cappellen and 

Berner, 1991; Schenau et al., 2000; Gunnars et al., 2004) to diagenetically stable 

authigenic carbonate fluorapatite (CFA). This process occurs in most marine 

environments (Ruttenberg and Berner, 1993) and results in an increased reactive P 

burial efficiency (Delaney, 1998; Wallmann, 2010).  

In this study we evaluate P burial and diagenesis in Plio- to Pleistocene sediments of 

the central Bering Sea. Applying a combination of quantitative geochemical analyses 

and a sequential P extraction, we show how depositional and diagenetic processes 

affected the fractionation of P and reactive P mass accumulation rates in the Bering 

Sea. Based on available data, we estimate how the recognition and interpretation of 



certain sedimentary P fractions can have wider implications for the reconstruction of 

the P cycle in ocean regions comparable to the Bering Sea (i.e., high biosilica 

productivity, high eolian/riverine input). 

 

1.2 Material and Methods 

Sample material was obtained in 2009 during IODP Expedition 323 to the Bering 

Sea (Expedition 323 Scientists, 2010; Takahashi et al., 2011) from Site U1341 

(western flank of Bowers Ridge; 54° 02.00’ N, 179° 00.52’ E; ~2140 m water depth) 

(Fig. 1). Sediment cores were retrieved from the United States Implementation 

Organization (USIO) drill ship JOIDES Resolution by the Advanced Piston Coring 

(APC, to 458 m drilling depth below sea floor, DSF) and the Extended Coring Barrel 

(XCB, to 600 m DSF) systems. The composite record was established as a splice of 

Holes 1341A, B and C. The age model is based on shipboard magneto- and 

biostratigraphy (Expedition 323 Scientists, 2010; Takahashi et al., 2011), and revised 

datums obtained by onshore biostratigraphic studies (Onodera et al., 2013). 

Extrapolating linear sedimentation rates beyond the oldest datum (~3.87 Ma) results 

in a maximum sediment age of ~4.3 Ma at Site U1341 (Takahashi et al., 2011).  

Sediments at Site U1341 dominantly consist of biogenic opal and detrital clay to silt, 

with minor sand layers, volcanic ash beds, semi-lithified authigenic carbonate layers 

and biogenic carbonate (Aiello and Ravelo, 2012). Shipboard geochemical analyses 

involved pore water extraction by pressure squeezing of whole rounds and 

subsequent determination of iron, phosphate and alkalinity, as well as total organic 

carbon (TOC) analysis. Respective methods and data are published in the IODP 

Expedition 323 Preliminary Report and Proceedings (Expedition 323 Scientists, 2010; 



Takahashi et al., 2011). For further geochemical analyses, ~190 sediment samples 

were obtained onboard from whole-round pore water squeeze cake residues (~10 

cm thickness) and discrete plastic scoop samples (2 cm thickness), and stored 

frozen until further processing. Onshore, sediment samples were freeze-dried and 

ground in an agate ball mill. Instantaneous freezing after onboard sampling followed 

by rapid onshore freeze-drying guaranteed minimum air exposure, preventing 

oxidation of pyrite and possible effects on P speciation in these samples (Lukkari et 

al., 2007; Kraal et al., 2009).  

Around 700 mg of each sample were mixed with 4200 mg of dilithiumtetraborate 

(Li2B4O7, Spectromelt A10), pre-oxidized at 500°C with ~1000 mg NH4NO3, and 

fused to homogeneous glass beads. Glass beads were analysed for Al, Si and P 

contents by wavelength-dispersive X-ray fluorescence (XRF, Philipps PW 2400). 

Analytical precision and accuracy were better than 5%, as checked by in-house and 

international standard materials. The Si and P data are displayed as excess element 

contents relative to Upper Continental Crust (UCC; Wedepohl, 1995) to illustrate 

element enrichments or depletions relative to the background sediment composition 

(elementxs = elementsample – Alsample * (element/Al)UCC) (Brumsack, 2006). Mass 

accumulation rates (MAR, µmol/cm2/ka) were calculated by multiplying dry bulk 

densities from onboard moisture and density (MAD) measurements [g/cm3] 

(Expedition 323 Scientists, 2010; Takahashi, Ravelo, Alvarez Zarikian et al., 2011) 

with the respective P fraction [µmol] and linear sedimentation rates [cm/ka].  

To constrain the phase associations of P in Bering Sea sediments, a sequential 

extraction scheme adapted from Ruttenberg (1992), Schenau and De Lange (2000), 

and Latimer et al. (2006) was applied to ~100 freeze-dried sediment samples (Table 

1). The extractions yield six operationally defined P fractions that are leached with 



specific extraction reagents. The frequently applied and well-tested SEDEX scheme 

(Ruttenberg, 1992; Ruttenberg et al., 2009) differentiates between loosely adsorbed 

P, P bound to Fe (oxyhydr)oxides, authigenic apatite, detrital apatite, and organic P 

(here referred to as extraction steps 1-5, respectively). Step 1 was modified by 

Schenau and De Lange (2000) to determine P bound to fish remains and/or 

amorphous Ca-phosphates. Latimer et al. (2006) added an extraction step for opal-

associated P (Step 6). According to Ruttenberg (1992), reactive P is defined as the 

sum of all sequentially extracted P fractions without detrital apatite (Step 4).  

The P extracted during steps 1, 3, 4 and 5 was analysed by the molybdate blue 

method using a UV/Vis spectrophotometer (Thermo Genesys 6, 880 nm) (Strickland 

and Parsons, 1972). The P extracted during steps 2 and 6 was analysed by 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, Varian Vista-

MPX). This technique was preferred for step 6 because the photometric 

quantification of opal-bound P described by Latimer et al. (2006) failed due to the 

strong interference of the molybdate colour complexes formed with both phosphate 

and silicic acid (Henriksen, 1966; Campbell and Thomas, 1970; Neal et al., 2000). 

As the studied sediments contain much more opal-bound Si than opal-bound P, this 

P fraction is overestimated by photometric analyses. A photometric interference has 

also been reported for the citrate-containing extraction solution used during step 2 

(Lanzetta et al., 1979; Ruttenberg, 1992), and thus ICP-OES was used to determine 

P in this extract. Parallel ICP-OES analysis of opal-bound P and Si failed due to Si 

concentrations in the extraction solutions exceeding those of P by several orders of 

magnitude.   

Triplicate extractions and analyses were performed on three samples from the top, 

middle and bottom of the U1341 record to test the reproducibility of the extraction 



technique. The resulting relative standard deviations (RSD) range from 1 to 13%, 

depending on the relative contents of the respective P fractions (Table 1). Thus, 

despite the operationally-defined nature of the sequential extraction scheme 

(Ruttenberg, 1992), our data are internally consistent. All data are provided as 

Supplementary Information. 

 

1.3 Results 

1.3.1 Bulk element analysis 

As shown in a study on the general geochemistry of Pliocene-Pleistocene Bowers 

Ridge deposits (März et al., 2013), Al2O3 and SiO2 are the main constituents of the 

sediments at Site U1341 (Fig. 2). At 60-80 wt%, SiO2 is clearly dominant (Fig. 2), but 

with an overall decrease from older to younger sediments. The Al2O3 record (2-15 

wt%) shows an opposing overall trend, with values that increase upcore (Fig. 2). 

Mutual dilution of SiO2 and Al2O3 is illustrated by a negative linear correlation 

coefficient (R2) of 0.86 (März et al., 2013). While the Al2O3 record documents the 

input of fine-grained terrigenous siliciclastic material (e.g., clay minerals, feldspars), 

the SiO2 record is mostly shaped by the variable contents of biogenic opal at Site 

U1341 (Aiello and Ravelo, 2012; März et al., 2013). The Sixs record (i.e., the fraction 

of Si in excess of UCC) shows consistently positive values, implying that sediments 

at Site U1341 are enriched in Si relative to UCC over the last ~4.3 Ma as a result of 

biogenic opal deposition (März et al., 2013; Onodera et al., 2013). The intervals 

between 210 and 380 m CCSF-B and below 500 m CCSF-B are the most Si-

enriched, with several Sixs peaks between 20 and 35 % (Fig. 2). Total P contents 

vary from 100 to 624 ppm (average of 305 ppm; UCC = 757 ppm; Wedepohl, 1995) 



with a slight overall trend towards higher P contents in younger sediments. 

Calculating Pxs contents (analogous to Sixs) results in negative values throughout 

most of the record, implying that in contrast to Si, the sediments are slightly depleted 

in P relative to UCC (Fig. 2). The shipboard TOC record shows an overall increase 

towards younger sediments, with values mostly between 0.2 and 1.0 wt% (Fig. 2).  

 

1.3.2 Sequential P extraction 

The absolute P contents and relative contributions of each of the six sequential 

extraction steps to total P are displayed against sediment depth in Figures 3 and 4, 

respectively. Average contributions of the different P fractions to total P, as well as 

the relative percentage of reactive P (with/without opal-bound P and detrital CFA) 

against sediment depth are shown in Figure 5. Figure 6a displays reactive P MARs 

(with/without opal-bound P and detrital CFA). Collectively, these figures document 

the contributions of the extracted P fractions over the Site U1341 record.  

Both Fe-bound P (Step 2) and organic P (Step 5) are of minor importance, with 

average contents of 7 and 19 ppm, respectively (corresponding to 2 and 6% of total 

P; Fig. 5a). The contribution from fish remains (Step 1) is also low over most of the 

record (on average 28 ppm and 10% of total P; Fig. 5a) apart from isolated peaks 

where fish remains reach up to 44% of total P, and these are also recognised in the 

bulk P record (Fig. 4). The overall shape of the detrital apatite record (Step 4) is 

similar to the fish remains, with mostly low values (on average 47 ppm and 16% of 

total P; Fig. 5a) and some isolated maxima reaching up to 55% of total P (Fig. 4).  

The overall dominant P fractions at Site U1341 are authigenic CFA (Step 3) and 

opal-bound P (Step 6). Authigenic CFA contributes on average 105 ppm and 35% to 



total P (Fig. 5a), with a clear trend to higher values below ~100 m CCSF-B (up to 

180 ppm and 47% of total P; Figs. 3, 4). Opal-bound P averages 49 ppm and 17% of 

total P (Fig. 5a), but shows highest contents in the middle part of the record (maxima 

of 100 ppm and 39% of total P; Figs. 3, 4). Taken together, the contribution of 

reactive P in the studied sediments (including opal-bound P) is on average 208 ppm 

and 70% of total P, showing a dominance of reactive over non-reactive (i.e., detrital 

mineral-bound) P at Site U1341 (Fig. 5b). Without the contribution of opal-bound P, 

the reactive P contribution would be reduced to an average of 53% (Fig. 5b). The 

resulting reactive P MARs at Site U1341 are 23-107 µmol/cm2/ka (including opal-

bound P) and 17-89 µmol/cm2/ka (excluding opal-bound P), with average MARs of 

57.5 and 43.9 µmol/cm2/ka, respectively (Fig. 6a).  

Regarding relationships between the extracted P fractions and the bulk composition 

of the sediment, the authigenic CFA fraction correlates positively with Al contents (R2 

= 0.76), and negatively with Sixs contents (R2 = 0.75; Fig. 7). In contrast, the opal-

bound P fraction is most important in the most Si-enriched samples (Figs. 2, 4), and 

there is a moderate yet significant positive correlation between opal-bound P and 

Sixs (R
2
linear = 0.53; R2

logarithmic = 0.59; Fig. 7). The average weight (molar) ratio 

between Sixs (i.e., opal-bound Si) and opal-bound P is ~4,290 (~4,730), with a trend 

to increasing Sixs/opal-bound P ratios downcore (Fig. 6b), and a clear positive 

correlation between Sixs/opal-bound P ratios and Sixs contents (Fig. 7). The residual 

P correlates positively with Al, but with a slightly lower correlation coefficient (R2 = 

0.65) than the CFA fraction (Fig. 7). The remaining P fractions show no relationships 

with bulk geochemical parameters.  

Comparing the sum of all extracted P fractions to the total P contents as determined 

by XRF (Figs. 3 a, b), the sequential extraction steps recovered on average ~85% of 



total sedimentary P. While the nature of the residual P pool is unknown, earlier 

studies (Ruttenberg, 1992; Lukkari et al., 2007a; Küster-Heins et al., 2010b) also 

found that the SEDEX procedure did not extract all sedimentary P. The physical loss 

of sample during the SEDEX procedure (i.e., by decanting the supernatant extraction 

solution) might account for this incomplete recovery (Ruttenberg, 1992). However, 

comparison with an updated version of the extraction scheme (SPExMan-SEDEX; 

Ruttenberg et al., 2009) showed that a careful application of the “classical” SEDEX 

protocol should not result in significant sample loss. Consequently, another 

explanation for the residual P fraction at Site U1341 appears likely, particularly given 

the clear positive correlation between the P recovery and the Al contents of the 

samples (Fig. 7), such that the P extraction recovery was lowest in Al-rich samples, 

and highest in Si-rich samples (Fig. 4). 

 

4.1 Discussion 

At IODP Site U1341, the combination of sequential P extraction and total element 

analyses provides insights into the reactive and non-reactive P pools in the Plio-

Pleistocene Bering Sea sediments. Despite the obvious spatial limitation of our data-

set, the findings related to the CFA and opal-associated P fractions are transferrable 

to other, comparable parts of the world ocean, and question some conceptions of the 

global oceanic P cycle. Figure 8 illustrates P sources, transfer processes, and sinks 

in the Bering Sea water column (photic zone, intermediate to deep waters) and 

sediments (above and below ~50 m depth). Here, we discuss the different P 

fractions at Site U1341 regarding reactive and non-reactive P pools, and related 

paleoenvironmental conditions and processes. 



 

4.1.1 Detrital input and the non-reactive P contribution 

The non-reactive fraction of sedimentary P, defined as mineral-bound P that was not 

bioavailable prior to its deposition at the sea floor and does not undergo phase 

changes upon burial (Fig. 8), comprises P in well-crystallised detrital heavy minerals 

(e.g., magmatic/metamorphic fluorapatite; Ruttenberg, 1992). Zhang et al. (2010) 

reported detrital P as the dominant P pool in surface sediments of the shallow Bering 

Sea shelf, mostly delivered by the Yukon River (Dornblaser and Striegl, 2007) 

draining magmatic and metamorphic rocks. However, the delivery of riverine detrital 

P to an open marine setting like Bowers Ridge requires efficient offshore transport by 

strong currents, winds, and/or sea ice. This additional transport step probably 

explains the overall minor contribution of detrital P at Site U1341 (Fig. 5a).  

At Site U1341, the positive correlation between the non-extractable P record (in % of 

total P) and the Al record (Fig. 7) indicates that the residual P pool is bound to 

terrigenous sediments. Possible explanations for this relationship include incomplete 

extraction of a) detrital apatite or other highly refractory P minerals (e.g., xenotime, 

monazite) during Step 4, b) P bound to highly refractory non-extractable organic 

material (Ruttenberg and Goni, 1997), or c) clay-bound P for which the SEDEX 

method was not calibrated (Walker and Syers, 1976; Ruttenberg, 1992). All these 

explanations suggest that the non-extractable P fraction was derived from a 

terrestrial source and can be defined as non-reactive P, similar to the operationally 

defined detrital P fraction (Fig. 8).  

 

4.1.2 Redox and diagenetic effects on fish remains, organic P, and Fe-bound P 



The quantitatively less important P phases extracted at Site U1341 are fish remains, 

Fe-bound P, and organic P (Figs. 3, 4). However, this merely reflects the low 

preservation potential of these P phases in the sediments, and not their probably 

much larger contribution to the transfer of P from the surface waters to the sea floor 

(Fig. 8) (Froelich et al., 1988; Slomp et al., 1996; Küster-Heins et al., 2010a, b). 

Numerous studies have shown that bottom water oxygen contents below ~20 ȝM 

(Wallmann, 2010) may lead to the recycling of Fe-bound and organic P from the 

sediment to the bottom waters (Ingall et al., 1993; Algeo and Ingall, 2007; Mort et al., 

2010; Jilbert et al., 2011). The southern Bering Sea exhibits an oxygen minimum 

zone (OMZ), with O2 concentrations of below ~50 ȝM extending down to Site U1341 

in ~2200 m water depth (Roden, 1995; Takahashi et al., 2011). Although depth and 

intensity of the OMZ likely changed with time, finely laminated sediment intervals 

(Takahashi et al., 2011) and trace metal contents (Wehrmann et al., 2013) document 

suboxic to anoxic sea floor conditions at Site U1341 for most of the last 4 Ma, most 

likely leading to Fe-bound and organic P release from the sediments.  

Upon further sediment burial, the remaining Fe-bound and organic P as well as fish 

remains are transformed into stable, well-crystallised CFA via sink switching 

(Ruttenberg, 2001; Paytan and Faul, 2007). At Site U1341, the pore water profiles of 

iron, alkalinity and phosphate point to most intense organic matter remineralisation in 

the upper ~30 m of the sediment section (Takahashi et al., 2011). Below this depth, 

phosphate concentrations decrease from ~50 ȝM along a “concave-down” profile to 

~10 ȝM below ~300 m sediment depth, similar to pore water phosphate profiles in 

the Sea of Japan (Föllmi and Von Breymann, 1992). This pore water profile 

documents that sink switching and disperse CFA formation below ~30 m sediment 

depth (at the expense of organic and Fe-bound P) is and was taking place at Site 



U1341 (Fig. 8) (Ruttenberg and Berner, 1993; Filippelli and Delaney, 1996; Delaney, 

1998; Anderson et al., 2001). At the same time, sink switching and redox-controlled 

P release to the water column effectively limit our ability to reconstruct the original 

accumulation rates of Fe-bound and organic P at Site U1341. Also the overall low 

TOC values - which stand in contrast to the high biogenic opal contents – indicate 

that significant early diagenesis has overprinted the original TOC record, as shown 

by Wehrmann et al. (2013). 

 

4.1.3 The dominance and variability of carbonate fluorapatite: Authigenic versus 

detrital 

As described above, sink switching is considered to be the dominant process that 

leads to the formation of CFA in ocean sediments worldwide, and to the long-term 

burial of P in marine deposits (e.g., Froelich et al., 1982, 1983; Ruttenberg and 

Berner, 1993; Föllmi, 1996; Filippelli, 2008). As this process starts within the first few 

meters of the sediment column (e.g., Faul and Delaney, 2000; Küster-Heins et al., 

2010a, b), the CFA contribution to the total P pool usually increases with progressive 

sediment burial (e.g., Filippelli and Delaney, 1996; Delaney, 1998; Anderson et al., 

2001). This trend is also observed at Site U1341 (Fig. 4). However, there is another 

pattern superimposed on the CFA record that is evident from comparison with the Al 

record; the highest contents of CFA consistently occur in Al-rich (detrital) intervals 

while they are lower in the Sixs-rich (biosiliceous) layers (Figs. 4, 5a). This positive 

Al-CFA relationship either indicates that authigenic CFA preferential formed within 

the fine-grained terrigenous sediment layers, or that CFA was delivered together with 

terrigenous material from continental sources (by wind, rivers, or sea ice). The latter 

explanation is favoured for several reasons: (a) If CFA formed within the Al-rich 



layers due to sink switching, the labile precursor phases (Fe-bound P, organic P, fish 

remains) must have been enriched in the Al-rich layers as well. However, both 

organic P and fish remains were likely enriched within the biosilica-rich sediment 

layers that formed due to increased productivity and export of biogenic material to 

the sea floor, leaving only Fe-bound P as a labile P fraction potentially enriched in 

the Al-rich sediment layers. (b) There is no significant correlation between Al and 

TOC contents at Site U1341 (Fig. 2; R2 = 0.16, not shown) that would indicate a 

coupling of organic matter to clay mineral surfaces. (c) Even if significant amounts of 

organic matter were exported to the sea floor in association with fine-grained Al-rich 

detritus, this organic matter would have been more refractory than the fresh algal 

material deposited within the biosilica-rich layers, and thus less likely to release 

organic P compounds. (d) Authigenic phases like CFA usually precipitate where 

sedimentary pore space is available, and biosiliceous deposits have higher 

porosities than clay-rich terrigenous layers. We therefore conclude that the clear 

positive correlation of CFA with Al at Site U1341 is due to a significant terrigenous 

contribution to the CFA record. The idea of terrigenous CFA input into the ocean is 

not new, and is discussed in several studies from different depositional and climatic 

regimes worldwide (Fig. 9, numbers 1-18), allowing the Bering Sea to be considered 

within a global perspective.  

With respect to riverine CFA input, Berner and Rao (1994) found that CFA makes up 

16-30% of total P in suspended and bank sediments of the Amazon River, while it 

was 5-7% of total P in Lagunitas Creek (~40 km north of San Francisco, California) 

(Vink et al., 1997). Compton et al. (1993, 2002) found that most CFA grains in shelf 

deposits off Florida and South Africa were reworked from older phosphorites. While 

no studies exist for the rivers discharging into the Bering Sea, Zhang et al. (2010) 



found a CFA contribution of ~13% of total P on the Bering Sea shelf, most probably 

related to the weathering and erosion of CFA-rich sedimentary rocks in the Alaskan 

hinterland (Patton and Matzko, 1959; Mull et al., 1982; Parrish et al., 2001). This 

river/shelf-derived CFA could have been transported to Bowers Ridge as suspension 

load by currents or sea ice (Fig. 8) (Van Laningham et al., 2009).  

Regarding potential eolian input of CFA to the North Pacific, Flaum (2008) and Guo 

et al. (2011) found that in sediments of the Chinese Loess Plateau and Inner 

Mongolia, 40-74% of total P occurs as CFA. Dust from these Asian regions is 

deposited over the North Pacific (including the Bering Sea), so eolian deposition may 

not only have contributed significantly to the CFA budget at Site U1341, but also to 

the wider ocean region (Fig. 9) (Nakai et al., 1993; Rea, 1994; Mahowald et al., 

2011). The dominance of CFA in eolian and riverine sediment, and its imprint on the 

P speciation of marine sediments, has also been described for the Mediterranean 

(Eijsink et al., 2000), the Red Sea (Anderson et al., 2010), the Gulf of California and 

Santa Barbara Basin (Lyons et al., 2011; Sekula-Wood et al., 2012), and the Arabian 

Sea (Kraal et al., 2012).  

In conclusion, a significant portion of CFA at Site U1341 appears to be terrigenous 

despite the open marine location of Bowers Ridge, and this seems to be true for 

marine deposits from other climatic and depositional settings as well (Föllmi, 1996 

and references therein; Compton et al., 2000; Föllmi et al., 2005; Kraal et al., 2012). 

Our study adds fully marine high-latitude environments to this list, providing they 

receive appreciable amounts of terrigenous material by wind, sea ice, or currents. 

Implications for the general interpretation of marine P records are significant (Fig. 9), 

especially for the question of how much of the operationally defined reactive P was 

readily bioavailable at the time of deposition.  



Following the approach of Ruttenberg (2003), we estimate the average contribution 

of detrital CFA at Site U1341 by assuming that the in situ formation of authigenic 

CFA should be lowest directly below the sediment-water interface, and that the 

detrital CFA input was invariable through time. Although the shallowest sample at 

Site U1341 was taken significantly below the sediment-water interface (4.4 m CCSF-

B), its CFA contribution to total P (23.8%) is close to the minimum analysed value 

(17.8% at 22.7 m CCSF-B), and is thus considered the average contribution of 

detrital CFA at Site U1341. When comparing this value with the average contribution 

of CFA to total P over the whole record (~35%), around 2/3 of the buried CFA at Site 

U1341 would be of detrital origin. Taking the lowest CFA content of 17.8% as the 

average detrital CFA background at Site U1341, the detrital contribution to the CFA 

record would be on average ~50%. This more conservative estimate would still 

reduce the average reactive P MAR at Site U1341 by ~25%, from 57.5 to 42.7 

µmol/cm2/ka (including opal-bound P) (Fig. 6a). 

 

4.1.4 The significance of opal-bound P in biosiliceous sediments 

This study shows that biogenic opal-bound P can be an important sink for reactive P 

in biosilica-dominated regimes like the Bering Sea and elsewhere (Fig. 9, letters a-e). 

Latimer et al. (2006) showed that in opal-rich Southern Ocean sediments (Fig. 9), the 

recognition of opal-bound P significantly increased the reactive P fraction. However, 

beyond the operational separation of the opal-bound P fraction, the precise nature of 

this biosilica-P coupling is unclear. At Site U1341, we show for the first time that the 

highest contents of opal-bound P are directly related to maxima in the Sixs record 

(i.e., biogenic opal) (Figs. 2, 4, 7), while in the Southern Ocean sediments studied by 



Latimer et al. (2006), the relationship between biosilica content and opal-bound P 

was less clear. The latter was explained by opal diagenesis at the Southern Ocean 

sites, leading to partial post-depositional release of opal-associated P to the pore 

waters. While opal-bound P diagenesis likely occurred at Site U1341 as well (see 

below), the weak opal-P relationships observed by Latimer et al. (2006) might be 

artefacts of the photometric opal-bound P quantification (Strickland and Parsons, 

1972) that also posed a challenge at Site U1341 (see Material and Methods section). 

Given the good Sixs to opal-bound P correlation at Site U1341 (Fig. 7), we are 

confident that ICP-OES analysis of the opal-bound P fraction yields more reliable 

data. 

Based on the correlation of opal-bound P with the Sixs record, it can be assumed that 

the opal-bound P record indeed documents a primary depositional signal (i.e., the 

direct incorporation of opal-bound P during biogenic opal formation). There are 

several possible explanations for this biosilica-P coupling: (a) Phosphorus 

incorporated into biosiliceous diatom frustules as highly phosphorylated proteins 

(silaffins, silacidins), which play a critical role in biosilica morphogenesis (Kröger et 

al., 2002; Poulsen et al., 2003; Sumper and Kröger, 2004; Sumper and Brunner, 

2008; Wenzl et al., 2008; Richthammer et al., 2011). Biosilica-bound P was also 

found in soil phytoliths (Giguet-Covex et al., 2013), supporting a tight biosilica-P 

coupling in the natural environment; (b) Phosphorus stored within diatom cells as 

polyphosphate, which has been suggested as a major component of P cycling in 

diatom-dominated aquatic systems (Diaz et al., 2008; Nunez-Milland et al., 2010; 

Orchard et al., 2010; Diaz et al., 2012). (c) Organic matter-bound P protected within 

the diatom frustules during organic P extraction and released upon frustule 

dissolution (Latimer et al., 2006; Abramson et al., 2009). Option (b) is unlikely 



because polyphosphate is originally associated with the organic tissue of the diatom 

cells and seems to be quickly released during diagenesis, potentially contributing to 

CFA precipitation (Diaz et al., 2008, 2012). Therefore, any polyphosphate-sourced P 

would have been released during steps 3 or 5 of the sequential extraction. Option (c) 

is unlikely because the protection of organic P within intact diatom frustules would be 

a function of frustule preservation at the sea floor (e.g., Ragueneau et al., 2000), 

which at Site U1341 was lowest in the interval with highest opal-associated P (Aiello 

and Ravelo, 2012). It therefore appears that opal-bound P as a structural component 

of the diatom frustules is the most likely explanation for the biosilica-P coupling at 

Site U1341. To our knowledge, Si/P ratios of organic-lean opal frustules (i.e., diatom 

or radiolarian cell walls without organic coating) have rarely been determined directly. 

The molar Sixs/opal-bound P ratios at Site U1341 (on average 4,730 mol/mol) are 

orders of magnitude higher than Si/P ratios of modern whole diatom cells under 

various environmental conditions (1-4 mol/mol after Tesson et al., 2009; 10-120 

mol/mol after Baines et al., 2010). However, a diatom frustule cleaned with boiling 

H2O2 (Tesson et al., 2009) had a molar Si/P ratio of ~46, which is close to the lowest 

Sixs/opal-bound P ratio of ~90 at Site U1341 (Fig. 6b), providing some confidence 

that opal-bound P at Site U1341 is indeed a structural component of diatom frustules.  

Irrespective of the original incorporation process(es), the P-biosilica association 

appears to be at least partly preserved in the sediments at Site U1341, as indicated 

by the positive correlation between both parameters. However, the Sixs/opal-bound P 

ratio shows a clear down-core trend to higher values, ranging from minima < 500 in 

the uppermost ~40 m CCSF-B, to a maximum of ~10,000 in the lowest sample (Fig. 

6b). In detail, the Sixs/opal-bound P ratio correlates positively with sediment age (R2 

= 0.56) and depth (R2 = 0.56), and even better with Sixs contents (R2 = 0.76) (Fig. 7). 



There are several possible explanations for these co-variations. The original opal-

bound P may be released with increasing sediment age and/or burial depth due to 

diagenetic processes and/or opal re-crystallisation (similar to opal-bound amino 

acids; King, 1974; Ingalls et al., 2003), and contribute to authigenic CFA formation. 

Alternatively, variable sedimentary Sixs/opal-bound P ratios could reflect differences 

in Si-P uptake stoichiometry over time in response to changing environmental 

conditions, e.g., variable availability of P or micronutrients, or changes in the diatom 

assemblages (Baines et al., 2010, 2011). Irrespective of the specific Si-P interactions 

in the water and/or sediment column, our data show that a significant fraction of the 

opal-bound P pool remains stable under early diagenetic conditions, and contributes 

to the long-term burial of reactive P in marine sediments. At Site U1341, the 

inclusion of this opal-bound P fraction into the reactive P budget increases the 

average reactive P MAR by ~25%, from 43.9 to 57.5 µmol/cm2/ka (assuming only 

authigenic CFA) (Fig. 6a). 

 

4.1.5 Terrigenous CFA, opal-bound P, and the marine reactive P budget 

We have shown that at IODP Site U1341, a close relationship exists between the 

CFA-bound P fraction and the detrital sediment input. There also seems to be a 

strong contribution of opal-bound P to the total P pool that is directly coupled to 

biogenic opal deposition. The association of these two P fractions with the detrital 

and biosiliceous components of the sediment, respectively, has a significant impact 

on the calculation of reactive P MARs in the central Bering Sea, and may have 

important implications for our understanding of the marine P cycle as a whole (Fig. 8). 

Findings based on only one sediment record from the Bering Sea cannot be directly 



extrapolated to the global ocean, and thus further studies are required to fully 

consider implications for the global P cycle. Nevertheless, our results agree with 

other studies from various climatic and depositional environments worldwide (Fig. 9), 

allowing for an initial consideration of some potential implications for the global 

marine P cycle.  

Comparing reactive P MARs at Site U1341 with published values from other parts of 

the world ocean supports the view of Bowers Ridge as an open ocean depositional 

setting, as already suggested by the generally low Al2O3 and high Sixs contents (Fig. 

2). Irrespective of the inclusion of opal-bound P into, and exclusion of detrital CFA 

from, the reactive P budget, average reactive P MARs at Site U1341 are between 

42.7 and 57.5 µmol/cm2/ka, with most samples ranging between 20 and 100 

µmol/cm2/ka (Fig. 6a). These reactive P MARs are similar to values from the 

Equatorial Pacific (Filippelli and Delaney, 1994; Filippelli, 1997), the South China 

Sea and Sea of Japan (Tamburini and Föllmi, 2009), but 1-2 orders of magnitude 

lower than values from modern upwelling areas (Arabian Sea, Peru margin; Filippelli 

and Delaney, 1992; Schenau and de Lange, 2001; Tamburini and Föllmi, 2009). 

Comparing our data with Latimer et al. (2006), we find that reactive P MARs at 

Bowers Ridge are on average 4-5 times higher than in the Southern Ocean (ODP 

Sites 1089 and 1095), but the inclusion of opal-bound P increases reactive P MARs 

by on average ~25% in both environments. This provides support for the suggestion 

by Latimer et al. (2006) that in opal-dominated ocean regions, reactive P burial rates 

might be substantially underestimated. On the other hand, Figure 9 illustrates that 

many coastal upwelling areas (e.g., off California, Namibia, Morocco, the Arabian 

Sea), but also open ocean environments (Equatorial Atlantic, North Pacific) may 

receive significant amounts of detrital CFA via rivers and/or dust, and reactive P 



MARs in those areas might have been overestimated. These issues are discussed 

below in more detail. 

Estimates of the oceanic P residence time (Ruttenberg, 1993; Wallmann, 2003; 

Tamburini and Föllmi, 2009; Wallmann, 2010) usually assume that the CFA fraction 

extracted during Step 3 represents an authigenic (i.e., reactive) mineral phase, 

formed by in situ sink switching from labile P phases that directly sampled the 

dissolved marine phosphate reservoir. However, CFA eroded from sedimentary 

rocks on land would not dissolve under normal marine pH and temperature 

conditions (Fig. 8) (Guidry and Mackenzie, 2003; Carbo et al., 2005; Harouiya et al., 

2007; Anderson et al., 2010; Furutani et al., 2010; Savenko, 2010), and should 

therefore be treated as non-reactive. Defining the CFA fraction as being exclusively 

derived from the reactive P pool would lead to an overestimation of reactive P burial 

rates (Compton et al., 2000; Ruttenberg, 2003; Kraal et al., 2012).  

As illustrated in Figure 9, detrital CFA input appears to be highest in regions that 

receive detritus from CFA-rich lithologies (e.g., from the Asian, North African and 

Arabian deserts, the Inner Asian loess areas, or from black shales) (Eijsink et al., 

2000; Chernoff and Orris, 2002; Orris and Chernoff, 2002; Flaum, 2008; Anderson et 

al., 2010; Furutani et al., 2010; Guo et al., 2011; Kraal et al. 2012). According to 

Shemesh (1990), these CFA-containing lithologies should be Mesozoic-Cenozoic in 

age, as in older sedimentary rocks the authigenic CFA is usually recrystallized to 

carbonate-free fluorapatite, which would be extracted as detrital apatite sensu 

Ruttenberg (1992). Figure 9 also shows that highest terrestrial CFA contents in 

marine sediments were reported from permanently arid and/or cold regions with 

dominantly physical weathering (e.g., deserts or polar latitudes) (Eijsink et al., 2000; 

Flaum, 2008; Anderson et al., 2010; Furutani et al., 2010; Zhang et al., 2010; Kraal 



et al., 2012). This seems logical, as prolonged chemical weathering under humid 

conditions creates acidic soils (e.g., peat bogs, tropical soils), leading to partial 

dissolution of CFA in the terrestrial environment (Walker and Syers, 1976; Smeck, 

1985; Guidry and Mackenzie, 2000, 2003; Le Roux et al., 2006; Harouiya et al., 

2007). In open marine regions beyond the immediate influence of river-borne CFA, 

the deposition of eolian CFA certainly plays a significant role, especially within the 

Northern Hemisphere “dust belt” between ~10 and ~60°N (Prospero et al., 2002; 

Maher et al., 2010). In this region, large amounts of potentially CFA-rich dust are 

redistributed from the Asian, Northern African and Arabian deserts across the North 

Pacific, Equatorial Atlantic and Arabian Sea, respectively (Fig. 9) (Mahowald et al., 

2008; Maher et al., 2010). 

Apart from the spatial component in detrital CFA input to the modern ocean, a 

temporal component can be expected as well for a number of reasons. For example, 

during glacial periods, arid conditions were globally more widespread than today, 

resulting in higher dust fluxes across most ocean basins (Rea, 1994; Kohfeld and 

Harrison, 2001; Latimer and Filippelli, 2001). It can be assumed that more eolian 

CFA was delivered to the oceans as well, which could have contributed to the high 

glacial reactive P MARs observed by Tamburini and Föllmi (2009) in glacial 

sediments underlying the Northern Hemisphere “dust belt” (South China Sea, Sea of 

Japan, Oman margin, Equatorial Atlantic) (Fig. 9). On the other hand, the potential 

for detrital CFA transport especially to continental margin sediments was likely 

higher during de-glacial phases; the melting of continental ice sheets caused 

increased global river runoff and suspended sediment delivery (including eroded 

CFA) to the coastal ocean (Marshall and Clarke, 1999; Clark et al., 2001; Menot et 

al., 2006), while the flooding of continental shelves mobilised and re-deposited pre-



formed CFA in deeper marine settings (Compton et al., 2000; Filippelli et al., 2007). 

We conclude that detrital CFA input to various marine environments is likely a 

significant issue on glacial-interglacial timescales, but current extraction methods do 

not allow a distinction between the detrital and authigenic CFA fractions.   

While detrital CFA in marine sediments might lead to an overestimation of marine 

reactive P burial, excluding opal-bound P from the reactive P budget will have the 

opposite effect. Our Site U1341 data imply that the amount of opal deposited and 

preserved at the sea floor has a direct impact on the removal of bioavailable P from 

the overlying water column, although the exact opal-P binding mechanism remains 

unclear (Fig. 8). This hypothesis was first established by Latimer et al. (2006) for the 

Southern Ocean, and their preliminary calculations resulted in shorter oceanic P 

residence times due to increased reactive P burial in the Southern Ocean. The same 

should generally apply to other marine settings dominated by biosiliceous 

productivity (i.e., the North and Equatorial Pacific, and upwelling areas such as off 

California, Peru/Chile, Namibia, Arabian Sea; Lisitzin, 1996; Hüneke and Henrich, 

2011) (Fig. 9). 

However, quantifying the opal-bound P sink term is complicated by the shifting 

extent and geographical location of biosilica deposition with geological time (e.g., 

Cortese et al., 2004). During interglacials, for example, biosilica accumulation rates 

were higher than during glacials in many parts of the world ocean (Kohfeld et al., 

2005 and references therein), and were most probably accompanied by an 

increased burial of opal-associated P. On longer time scales, the Eocene was an 

epoch of increased marine biosilica deposition worldwide (McGowran, 1989; Muttoni 

and Kent, 2007; Moore, 2008; Stickley et al., 2008), and reactive P burial in direct 

association with biosilica may have played a significant role in global nutrient 



dynamics during past climate conditions. Our understanding of opal-bound P (e.g., 

occurrence, taxonomic effects, diagenetic stability) is currently too limited to quantify 

its contribution to global reactive P burial in marine sediments, and further studies in 

this direction are clearly needed. However, it is evident from this and other studies 

that biosilica-rich sediments may contain large amounts of reactive P bound within 

opal frustules, and this potentially significant reactive P sink needs to be accounted 

for in future research. 

 

5.1 Conclusions and Outlook 

Our study shows that in the Bering Sea, but also in comparable modern and paleo-

environments (i.e., open marine locations, high biosilica productivity, appreciable 

terrestrial input by wind/rivers/currents), a revised approach needs to be adopted for 

a correct interpretation of sedimentary P records. Methodological modifications may 

lead to a more complete understanding of reactive P burial over wide areas of the 

global ocean, and hence of marine P dynamics. As the SEDEX scheme often does 

not extract all sedimentary P, we recommend to determine the total P content 

independently (i.e., by XRF or ICP-OES analysis) (Ruttenberg, 1992). This will lead 

to a more realistic estimation of the reactive P contribution to the total P content. In 

order to recognize potential correlations between the authigenic CFA fraction and the 

terrigenous sediment component, the SEDEX scheme should be combined with a 

method that picks up variations in the detrital sediment input (i.e., XRF analysis of 

detrital elements such as Al and Ti, or mineralogical analyses such as X-ray 

diffractometry). In combination with more advanced provenance proxies (e.g., Nd-Sr-

Pb isotopes) and detailed analyses of the isolated CFA components (e.g., by 



electron microscopy), this might ultimately enable us to better distinguish between 

detrital and truly authigenic CFA. In opal-rich sediments in particular, an additional 

step should be added to the SEDEX procedure to extract opal-bound P (Latimer et 

al., 2006). This P fraction may be an important part of the reactive P pool, and its 

systematic investigation would certainly lead to an improved understanding of the 

marine P cycle, in particular of the residence times of dissolved phosphate. Further 

studies of detrital CFA and opal-bound P in marine sediments should cover areas 

that were and are likely to be affected by these two P fractions (i.e., upwelling areas, 

the North Pacific, or the Southern Ocean). Despite this spatial aspect, such studies 

should also be performed on marine deposits representing extreme climate states 

(e.g., glacial versus interglacial conditions during the Quaternary, or Eocene to 

Cretaceous greenhouse conditions). Doing so should ultimately lead to a more 

detailed understanding of the marine P cycle and its interaction with the global 

climate system. 

 

6.1 Acknowledgements 

This study would not have been possible without the great efforts of the crew and 

scientific party during IODP Expedition 323. We thank E. Gründken, C. Lehners, M. 

Schulz, S. Asendorf and T. Mandytsch (Oldenburg) for assistance with sample 

preparation and XRF analysis, as well as P. Green, J. Davies and P. Orme 

(Newcastle) for assistance with P extraction and analysis. J. Latimer and M. Sumper 

provided helpful insights into the analysis of opal-bound P. We thank G. Filippelli, 

three anonymous reviewers, and Michael Böttcher for their valuable comments on 

earlier versions of this manuscript. Funding by the German Research Foundation 



(DFG), Priority Program 527 (MA 4791/2-1) to CM is gratefully acknowledged. TW 

acknowledges support from a Royal Society Wolfson Research Merit Award. 

 

7.1 References 

Abed, A.M., Al Kuisi, M., Khair, H.A., 2009. Characterization of the Khamaseen 

(spring) dust in Jordan. Atm. Environ. 43, 2868-2876. 

Abramson, L., Wirick, S., Lee, C., Jacobsen, C., Brandes, J.A., 2009. The use of soft 

X-ray spectromicroscopy to investigate the distribution and composition of organic 

matter in a diatom frustules and a biomimetic analog. Deep-Sea Res. II 56, 1369-

1380. 

Aiello, I.W., Ravelo, A.C., 2012. Evolution of marine sedimentation in the Bering Sea 

since the Pliocene. Geosphere 8, 1231-1253. 

Algeo, T.J., Ingall, E.D., 2007. Sedimentary Corg:P ratios, paleocean ventilation, and 

Phanerozoic atmospheric pO2. Palaeogeograph.,Palaeoclimatol., Palaeoecol. 256, 

130-155. 

Anderson, L.D., Delaney, M.L., Faul, K.L., 2001. Carbon to phosphorus ratios in 

sediments: implications for nutrient cycling. Global Biogeochem. Cycles 15, 65-79. 

Anderson, L.D., Faul, K.L., Paytan, A., 2010. Phosphorus associations in aerosols: 

what can they tell us about P bioavailability? Mar. Chem. 120, 44-56. 

Anschutz, P., Zhong, B., Sundby, B., Mucci, A., Gobeil, C., 1998. Burial efficiency of 

phosphorus and the geochemistry of iron in continental margin sediments. Limnol. 

Oceanogr. 43, 53-64. 



Baines, S.B., Twining, B.S., Brzezinski, M.A., Nelson, D.M., Fisher, N.S., 2010. 

Causes and biogeochemical implications of regional differences in silicification of 

marine diatoms. Glob. Biogeochem. Cyc. 24, GB4031, doi:10.1029/2010GB003856. 

Baines, S.B., Twining, B.S., Vogt, S., Balch, W.M., Fisher, N.S., Nelson, D.M., 2011. 

Elemental composition of equatorial Pacific diatoms exposed to additions of silicic 

acid and iron. Deep Sea Res. II 58, 512-523. 

Bate, D.B., Barrett, J.E., Poage, M.A., Virginia, R.A., 2008. Soil phosphorus cycling 

in an Antarctic polar desert. Geoderma 144, 21-31. 

Baturin, G.N., 2003. Phosphorus cycle in the ocean. Lith. Min. Res. 38, 101-119. 

Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine 

systems. Earth-Sci. Rev. 51, 109-135. 

Benitez-Nelson, C.R., Madden, L.P.O., Styles, R.M., Thunell, R.C., 2007. Inorganic 

and organic sinking particulate phosphorus fluxes across the oxic/anoxic water 

column of Cariaco Basin, Venezuela. Mar. Chem. 105, 90-100. 

Berner, R.A.. 1973. Phosphate removal from sea water by adsorption on 

volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77-86. 

Berner, R.A., Rao, J.-L., 1994. Phosphorus in sediments of the Amazon River and 

estuary: implications for the global flux of phosphorus to the sea. Geochim. 

Cosmochim. Acta 58, 2333-2339. 

Campbell, F.R., Thomas, R.L., 1970. Automated method for determining and 

removing silica interference in determination of soluble phosphorus in lake and 

stream waters. Envir. Sci. Technol. 4, 602-604. 



Chernoff, C.B., Orris, G.J., 2002. Data set of world phosphate mines, deposits, and 

occurrences – Part A. Geologic data. USGS Open-File Report 02-156-A, 352 pp. 

Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W, Licciardi, J.M., Teller, J.T., 

2001. Freshwater forcing of abrupt climate change during the last deglaciation. 

Science 293, 283-287. 

Codispoti, L.A., 1989. Phosphorus vs. nitrogen limitation in new and export 

production, in: Berger, W.H., Smetacek, V.S., Wefer, G. (Eds.), Productivity of 

Oceans: Present and Past (eds.). Wiley, Chichester, pp. 372-394. 

Compton, J., Mulabisana, J., McMillan, I.K., 2002. Origin and age of phosphorite 

from the Last Glacial Maximum to Holocene transgressive succession off the Orange 

River, South Africa. Mar. Geol. 186, 243-261. 

Compton, J., Hodell, D.A., Garrido, J.R., Mallinson, D.J., 1993. Origin and age of 

phosphorite from the south-central Florida Platform: relation of phosphogenesis to 

sea-level fluctuations and 13C excursion. Geochim. Cosmochim. Acta 57, 131-146. 

Compton, J., Mallinson, D., Glenn, C.R., Filippelli, G., Föllmi, K., Shields, G., Zanin, 

Y., 2000. Variations in the global phosphorus cycle, in Glenn, C.R., Trevot-Lucas, L., 

Lucas, J. (Eds.), Marine Authigenesis: From Global to Microbial, SEPM Spec. Publ. 

66, pp. 21-33. 

Cortese, G., Gersonde, R., Hillenbrand, C.-D., Kuhn, G., 2004. Opal sedimentation 

shifts in the World Ocean over the last 15 Myr. Earth Planet. Sci. Lett. 224, 509-527. 

Cotner, J.B., Ammerman, J.W., Peele, E.R., Bentzen, E., 1997. Phosphorus-limited 

bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13, 141-149. 



Daessle, L.W., Camacho-Ibar, V.F., Carrquiry, J.D., Ortiz-Hernandez, M.C., 2004. 

The geochemistry and sources of metals and phosphorus in the recent sediments 

from the Northern Gulf of California. Cont. Shelf Res. 24, 2093-2106. 

Delaney, M.L., 1998. Phosphorus accumulation in marine sediments and the oceanic 

phosphorus cycle. Glob. Biogeochem. Cycles 12, 563-572. 

Diaz, J.M., Ingall, E.D., Benitez-Nelson, C., Paterson, D., de Jonge, M., McNulty, I., 

Brandes, J.A., 2008. Marine polyphosphate: A key player in geologic phosphorus 

sequestration. Science 320, 652-655. 

Diaz, J.M., Ingall, E.D., Snow, S.D., Benitez-Nelson, C.R., Taillefert, M., Brandes, 

J.A., 2012. Potential role of inorganic polyphosphate in the cycling of phosphorus 

within the hypoxic water column of Effingham Inlet, British Columbia. Glob. 

Biogeochem. Cyc. 26, doi:10.1029/2011GB004226. 

Dornblaser, M.M., Striegl, R.G., 2007. Nutrient (N, P) loads and yields at multiple 

cales and subbasin types in the Yukon River basin, Alaska. J. Geophys. Res. 112, 

G04S57, doi:10.1029/2006JG000366. 

Eijsink, L.M., Krom, M.D., Herut, B., 2000. Speciation and burial flux of phosphorus 

in the surface sediments of the Eastern Mediterranean. Am. J. Sci. 3000, 483-503. 

Einsele, W., 1938. Über chemische und kolloidchemische Vorgänge in 

Eisenphosphat-Systemen unter limnochemischen und limnogeologischen 

Gesichtspunkten. Arch. Hydrobiol. 33, 361-387. 

Expedition 323 Scientists, 2010. Bering Sea Paleoceanography: Pliocene-

Pleistocene paleoceanography and climate history of the Bering Sea. IODP Prel. 

Rept. 323, doi:10.2204/iodp.pr.323.2010.  



Faul, K.L., Paytan, A., Delaney, M.L., 2005. Phosphorus distribution in sinking 

oceanic particulate matter. Mar. Chem. 97, 307-333. 

Filippelli, G.M., 2001. Carbon and phosphorus cycling in anoxic sediments of the 

Saanich Inlet, British Columbia. Mar. Geol.174, 307-321. 

Filippelli, G.M., 2008. The global phosphorus cycle: past, present, and future. 

Elements 4, 89-95. 

Filippelli, G.M., Delaney, M. L., 1992. Similar phosphorus fluxes in ancient 

phosphorite deposits and a modern phosphogenic environment. Geology 20, 709-

712. 

Filippelli, G.M., Delaney, M.L., 1994. The oceanic phosphorus cycle and continental 

weathering during the Neogene. Paleoceanography 9, 643-652. 

Filippelli, G.M., Delaney, M.L., 1996. Phosphorus geochemistry of equatorial Pacific 

sediments.Geochim. Cosmochim. Acta 60, 1479-1495. 

Filippelli, G.M., Latimer, J.C., Murray, R.W., Flores, J.-A., 2007. Productivity records 

from the Southern Ocean and the equatorial Pacific Ocean: Testing the glacial shelf-

nutrient hypothsis. Deep-Sea Res. II 54, 2443-2452. 

Flaum, J.A., 2008. Investigation of phosphorus cycle dynamics associated with 

organic carbon burial in modern (North Pacific) and ancient (Devonian and 

Cretaceous) marine systems; strengths and limitations of sequentially extracted 

(SEDEX) phosphorus data. Dissertation Thesis, Northwestern University, 196 pp. 

Föllmi, K.B.. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-

rich deposits. Earth-Sci. Rev. 40, 55-124. 



Föllmi, K.B., Von Breymann, M., 1992. Phosphates and glauconites of Sites 798 and 

799, in Pisciotto, K.A., Ingle, J.C., Von Breymann, M., Barron, J. (Eds.), Proc. ODP 

Sci. Results 127/128), Ocean Drilling Program, Texas A&M University, pp. 63-74. 

Föllmi, K.B., Badertscher, C., De Kaenel, E., Stille, P., John, C.M., Adatte, T., 

Steinmann, P., 2005. Phosphogenesis and organic-carbon preservation in the 

Miocene Moneterey Formation at Naples Beach, California – The Monterey 

Hypothesis revisited. Geol. Soc. Am. Bull. 117, 589-619. 

Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R., Devries, T., 1982. The 

marine phosphorus cycle. Am. J. Sci. 282, 474-511. 

Froelich, P.N., Kim, K.-H., Jahnke, R.A., Burnett, W.C., Soutar, A., Deakin, M., 1983. 

Pore water fluoride in Peru continental margin sediments: uptake from seawater. 

Geochim. Cosmochim. Acta 47, 1605-1612. 

Froelich, P.N., Arthur, M.A., Burnett, W.C., Deakin, M., Hensley, V., Jahnke, R.A., 

Kaul, L., Kim, K.-H., Roe, K., Soutar, A., Vathakanon, C., 1988. Early diagenesis of 

organic matter in Peru continental margin sediments: phosphorite precipitation. Mar. 

Geol. 80, 309-343. 

Furutani, H., Meguro, A., Iguchi, H., Uematsu, M., 2010. Geographical distribution 

and sources of phosphorus in atmospheric aerosols over the North Pacific Ocean. 

Geophys. Res. Lett.37, L03805, doi:10.1029/2009GL041367. 

Gächter, R., Meyer, J.S., Mares, A., 1988. Contribution of bacteria to release and 

fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33, 1542-1558. 

Giguet-Covex, C., Poulenard, J., Chalmin, E., Arnaud, F., Rivard, C., Jenny, J.-P., 

Dorioz, J.-M., 2013. XANES spectroscopy as a tool to trace phosphorus 



transformation during soil genesis and mountain ecosystem development from lake 

sediments. Geochim. Cosmochim. Acta 118, 129-147. 

Guidry, M.W., Mackenzie, F.T., 2000. Apatite weathering and the Phanerozoic 

phosphorus cycle. Geology 28, 631-634. 

Guidry, M.W.. Mackenzie, F.T., 2003. Experimental study of igneous and 

sedimentary apatite dissolution: controls of pH, distance from equilibrium, and 

temperature on dissolution rates. Geochim. Cosmochim. Acta 67, 2949-2963. 

Guo, B., Yang, H., Li, Y., 2011. The speciation of phosphorus in the sand particles in 

western Inner Mongolia. Proceedings, Second International Conference on 

Mechanic Automation and Control Engineering (MACE), 2755-2757, 

doi:10.1109/MACE.2011.5987555. 

Gunnars, A., Blomqvist, S., Martinsson, C., 2004. Inorganic formation of apatite in 

brackish seawater from the Baltic Sea: an experimental approach. Mar. Chem. 91, 

15-26. 

Harouiya, N., Chairat, C., Köhler, S.J., Gout, R., Oelkers, E.H., 2007. The dissolution 

kinetics and apparent solubility of natural apatite in closed reactors at temperatures 

from 5 to 50 °C and pH from 1 to 6. Chem. Geol. 244, 554-568. 

He, H., Chen, H., Yao, Q., Qin, Y., Mi, T., Yu, Z., 2009. Behaviour of different 

phosphorus species in suspended particulate matter in the Changjiang estuary. Chin. 

J. Oceanol. Limnol. 27, 859-868. 

Henriksen, A., 1966. Interference from silica in phosphate analysis. Analyst 91, 290-

291. 



Hüneke, H,Henrich, R., 2011. Chapter 4 – Pelagic sedimentation in modern and 

ancient oceans. In Hüneke, H., Mulder, T. (Eds.),  Deep-Sea Sediments, 

Developments in Sedimentology 63, Elsevier, pp. 215-351. 

Ingall, E.D., Van Cappellen, P., 1990. Relation between sedimentation rate and 

burial of organic phosphorus and organic carbon in marine sediments. Geochim. 

Cosmochim. Acta 54, 373-386. 

Ingall, E.D., Jahnke, R.A., 1997. Influence of water column anoxia on the elemental 

fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol. 139, 

219-229. 

Ingall, E.D., Bustin, R.M., Van Cappellen, P., 1993. Influence of water column anoxia 

on the burial and preservation of carbon and phosphorus in marine shales. Geochim. 

Cosmochim. Acta 57, 303-316. 

Ingalls, A.E., Lee, C., Wakeham, S.G., Hedges, J.I., 2003. The role of biominerals in 

the sinking flux and preservation of amino acids in the Southern Ocean along 170ºW. 

Deep-Sea Res. II 50, 713-738. 

Jahnke, R.A., Emerson, S.R., Roe, K.V., Burnett, W.C., 1983. The present day 

formation of apatite in Mexican continental margin sediments. Geochim. Cosmochim. 

Acta 47, 259-266. 

Jilbert, T., Slomp, C.P., Gustafsson, B.G., Boer, W., 2011. Beyond the Fe-P-redox 

connection: preferential regeneration of phosphorus from organic matter as a key 

control on Baltic Sea nutrient cycles. Biogeosciences 8, 1699-1720. 



Jordan, T.E., Cornwell, J.C., Boynton, W.R., Anderson, J.T., 2008. Changes in 

phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer 

belt. Limnol. Oceanogr. 53, 172-184. 

King, K., 1974. Preserved amoni acids from silicified protein in fossil Radiolaria. 

Nature 252, 690-692. 

Kohfeld, K.E., Harrison, S.P., 2001. DIRTMAP: the geological record of dust. Earth-

Sci. Rev. 54, 81-114. 

Kohfeld, K.E., Le Quere, C., Harrison, S.P., Anderson, R.F., 2005. Role of marine 

biology in glacial-interglacial CO2 cycles. Science 308, 74-78. 

Kraal, P., Slomp, C.P., De Lange, G.J., 2010. Sedimentary organic carbon to 

phosphorus ratios as a redox proxy in Quaternary records from the Mediterranean. 

Chem. Geol. 277, 167-177. 

Kraal, P., Slomp, C.P., Forster, A., Kuypers, M.M.M., Sluijs, A., 2009. Pyrite 

oxidation during sample storage determines phosphorus fractionation in carbonate-

poor anoxic sediments. Geochim. Cosmochim. Acta 73, 3277-3290. 

Kraal, P., Slomp, C.P., Reed, D.C., Reichart, G.-J., Poulton, S.W., 2012. 

Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of 

the northern Arabian Sea. Biogeosciences 9, 2609-2623. 

Krishnamurthy, A., Moore, J.K., Mahowald, N., Luo, C., Zender, C.S., 2010. Impacts 

of atmospheric nutrient inputs on marine biogeochemistry. J. Geophys. Res. 115, 

G01006, doi:10.1029/2009JG001115. 



Kröger, N., Lorenz, S., Brunner, E., Sumper, M., 2002. Self-assembly of highly 

phosphorylated silaffins and their function in biosilica morphogenesis.Science 298, 

584-586. 

Krom, M.D., Kress, N., Benner, S., Gordon, L.I., 1991. Phosphorus limitation of 

primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424-

432. 

Küster-Heins, K., De Lange, G.J., Zabel, M., 2010a. Benthic phosphorus and iron 

budgets for three NW African slope sediments: a balance approach. Biogeosciences 

7, 469-480. 

Küster-Heins, K., Steinmetz, E., De Lange, G.J., Zabel, M., 2010b. Phosphorus 

cycling in marine sediments from the continental margin off Namibia. Mar. Geol. 274, 

95-106. 

Lanzetta, P.A., Alvarez, L.J., Reinach, P.S., Candia, O.A., 1979. An improved assay 

for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95-97. 

Latimer, J.C., Filippelli, G.M., 2001. Terrigenous input and paleoproductivity in the 

Southern Ocean.Paleoceanography 16, 627-643. 

Latimer, J.C., Filippelli, G.M., Hendy, I., Newkirk, D.R., 2006. Opal-associated 

particulate phosphorus: implications for the marine P cycle. Geochim. Cosmochim. 

Acta 70, 3843-3854. 

Le Roux, G., Laverret, E., Shotyk, W., 2006. Fate of calcite, apatite and feldspars in 

an ombrotrophic peat bog, Black Forest, Germany. J. Geol. Soc. 163, 641-646. 

Li, Y., Yu, J.-J., 1999. Geochemical characteristics of phosphorus near the Huanghe 

River estuary. Chin. J. Oceanol. Limnol. 17, 359-365. 



Lisitzin, A.P., 1996. Oceanic Sedimentation: Lithology and Geochemistry. AGU, 

Washington D.C., 400 pp. 

Liu, S.M., Zhang, J.. Li, D.J., 2004. Phosphorus cycling in sediments ofthe Bohai and 

Yellow Seas. Est. Coast. Shelf Sci. 59, 209-218. 

Lukkari, K., Hartikainen, H., Leivuori, M., 2007a. Fraction of sediment phosphorus 

revisited: I. Fractionation steps and their biogeochemical basis. Limnol. Oceanogr. 

Methods 7, 433-444. 

Lukkari, K., Leivuori, M., Hartikainen, H., 2007b. Fraction of sediment phosphorus 

revisited: II. Changes in phosphorus fractions during sampling and storage in the 

presence or absence of oxygen. Limnol. Oceanogr. Methods 5, 445-456. 

Lyons, G., Benitez-Nelson, C.R., Thunell, R.C., 2011. Phosphorus composition of 

sinking particles in the Guaymas Basin, Gulf of California. Limnol. Oceanogr. 56, 

1093-1105. 

März, C., Schnetger, B., Brumsack, H.-J., 2013. Nutrient leakage from the North 

Pacific to the Bering Sea (IODP Site U1341) following the onset of Northern 

Hemispheric Glaciation? Paleoceanography 28, 1-11. 

März, C., Poulton, S.W., Beckmann, B., Küster, K., Wagner, T., Kasten, S., 2008. 

Redox sensitivity of P cycling during marine black shale formation: dynamics of 

sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 

3703-3717. 

Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y. 2010. 

Global connections between aeolian dust, climate and ocean biogeochemistry at the 

present day and at the last glacial maximum. Earth Sci. Rev. 99, 61-97. 



Mahowald, N., Albani, S., Engelstaedter, S., Winckler, G., Goman, M., 2011. Model 

insight into glacial-interglacial paleodust records. Quat. Sci. Reviews 30, 832-854. 

Mahowald, N., Jickells, T.D., Baker, A.R., Artaxo, P., Benitez-Nelson, C.R., 

Bergametti, G., Bond, T.C., Chen, Y., Cohen, D.D., Herut, B., Kubilay, N., Losno, R., 

Luo, C., Maenhaut, W., McGee, K.A., Okin, G.S., SiefertR.L., Tsukuda, S. 2008. 

Global distribution of atmospheric phosphorus sources, concentrations and 

deposition rates, and anthropogenic impacts. Global Biogeochem. Cycles 22, 

GB4026, doi:10.1019/2008GB003240. 

Malek, M.A., Kim, B., Jung, H.-J., Song, Y.-C., Ro, C.-U., 2011. Single-particle 

mineralogy of Chinese soil particles by the combined use of low-z particle electron 

probe X-ray microanalysis and attenuated total reflectance-FT-IR imaging 

techniques. Anal. Chem. 83, 7970-7977. 

Marshall, S.J., Menot, G.K.C., 1999. Modeling North American freshwater runoff 

through the last glacial cycle. Quat. Res. 52, 300-315. 

Matijevic, S., Kuspilic, G., Kljakovic-Gaspic, Z., Bogner, D., 2008. Impact of fish 

farming on the distribution of phosphorus in sediments in the middle Adriatic area. 

Mar. Poll. Bul. 56, 535-548. 

McGowran, B., 1989. Silica burp in the Eocene ocean. Geology 17, 857-860. 

Menot, G., Bard, E., Rostek, F., Weijers, J.W.H., Hopmans, E.C., Schouten, S., 

Sinninghe Damste, J.S., 2006. Early reactivation of European rivers during the last 

deglaciation. Science 313, 1623-1625. 

Moore, T.C., 2008. Chert in the Pacific: biogenic silica and hydrothermal circulation. 

Palaeogeogr., Palaeoclimat., Palaeoecol. 261, 87-99. 



Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, M., 

Mounkaila, M., Elvira, J., Gibbons, W., 2006. Geochemical variations in aeolian 

mineral particles from the Sahara-Sahel dust corridor. Chemosphere 65, 261-270. 

Mort, H.P., Slomp, C.P., Gustafsson, B.G., Andersen, T.J., 2010. Phosphorus 

recycling and burial in Baltic Sea sediments with contrasting redox conditions. 

Geochim. Cosmochim. Acta 74, 1350-1362. 

Mull, C.G., Tailleur, I.L., Mayfield, C.F., Ellersieck, I., Curtis, S., 1982. New Upper 

Paleozoic and Lower Mesozoic stratigraphic units, central and western Brooks 

Range, Alaska. AAPG Bull. 66, 348-362. 

Muttoni, G., Kent, D.V., 2007. Widespread formation of cherts during the early 

Eocene climate optimum. Palaeogeogr., Palaeoclimat., Palaeoecol. 253, 348-362. 

Naka, S., Halliday, A.N., Rea, D.K., 1993. Provenance of dust in the Pacific Ocean. 

Earth Planet. Sci. Lett. 119, 143-157. 

Neal, C., Neal, M., Wickham, H., 2000. Phosphate measurement in natural waters: 

two examples of analytical problems associated with silica interference using 

phosphomolybdic acid methodologies. Sci. Total Environ. 251/252, 511-522. 

Nilsen, E.B., Delaney, M.L., 2005. Factors influencing the biogeochemistry of 

sedimentary carbon and phosphorus in the Sacramento-San Joaquin delta. 

Estuaries 28, 653-663. 

Nunez-Milland, D.R., Baines, S.B., Vogt, S., Twining, B.S., 2010. Quantification of 

phosphorus in single cells using synchrotron X-ray fluorescence. J. Synchrotron Rad. 

17, 560-566. 



Onodera, J., Takahashi, K., Nagatomo, R., 2013. Diatoms, silicoflagellates, and 

ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. 

Deep-Sea Res. II.  

Orchard, E.D., Benitez-Nelson, C.R., Pellechia, P.J., Lomas, M.W., Dyhrman S.T., 

2010. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. 

Limnol. Oceanogr. 55, 2161-2169. 

Orris, G.J., Chernoff, C.B., 2002. Data set of world phosphate mines, deposits, and 

occurrences – Part B. Location and mineral economic data. USGS Open-File Report 

02-156-B, 328 pp. 

Parrish, J.T., Droser, M.L., Bottjer, D.J., 2001. A Triassic upwelling zone: the Sublik 

Formation, Arctic Alaska, U.S.A. J. Sed. Res. 71, 272-285. 

Patton, W.W., Matzko, J.J., 1959. Phosphate deposits in northern Alaska. USGS 

Prof. Paper 302-A, 17 pp. 

Paytan, A., Faul, K.L., 2007. The oceanic phosphorus cycle. Chem. Rev. 107, 563-

576. 

Paytan, A., Cade-Menum, B.J., McLaughlin, K., Faul, K.L., 2003. Selective 

phosphorus regeneration of sinking marine particles: evidence from 31P-NMR. Mar. 

Chem. 82, 55-70. 

Posner, A.S., Blumenthal, N.C., Betts, F., 1984. The chemistry and structure of 

precipitated hydroxyapatites, in Nriagu, J.O., Moore, P.B. (Eds), Phosphate Minerals, 

Springer, pp. 330-350. 



Poulsen, N., Sumper, M., Kröger, N., 2003. Biosilica formation in diatoms: 

Characterization of native Silaffin-2 and its role in silica morphogenesis. PNAS 100, 

12075-12080. 

Poulton, S.W., Canfield, D.E., 2006. Co-diagenesis of iron and phosphorus in 

hydrothermal sediments from the southern East Pacific Rise: implications for the 

evolution of paleoseawater phosphate concentrations. Geochim. Cosmochim. Acta 

70, 5883-5898. 

Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., Gill, T.E., 2002. 

Environmental characterization of global sources of atmospheric soil dust identified 

with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol 

product. Rev. Geophys. 40, 1002, doi:10.1029/2000RG000095. 

Ragueneau, O., Treguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., 

DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., Francois, R., Heinze, C., 

Maier-Reimer, E., Martin-Jezequel, V., Nelson, D.M., Queguiner, B., 2000. A review 

of the Si cycle in the modern ocean: recent progress and missing gaps in the 

application of biogenic opal as a paleoproductivity proxy. Global Planet. Change 26, 

317-365. 

Rao, L.-J., Berner, R.A., 1997. Time variations of phosphorus and sources of 

sediments beneath the Chang Jiang (Yangtze River). Mar. Geol. 139, 95-108. 

Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep 

sea: the geologic history of wind. Rev. Geophys. 32, 159-195. 

Richthammer, P., Börmel, M., Brunner, E., Van Pee, K.-H., 2011. Biomineralisation 

in diatoms: the role of silacidins. ChemBioChem. 12, 1362-1366. 



Roden, G.I., 1995. Aleutian Basin of the Bering Sea: thermohaline, oxygen, nutrient, 

and current structure in July 1993. J. Geophys. Res. 100, 13539-13554. 

Ruttenberg, K.C., 1992. Development of a sequential extraction method for different 

forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460-1482. 

Ruttenberg, K.C., 1993. Reassessment of the oceanic residence time of 

phosphorus.Chem. Geol. 107, 405-409. 

Ruttenberg, K.C., 2001. Phosphorus cycle, in:Thorpe, S.A., Turekian, K.K. (Eds.), 

Encyclopedia of Ocean Sciences 1st Edition. Elsevier, pp. 2149-2162.  

Ruttenberg, K.C., 2003. The Global Phosphorus Cycle, in: Holland H.D., Turekian, 

K.K. (Eds.), Treatise on Geochemistry 8, Elsevier, pp. 585-643. 

Ruttenberg, K.C., Berner, R.A., 1993. Authigenic apatite formation and burial in 

sediments from non-upwelling, continental margin environments. Geochim. 

Cosmochim. Acta 57, 991-1007. 

Ruttenberg, K.C., Ogawa, N.O., Tamburini, F., Briggs, R.A., Colasacco, N.D., Joyce, 

E., 2009. Improved, high-throughput approach for phosphorus speciation in natural 

sediments via the SEDEX sequential extraction approach. Limnol. Oceanogr. 

Methods 7, 319-333. 

Savenko, A.V., 2010. On the physicochemical mechanism of diagenetic phosphorite 

synthesis in the modern ocean. Geochem. Int. 48, 194-201. 

Schenau, S.J., De Lange, G.J., 2000. A novel chemical method to quantify fish  

debris in marine sediments. Limnol. Oceanogr. 45, 963-971. 

Schenau, S.J., De Lange, G.J., 2001. Phosphorus regeneration vs. burial in 

sediments of the Arabian Sea. Mar. Chem. 75, 201-217. 



Schenau, S.J., Slomp, C.P., De Lange, G.J., 2000. Phosphogenesis and active 

phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. 

Mar. Geol. 169, 1-20. 

Sekula-Wood, E., Benitez-Nelson, C.R., Bennett, M.A., Thunell, R., 2012. Magnitude 

and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, 

California. Global Biogeochem. Cycles 26, GB2023, doi:10.1029/2011GB004180. 

Shemesh, A., 1990. Crystallinity and diagenesis of sedimentary apatites. Geochim. 

Cosmochim. Acta 54, 2433-2438. 

Slomp, C.P., 2011. Phosphorus cycling in the estuarine and coastal zones: sources, 

sinks, and transformations, in: Wolanski, E., McLusky, D.S. (Eds.),  Treatise on 

Estuarine and Coastal Science 5. Waltham Academic Press, pp. 201–229.  

Slomp, C.P., Van der Gaast, S.J., Van Raaphorst, W., 1996. Phosphorus binding by 

poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55-73. 

Smeck, N.E., 1985. Phosphorus dynamics in soils and landscapes. Geoderma 36, 

185-199. 

Steenbergh, A.K., Bodelier, P.L.E., Hoogveld, H.L., Slomp, C.P., Laanbroek, H.J., 

2011. Phosphatases relieve carbon limitation of microbial activity in Baltic Sea 

sediments along a redox gradient. Limnol. Oceanogr. 56, 2018-2026. 

Stickley, C.E., Koc, N., Brumsack, H.-J., Jordan, R.W., Suto, I., 2008. A siliceous 

microfossil view of middle Eocene Arctic paleoenvironments: a window of biosilica 

production and preservation. Paleoceanography 23, PA1S14, 

doi:10.1029/2007PA001485. 



Strickland, J D.H., Parsons, T.R., 1972. A practical handbook of seawater analysis. 

Fisheries Research Board of Canada, Ottawa, pp. 45-64. 

Suess, E., 1981. Phosphate regeneration from sediments of the Peru continental 

margin by dissolution of fish debris. Geochim. Cosmochim. Acta 45, 577-588. 

Sumper, M., Kröger, N., 2004. Silica formation in diatoms: The function of long-chain 

polyamines and silaffins. J. Mater. Chem.14, 2059-2065. 

Sumper, M., Brunner, E., 2008. Silica biomineralisation in diatoms: the model 

organism Thalassiosira pseudonana. ChemBioChem. 9, 1187-1194. 

Sundby, B., Gobeil, C., Silverberg, N., Mucci, A., 1992. The phosphorus cycle in 

coastal marine sediments. Limnol. Oceanogr. 37, 1129-1145. 

Takahashi, K., Ravelo, A.C., Alvarez Zarikian, C., Expedition 323 Scientists, 2011. 

Proc. IODP 323, Tokyo (Integrated Ocean Drilling Program Management 

International, Inc.), doi:10.2204/iodp.proc.323.105.2010. 

Tallberg, P., Treguer, P., Beucher, C., Corvaisier, R., 2008. Potentially mobile pools 

of phosphorus and silicon in sediment from the Bay of Brest: interactions and 

implications for phosphorus dynamics. Est. Coast. Shelf Sci. 76, 85-94. 

Tallberg, P., Lukkari, K., Räike, A., Lehtoranta, J., Leivuori, M., 2009. Applicability of 

a sequential P fractionation procedure to Si in sediment. J. Soils Sed. 9, 594-603. 

Tamburini, F., Föllmi, K., 2009. Phosphorus burial in the ocean over glacial-

interglacial time scales. Biogeosciences 6, 501-513. 

Tesson, B., Masse, S., Laurent, G., Maquet, J., Livage, J., Martin-Jezequel, V., 

Coradin, T., 2008. Contribution of multi-cellular solid state NMR to the 



characterization of the Thalassiosirapseudonana diatom cell wall. Anal. Bioanal. 

Chem. 390, 1889-1898. 

Tesson, B., Genet, M.J., Fernandez, V., Degand, S., Rouxhet, P.G., Martin-Jezequel, 

V., 2009. Surface chemical composition of diatoms. Chem. Biochem. 10, 2011-2024. 

Tyrell, T., 1999. The relative influence of nitrogen to phosphorus on oceanic primary 

production. Nature 400, 525-531. 

Van Cappellen, P., Berner, R.A., 1988. A mathematical model for the early 

diagenesis of phosphorus and fluoride in marine sediments: apatite precipitation. Am. 

J. Sci. 288, 289-333. 

Van Cappellen, P., Berner, R.A., 1991. Fluorapatite crystal growth from modified 

seawater solutions. Geochim. Cosmochim. Acta 55, 1219-1234. 

Van Cappellen, P., Ingall, E.D., 1996. Redox stabilizations of the atmosphere and 

oceans by phosphorus-limited marine productivity. Science 271, 493-496. 

VanLaningham, S., Pisias, N.G., Duncan, R.A., Clift, P.D., 2009. Glacial-interglacial 

sediment transport to the Meji Drift, northwest Pacific Ocean: evidence for timing of 

Beringian outwashing. Earth Planet. Sci. Lett. 277, 64-72. 

Vink, S., Chambers, R.M., Smith, S.V., 1997. Distribution of phosphorus in 

sediments from Tomales Bay, California. Mar. Geol. 139, 157-179. 

Virtasalo, J.J., Kohonen, T., Vuorinen, I., Huttula, T., 2005. Sea bottom anoxia in the 

Archipelago Sea, northern Baltic Sea – implications for phosphorus remineralization 

at the sediment surface. Mar. Geol. 224, 103-122. 

Wallmann, K., 2003. Feedbacks between oceanic redox states and marine 

productivity: A model perspective focused on benthic phosphorus cycling. Global  



Biogeochem. Cycles 17, GB1084, doi:10.1029/2002GB001968.  

Wallmann, K., 2010. Phosphorus imbalance in the global ocean? Global 

Biogeochem. Cycles 24, GB4030, doi:10.1029/2009GB003643. 

Walker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. 

Geoderma 15, 1-19. 

Wedepohl, K.H., 1995. The composition of the continental crust (Ingerson Lecture). 

Geochim. Cosmochim. Acta 59, 1217-1232. 

Wehrmann, L.M., Arndt, S., März, C., Ferdelman, T.G., Brunner, B., 2013. The 

evolution of early diagenetic signals in Bering Sea subseafloor sediments in 

response to varying organic carbon deposition over the last 4.3 Mn. Geochim. 

Cosmochim. Acta 109, 175-196. 

Wenzl, S., Hett, R., Richthammer, P., Sumper, M., 2008. Silacidins: highly acidic 

phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew. 

Chem. Int. Ed. 47, 1729-1732. 

Zhang, J.-Z., Guo, L., Fischer, C.J., 2010. Abundance and chemical speciation of 

phosphorus in sediments of the Mackenzie River delta, the Chukchi Sea and the 

Bering Sea: importance of detrital apatite. Aquat. Geochem. 16, 353-371. 

 

8.1 Tables: 

Table 1: Extraction scheme according to Ruttenberg (1992), Schenau and De Lange 

(2000) and Latimer et al. (2006), with extraction procedures, extracted phases, and 



relative standard deviations (RSD) determined by triplicate extraction of three 

representative samples from Site U1341. 

 

9.1 Figures: 

Figure 1: Schematic map of the Bering Sea with IODP Site U1341 on Bowers Ridge. 

Figure 2: Bulk geochemical profiles of SiO2, Al2O3, Sixs, Pxs (determined by XRF) and 

TOC (shipboard data) (all in wt%) against sediment depth (meters CCSF-B). Excess 

contents are calculated relative to Upper Continental Crust composition (Wedepohl, 

1995), and respective records are displayed as 5-point running means (solid black 

lines). 

Figure 3: Records of Pxs (wt%) and extracted P fractions (fish remains, Fe-bound P, 

carbonate fluorapatite, detrital fluorapatite, organic P, opal-bound P; all in ppm of dry 

bulk sediment) against sediment depth (meters CCSF-B). 

Figure 4: Records of Pxs (wt%) and extracted P fractions (fish remains, Fe-bound P, 

carbonate fluorapatite, detrital fluorapatite, organic P, opal-bound P, residual P; all in 

relative % of total P) against sediment depth (meters CCSF-B). 

Figure 5: (a) Bar chart displaying the relative average contribution of the different 

extracted P fractions and residual P to total P. (b) Contibutions of reactive P (= sum 

of all extracted P fractions without detrital P) to total P against sediment depth 

(meters CCSF-B); values are calculated without opal-bound P, all CFA authigenic 

(open circles); with opal-bound P, all CFA authigenic (filled circles); with opal-bound 

P, 50% detrital CFA (squares). 



Figure 6: (a) Reactive P MARs (µmol/cm2/ka) against sediment depth (meters 

CCSF-B); values are calculated without opal-bound P, all CFA authigenic (open 

circles); with opal-bound P, all CFA authigenic (filled circles); with opal-bound P, 50% 

detrital CFA (squares). (c) Molar Sixs/opal-bound P ratios (mol/mol) against sediment 

depth (meters CCSF-B). 

Figure 7: Scatter plots displaying relationships and respective correlation coefficients 

(R2) between different geochemical parameters determined by XRF (Sixs, Al), 

sequential extraction (carbonate fluorapatite, opal-bound P, residual P), 

combinations of both (Sixs/opal-bound P ratios), and sediment age/depth. 

Figure 8: Schematic illustration of the Bering Sea P cycle including input pathways 

(eolian, riverine); transformation and recycling processes within surface waters, 

deep/intermediate waters, surface (< 50 m) and deeper (> 50 m) marine sediments; 

and buried P fractions (after Ruttenberg,  2001; Slomp, 2011 and reference). 

Figure 9: Global map displaying terrigenous CFA and opal-bound P sources and 

sinks. Numbers in squares: Terrestrial carbonate fluorapatite (CFA) detected in loess, 

dust, river suspension and sediments, marine suspended particles and surface 

sediments. (1) Kraal et al. (2012); (2) Eijsink et al. (2000); (3) Anderson et al. (2010); 

(4) Flaum (2008); (5)-(7) Zhang et al. (2010); (8) Berner and Rao (1994); (9) Vink et 

al. (1997), Nilsen and Delaney (2005), Sekula-Wood et al. (2012); (10) Moreno et al., 

2006; (11) Li and Yu (1999), Liu et al. (2004); (12) Daessle et al. (2004); (13) Flaum 

(2008), Malek et al. (2011); (14) Abed et al. (2009); (15) Bate et al. (2008); (16) Rao 

and Berner (1997), He et al. (2009); (17) Guo et al. (2011); (18) Lyons et al. (2011). 

Letters in circles: Opal-associated P extracted from marine sediments. (a)-(c) 

Latimer et al. (2006); (d) Küster-Heins et al. (2010a); (e) this study). Asterixes: 



Phosphorite deposits in high-latitude/arid regions with minimal chemical weathering 

(Chernoff and Orris, 2002; Orris and Chernoff, 2002). Light gray shading: Major 

sources of dust to the ocean (Northern Hemisphere “dust belt”; Prospero et al., 2002; 

Maher et al., 2010). Dark gray shading: Ocean regions potentially receiving CFA-rich 

dust (Mahowald et al., 2008; Maher et al., 2010). Thick dashed lines: Approximate 

limits of biogenic opal deposition areas in the modern ocean (Arabian Sea, Southern 

Ocean, upwelling areas, North Pacific; Lisitzin, 1996; Hüneke and Henrich, 2011).  

  



 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 


