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Abstract 

Metabolic activity of Biological Soil Crusts (BSCs) is principally dependent on 

moisture availability, but also on temperature and light conditions. Less understood is 

how BSCs respond to elevated atmospheric CO2. This paper reports laboratory 

experimental results of elevated atmospheric CO2 on carbon fluxes for cyanobacterial 

BSCs. The study uses newly designed dynamic gas exchange chambers in which the 

internal atmosphere was controlled. CO2 flux was monitored during controlled 

experiments in two phases under simulated rainfall events (2 & 5 mm plus control 

with no wetting) each lasting 3 days with a dry period in between. Phase 1 subjected 

crusts to 392 ppm CO2 (representing ambient level) in dry air; in phase 2, the CO2 

concentration was 801 ppm. Both phases exhibited significant efflux (respiration) of 

CO2 immediately after wetting, followed by substantial influx (sequestration) of CO2. 

Samples subject to 2 mm wetting sequestered an order of magnitude more C under 

elevated CO2 than at ambient CO2; for samples subject to 5 mm wetting, this increase 

was threefold. The findings highlight the role of BSCs in future carbon budgets by 

enabling greater sequestration into dryland soils even under enhanced atmospheric 

CO2 concentrations, following both light and heavy rainfall events. 
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1. Introduction 

Dryland soils cover approximately 41% of the Earth’s terrestrial surface and support 

more than one-third of the global population (Reynolds et al., 2007). Recent findings 

suggest that sub-Saharan Africa has acted as a likely net carbon sink within the last 

decade (Ciais et al., 2009) with a net balance of approximately 0.97 Pg C y-1 uptake 

(Bombelli et al., 2009). However, the role of soils and their Biological Soil Crust 

(BSC) cover remains only sparsely assessed (see reviews by Maestre et al., 2012 a,b; 

Stringer et al., 2012) but with BSCs identified as a major contributor to overall CO2 

efflux in drylands (e.g. Castillo-Monroy et al., 2011).  

BSCs are made of cyanobacteria and other bacterial species, algae, lichens, 

mosses and microfungi. In general, BSCs cover up to 70 % (Belnap and Lange, 2003) 

of the soil surface of many drylands and in some undisturbed areas such as in Wildlife 

Management Areas of the Kalahari BSCs cover more than 90% of the soil surface 

(Dougill and Thomas, 2004).  Globally, cyanobacterial biomass in dryland areas is 

estimated to be 56 Pg of carbon (Garcia-Pichel et al., 2003), therefore constituting a 

significant part of the estimated 241 Pg of soil organic carbon (SOC) contained within 

drylands (Lal, 2004). The estimated total global Carbon net uptake of BSCs has been 

approximated as 3.9 Pg yr-1 (corresponding to approximately 7% of global net 

primary production uptake) (Elbert et al., 2012) but the controls on rates of CO2 efflex 

remain poorly understood (Frey et al., 2013).  

Substantial amounts of carbon are also being lost from BSCs via respiration 

(Huxman et al., 2004; Thomas et al., 2008; Thomas and Hoon, 2010; Thomas et al., 

2011) particularly after rainfall events; due to activity and substrate availability 

increases within microbial populations (Borken and Matzner, 2009). During hours 

when moisture, temperature and light availability are optimum gain of carbon 
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(photosynthesis) occurs; prior to these optimum conditions (particularly in the 

absence of light) an initial efflux is observed (Evans and Johansen, 1999; Thomas et 

al., 2011; Thomas, 2012). 

 Free Air Carbon Enrichment (FACE) facilities have been set up in several 

dryland study sites to investigate the effects of increasing atmospheric CO2 on 

vascular vegetation and soils (e.g. de Soyza et al., 2005; Steven et al., 2012). For 

example, ten years of FACE field studies in Nevada suggest that enhanced CO2 

treatments cyanobacteria will show a generalized decline with elevated CO2  though 

the direct impacts on CO2 efflux rates remains unknown (Steven et al., 2012). . A 

similar experiment in the Mojave desert conveys the importance of BSCs in the 

uptake of CO2; whereby in post rain conditions the net ecosystem CO2 exchange 

(uptake) was unexpectedly high and was likely due to autotrophic mechanisms as 

vascular plant photosynthesis was low at this time (Jasoni et al., 2005).  

The aim of this experimental study was to quantify the short-term temporal 

changes in carbon exchange (respiration and photosynthesis) of BSCs when the 

atmospheric concentration of CO2 was doubled (~800 ppm). The study was conducted 

using specially designed dynamic gas exchange chambers (DGECs) and 

cyanobacteria-dominated BSCs sampled from Kalahari Sand soils of southern Africa, 

a large dryland biome which covers 2.5 mill ion hectares (Wang et al., 2007).  In 

addition to the doubled CO2 atmospheric level in laboratory studies, two wetting 

treatments (2 and 5 mm) were incorporated.  This also added an extra dimension and 

additional data on BSCs responses to key conditions of both soil moisture and 

atmospheric CO2 concentration. 

 

2. Methods 
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2.1 Culturing BSCs in Controlled Conditions 

Both crusts and subsoil samples were collected from a lightly grazed commercially-

owned farm near Tsabong, Botswana (25°56’51”S 22°25’40”E) during a field 

campaign in summer 2008. The subsoil (97% fine sand, pH 5.9 ± 0.4, bulk density 

1.85 ± 0.03 g cm3 and porosity 0.34 ± 0.01 v/v) (Thomas and Hoon, 2010) was sieved 

(853 ȝm), sterilized (autoclaved at 121 °C for 15 min) and then filled (178 g each) in 

nine polyethylene terephthalate (PET) containers (diameter = 93 mm and depth = 25 

mm). Soil depth was approximately 20 mm, a depth such that a 5 mm wetting would 

result in near saturation. On the soil surface, biological soil crust samples were gently 

broken into similarly sized pieces and distributed evenly and equally (3.32 g per 

container) in all PET containers. Samples were weighed again and then wetted using 

10 ml of pure water (purity > 99%) applied using a calibrated water sprayer. This 

initial wetting consolidated the soil and the samples were left in an environmental 

cabinet (the conditions of which are outlined below) to settle into a circadian rhythm. 

The samples were allowed to establish for two months in a growth cabinet and the 

crust surfaces were gently moistened several times a week (1-5 mm each), a total of 

53.2 mm (361 ml) of water per container. Included in several of these treatments was 

the addition of standard nutrient medium, BG11 (Rippka et al., 1979), which was 

diluted with water, to encourage growth of the cyanobacteria.  

The growth cabinet was set to provide 16 hours of light (intensity = 76 ± 1 

µmol m-2 s-1, measured as an average at the central position of each cabinet shelf) and 

a temperature of 28 ± 0.3 °C; the remaining 8 hours with no light at a temperature of 

10 ± 0.3 °C.  The light intensity in the cabinet represented early morning hours during 

austral winter in the Kalahari where maximum microbial activity occurs (Evans and 

Johansen, 1999; Thomas and Hoon, 2010). Four USB loggers (USB-500 
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Measurement Computing Corporation) were placed in various positions within the 

cabinet, in order to record internal temperature, which ranged from 7.5-30.5°C in 

phase 1 and 7.5-29.0°C in phase 2.  Relative humidity was not recorded because the 

sensors were located within the environmental cabinet and not in the enclosed and 

therefore isolated (to external relative humidity) design of the DGECs. 

 

2.2 Dynamic Gas Exchange Chambers (DGECs)  

The design of the chambers used was developed from that proposed and used 

successfully in field conditions by Hoon et al. (2009). Chambers were designed to 

house the PET containers containing crust samples. Chambers were made using 

transparent Perspex® material (3 mm thickness) with a height of 103 mm and 100 

mm outer diameter, allowing 92% transmission of PAR (400 nm-700 nm), 

transmission of thermal infrared (IR) and filtered ultraviolet radiation (UV) < 300 nm; 

the top of the chamber was fitted with a removable cap made of Teflon® film that 

allowed 96% transmission of incoming radiation (Figure 1). The Teflon® film was 

able to accommodate pressure changes within the chambers by acting as a diaphragm. 

Each chamber was made air-tight and had ports (Suba-Seals®) from which samples 

were collected at regular intervals. Chambers were attached (via the gas inlets) to the 

main vessel of 32 l volume, containing the CO2-air mix. Open-cell foam inserts were 

placed into the gas inlets and outlets in order to prevent diffusion of atmospheric 

gases into or out of the chamber, while permitting the flushing of the chamber and 

equilibration with the external atmospheric pressure, should it become over 

pressurized. A Teflon® bag was attached to the end of the flush-gas feed line in order 

to confirm flow of the flush gas. Final checks were made for any leaks. After this, 

PET containers with crust samples were transferred into the DGECs and placed back 
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inside the growth cabinet. Care was taken to minimize the disturbance to the crust 

samples. The final set up is given in Figure 2.  

 

2.3 Treatments and Sampling Regime 

Experiments were conducted in two phases (3 days each, as during the preliminary 

run, mentioned below, the behavior had stabilized by the end of day three) to study 

the impacts of elevated CO2 along with different wetting treatments. Phase 1 was 

carried out under ambient CO2 level (392 ppm in air, with a standard deviation of 4.4 

ppm, blended in-laboratory from pure dry air and 1003 ppm CO2-air mix blended by 

Air Liquide) with three single wetting treatments (0, 2 and 5 mm) with three 

replicates. After phase 1, covers were removed and water added to the 0 and 2 mm 

treatments (5 and 3 mm water, respectively) in order to equalize the moisture content 

with the 5 mm wetting treatments. Covers were left off and the crusts allowed to dry 

out again. They reached the initial moisture content 4-5 days after this and were then 

moistened once a week before commencement of phase 2 (phase 2 was undertaken 

three months after phase 1). Phase two was undertaken using the same method as 

phase 1, on the same crust samples, this time with elevated CO2 (801 ppm in air, 

blended by Air Liquide).  

Approximately 12 hours prior to experiments, the CO2-air mix was used to 

flush the chambers. This was in order to allow diffusion through the air spaces in the 

soil, such that the concentration gradient between subsoil and atmosphere was 

reduced and to acclimatize the crust to the new environment. The first gas sample was 

taken (0815 GMT) the following morning, two hours before lights on (1015 GMT). 

Samples were then weighed and the Teflon® lids opened for wetting (simulating a 

single rainfall event of 2 or 5 mm) using a Jencons Powerpette for even application. 
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The chambers were immediately weighed and closed; then placed back into the 

growth cabinet and re-attached to the gas line. All chambers were again flushed with 

the CO2-air mix. Chambers were then left for approximately 40 min before gas 

samples were taken, followed by flushing; with the exception of the last flush of each 

day which was left overnight and the gas sample taken immediately the following 

morning. Each flushing was 12 min (this was determined during initial DGEC design 

testing in the laboratory).  Chamber venting time was close to optimum (40 min), 

which has been determined by a sensitivity analysis of static gas chambers on soils 

(Ohlsson et al., 2005), in which it was concluded that it is possible to reduce the 

uncertainty in the CO2 flux value by allowing extended CO2 accumulation/reduction 

times. Nine gas samples (10 ml each) were collected per chamber at regular intervals 

during the day (0815-1715 GMT with at least two samples taken before lights on) for 

three days and a total of 243 samples were collected from each phase of this 

experiment. A preliminary run (with 410 ppm CO2-air mix) was carried out prior to 

the experiment reported here to check the system. 

Sample weights were taken only at the beginning and end of each phase in 

order to quantify moisture loss. Moisture loss during the experiment was found to be 

negligible in the DGECs, due to the chambers being closed.  

 

2.4 Analysis of CO2 Using Gas Chromatography with Helium Ionization 

Detection 

Temporal changes in CO2 concentration within the DGECs reflect the activity 

(photosynthesis and respiration) of biological soil crusts. To measure the changes in 

CO2 levels, 2.5 µl gas samples were taken at approximately 40 minute intervals 

throughout the experiment and were separated using a Porous Layer Open Tubular 
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(PLOT) column (PoraPLOT Q, 25 m x 0.53 mm, 20 µm i.d. Chrompack, 

Netherlands). A helium ionization detector (VICI, Houston, USA) was used to 

quantify the eluate. The dimensionless integrals of the CO2 peaks were converted to 

ppm and then to carbon flux in mg C m-2 hr-1 using Equation 1; 

 

C Flux Rate = {([CO2]diff × n) / (A × t)} × Vs × MC × 3,600 mg C m-2 hr-1 (1) 

 

where  [CO2] diff = difference between measured CO2 concentration and flush CO2 

concentration in ppm; n = number of moles of gas present in loop at temperature T 

(˚C); 

A = surface area of soil sample (6.793×10-3 m2); t = time between end of last flush and 

taking of gas sample (s); Vs  = volumetric scaling factor = 222,072; MC = molar mass 

of carbon (12.0107 g mol-1) and 3,600 is used to represent flux over one hour. 

Net carbon balances were based on the area under each carbon flux time series and 

were calculated separately for each chamber for each day using the integral function 

in EasyPlot™ software.  In order to characterize significance of treatments (two levels 

of CO2 and three levels of wetting), analysis of variance (ANOVA) was undertaken 

using statistical package SYSTAT 13 which determines the p-value for CO2, wetting 

and also whether or not these values are statistically significant. 

 

 

 

 

3. Results 

3.1 Carbon fluxes in absence of liquid water (controls) 
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Temporal changes in CO2 concentrations in the chambers were measured to 

understand the short-term responses to elevated CO2 levels along with pulse wetting 

events. The positive values of flux in Figures 3 – 5 indicate net respiration and 

negative values indicate net photosynthesis. Net carbon balances for each individual 

chamber, on each day of both phases can be seen in Tables 1 & 2. 

Figures 3a and 3b show temporal changes in the fluxes in the dry chambers 

(controls) for phase 1 (392 ppm CO2) and phase 2 (801 ppm CO2), respectively. The 

activity of the crust was very low due to there being no liquid moisture available. For 

phase 1, the carbon loss (net respiration) dominated over the gain of carbon (net 

photosynthesis) whereas for phase 2, the opposite was found. Tables 1 & 2 show that, 

interestingly, many of the replicates exhibited appreciable carbon fixation even when 

no liquid moisture was available (with the exception of air moisture).  However, the 

net carbon budgets over three days showed that, 0.02 ± 0.01 mg C was lost in phase 1 

and 0.39 ± 0.04 mg C was sequestered for phase 2.  

 

3.2 Carbon fluxes under 2 mm wetting treatment  

Figures 4a & 4b display the carbon release during the first day from the samples soon 

after the wetting treatment for both phases. The samples continued respiration for the 

majority of the first day and settled into a photosynthetic regime by the end of the day. 

The second and third days show the samples to be predominantly photosynthetic in 

activity. This photosynthetic activity peaked toward the end of each day.  The quantity 

of liquid moisture available for the samples for each of the three days, remained 

largely unchanged. Tables 1 & 2 show the net carbon balances (in mg) of all 

chambers for each day of each phase. After a 2 mm wetting treatment and subject to 

the conditions of phase 1 the crust sequestered a total of 0.14 ± 0.14 mg C and during 
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phase 2 this was 1.3 ± 0.5 mg C. All cell group averages displayed net sequestration 

for both phases under 2 mm wetting, with phase 2 showing the highest quantity of 

carbon sequestered. 

 

3.3 Carbon fluxes under 5 mm wetting treatment  

When the 5 mm wetting treatment was applied the wetting front reached the bottom of 

each container, therefore saturating the soil.  Moisture remained available for the 

samples for each of the three days, and the quantity remained largely unchanged.  

Figures 5a & 5b display the carbon fluxes of the chambers subject to a 5 mm wetting 

treatment for each phase. It can be seen that throughout each experiment, a pulse of 

carbon was released at the beginning of each day, particularly during phase 1, 

indicating respiration. The samples exhibited very similar behavior to those subject to 

2 mm wetting; the main difference being a moderate carbon pulse at the beginning of 

each day and overall larger fluxes. For phase 2, the carbon losses were found to be 

similar to phase 1; however the peak influx (sequestration) was 2-3 times larger than 

phase 1. Tables 1 & 2 show the net carbon balances (in mg) of all chambers for each 

day of each phase. After a 5 mm wetting treatment and subject to the conditions of 

phase 1, 0.62 ± 0.05 mg C was sequestered and during phase 2, 2 ± 0.2 mg C was 

sequestered. Phase 2 showed the highest quantity of carbon sequestered.  

 ANOVA significance testing of daily carbon sequestration (i.e. all negative 

values from Tables 1 & 2) was undertaken. Tables 1 & 2 show the highly significant 

effects of CO2 (P value = 0.005) and wetting (P value = 0.001), however the 

interaction between these factors was not found to be significant. 
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4. Discussion 

All carbon balances, with the exception of the dry samples at 392 ppm CO2, were 

negative. This suggests that the overall, the dominant process was photosynthesis. 

This shows that isolation of the autotrophs has been achieved, although it should be 

noted that BSCs colonies are an amalgamation of heterotrophs and autotrophs, and as 

such there is potential for both photosynthesis and respiration to occur 

simultaneously. This is further confirmed when considering the pulse CO2 efflux 

effects observed in those samples subject to wetting treatments, although interestingly 

initial pulses were lower under 801 ppm CO2 than under 392 ppm CO2 perhaps 

suggesting that the CO2 concentrating mechanism (CCM) (Badger and Price, 1992) 

activity was enhanced under the increased CO2 atmosphere. Respiration was observed 

early each day in the samples subjected to wetting treatments due to the absence of 

light (and in some cases lasted for a short duration after the lights were on); again 

these effluxes were lower under higher ambient CO2 levels. 

Overall, each of the wetting treatments yielded higher influx of carbon when 

subject to an 801 ppm CO2-air mix than when subject to the 392 ppm CO2-air mix. Of 

these the most significant were the samples subjected to a 2 mm wetting treatment; 

carbon influx increased by an order of magnitude suggesting that photosynthetic 

activity in the BSCs samples responded best to ‘light’ wetting treatments/events. 

Increases in carbon influx of three fold were observed in those samples with a 5 mm 

wetting treatment, still representing a significant relative increase in carbon influx 

under increased atmospheric CO2. Samples which had no additional water added also 

exhibited increased carbon influx under enhanced atmospheric CO2; this is very likely 

due to moisture formation in the form of condensation on the soil surface during the 
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‘night-time’ part of the cycle creating a source of liquid moisture for the BSCs, 

facilitating photosynthesis. 

The finding that the relative increase in carbon influx was highest in the 2 mm 

wetting treatment is complementary to the field-based findings of Thomas et al. 

(2008) whereby not only do the autotrophs respond best to ‘light’ wetting treatments, 

but the light wetting also limits the depth of soil which receives moisture, hence 

reducing the effect that subsoil heterotrophs have on the net carbon balance. Light 

rainfall events are common across the Kalahari, particularly at the beginning of the 

wet season and have an important effect upon the annual soil carbon balance (Thomas 

et al., 2011). The results presented here are promising for the continuing role of BSCs 

as a carbon store as atmospheric CO2 increases, provided rainfall patterns remain at 

higher frequencies of light events as currently seen (Simelton et al., 2013) rather than 

moving to more extreme intense rainfall events as predicted by some for dryland 

Africa more widely (e.g. Twomlow et al., 2008)).  

Although the mechanisms of increased carbon sequestration were not 

investigated in this study, Badger and Price (1992) describe the CO2 concentrating 

mechanisms of cyanobacteria, which are capable of concentrating CO2 up to 1000-

fold. The cyanobacterial CO2 concentrating mechanism is possibly the most effective 

of any photosynthetic organism (Badger and Price, 1992), and therefore it would be 

hoped that this effect would be amplified if  elevated levels of CO2 were made 

available (up until saturation).  Cyanobacterial species are among the earliest forms of 

life, having evolved under, and been exposed to, the high CO2/low O2 atmosphere of 

the early (~3,000 Ma) Earth (Bowes, 1991); therefore it could be postulated that 

cyanobacterial photosynthetic activity is optimum when exposed to the conditions 

under which the organisms evolved, and hence a positive correlation between 
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photosynthetic activity and increasing CO2 levels may exist. The findings of this study 

appear consistent with this hypothesis; however the exact mechanisms require further 

investigation. Further evidence is the ability of CO2 concentrating mechanism to 

modulate activity under the influence of environmental factors; cyanobacteria (and 

other CO2 concentrating mechanisms) can acclimate to a wide range of CO2 

concentrations  (as also show in FACE studies of Steven et al., 2012).  

This study demonstrated the carbon sequestration potential of BSCs under 

elevated CO2 levels under two moisture regimes. The response was similar to many 

crops (Cure and Acock, 1986) and dryland vegetation (Naumburg et al., 2003) under 

elevated levels of CO2 in the atmosphere. BSCs have the potential to fix carbon under 

limited soil moisture availability and nutrient poor soils (typical of drylands) and is 

especially applicable to BSCs dominated by nitrogen fixing cyanobacteria. Therefore 

undisturbed BSC-covered drylands could be enhanced carbon sinks, and play an 

increasingly significant role in global carbon budgets in years to come. With this in 

mind, protection of BSCs is of increasing importance, particularly considering land 

use pressures on these areas (Dougill and Thomas, 2004), where implementation of 

community-based ecosystem service schemes such as those described by Dougill et 

al. (2012) could be greatly beneficial to dryland areas. More long-term flux 

monitoring studies are required with varying environmental conditions, particularly 

concerning BSCS responses to increased temperatures (e.g. Frey et al., 2013) and 

incoming solar radiation with varying wetting treatments.  
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FIGURE CAPTIONS 

Figure 1. Photograph of the dynamic gas exchange chamber. A Teflon® film was 

attached to the top of the chamber using strong adhesive tape, and the gas inlet/gas 

outlet had open-cell foam inserts in order to allow pressure equilibration, but to 

prevent gas diffusion. Gas inlets/outlets were attached using grommets which were 

sealed using Instant Gasket. Gas samples were taken from the Suba-Seal® sampling 

port (to the rear of the chamber in this image). A hole was drilled in the bottom of the 

chamber in order that the samples could be inserted into the cell in a controlled 

manner; during experiments this hole was sealed using high strength adhesive tape. 

 

Figure 2. Layout of DGECs within controlled environment cabinet. The USB data 

loggers (not shown) were placed at various points within the cabinet (one on top and 

bottom shelf, two on middle shelf). A flow rate meter (not shown) was attached to the 

gas feed line close to the point of exit of the main 32 l vessel. 
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Figure 3a & 3b. Gas sample data from phases 1 & 2, samples with no additional 

liquid water, data presented as average values of three replicates for each treatment 

with error bars representing standard error. Gas sample data from phases 1 (Figure 

3a) & 2 (Figure 3b) (392 ppm & 801 ppm CO2, respectively, in air flush-gas), 

measuring carbon fluxes in chambers subject to no additional liquid water. Night-time 

(lights off) was 8 hours before 1 hour, between 17-25 hours and between 41-49 hours, 

after wetting. The left y-axis (Y1) corresponds to the solid dots / line (carbon flux of 

crust in chamber averaged over three chambers) and the right y-axis (Y2) corresponds 

to the dashed curve (internal temperature of cabinet). The Y1=0 line represents the 

point at which net carbon flux is zero. Y1=+ve ĺ net respiration, Y1=-ve ĺ net 

photosynthesis. The point at which water was added to the crusts is given by the line 

X=0. 

 

Figure 4a & 4b. Gas sample data from phases 1 & 2, samples subject to 2 mm 

wetting treatment, data presented as average values of three replicates for each 

treatment with error bars representing standard error. Gas sample data from phases 1 

(Figure 4a) & 2 (Figure 4b) (392 ppm & 801 ppm CO2, respectively, in air flush-gas), 

measuring carbon fluxes in chambers subject to a 2 mm wetting treatment. Night-time 

(lights off) was 8 hours before 1 hour, between 17-25 hours and between 41-49 hours, 

after wetting. The left y-axis (Y1) corresponds to the solid dots / line (carbon flux of 

crust in chamber – averaged over three chambers) and the right y-axis (Y2) 

corresponds to the dashed curve (internal temperature of cabinet). The Y1=0 line 

represents the point at which net carbon flux is zero. Y1=+ve ĺ net respiration, Y1=-

ve ĺ net photosynthesis. The point at which water was added to the crusts is given by 

the line X=0. 
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Figure 5a & 5b. Gas sample data from phases 1 & 2, samples subject to 5 mm 

wetting treatment, data presented as average values of three replicates for each 

treatment with error bars representing standard error.  Gas sample data from phases 

1 (Figure 5a) & 2 (Figure 5b) (392 ppm & 801 ppm CO2, respectively, in air flush-

gas), measuring carbon fluxes in chambers subject to a 5 mm wetting treatment. 

Night-time (lights off) was 8 hours before 1 hour, between 17-25 hours and between 

41-49 hours, after wetting. The left y-axis (Y1) corresponds to the solid dots / line 

(carbon flux of crust in chamber – averaged over three chambers) and the right y-axis 

(Y2) corresponds to the dashed curve (internal temperature of cabinet). The Y1=0 line 

represents the point at which net carbon flux is zero. Y1=+ve ĺ net respiration, Y1=-

ve ĺ net photosynthesis. The point at which water was added to the crusts is given by 

the line X=0. 



HIGHLIGHTS 

 Response to elevated atmospheric CO2 of cyanobacterial samples was 
investigated 

 Three wetting treatments were applied under fixed temperature and light 
conditions 

 Newly designed dynamic gas exchange chambers were developed and used 

 Samples subjected to 2 mm wetting sequestrated 10 times more C when CO2 
was doubled 

 Samples subjected to 5 mm wetting sequestrated 3 times more C when CO2 
was doubled 

*Highlights (for review)
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TABLES 

 

Table 1. Carbon balances for each chamber during Phase 1 (392 ppm CO2). Chambers 1.2-1.3 
had no additional water, chambers 2.1-2.3 each had a 2 mm wetting treatment and chambers 3.1-
3.3 each had a 5 mm wetting treatment. 

Chamber 

Carbon Balance (mg C) 
(+ve = efflux, -ve = sequestration) 

Day 1 Day 2 Day 3 Net 

Average for each 
chamber group 
(±SE) 

1.1 0.119 0.021 -0.098 0.041  
1.2 0.030 0.013 -0.024 0.020  
1.3 0.033 0.046 -0.082 -0.003 0.02 ± 0.01 
2.1 0.431 -0.163 -0.330 -0.062  
2.2 0.775 -0.300 -0.421 0.055  
2.3 0.354 -0.324 -0.450 -0.420 -0.14 ± 0.14 
3.1 0.120 -0.307 -0.420 -0.607  
3.2 0.085 -0.199 -0.428 -0.541  
3.3 0.068 -0.293 -0.487 -0.712 -0.62 ± 0.05 

 

Table 2. Carbon balances for each chamber during Phase 2 (801 ppm CO2). Chambers 1.2-1.3 
had no additional water, chambers 2.1-2.3 each had a 2 mm wetting treatment and chambers 3.1-
3.3 each had a 5 mm wetting treatment.  

Chamber 

Carbon Balance (mg C) 
(+ve = efflux, -ve = sequestration) 

Day 1 Day 2 Day 3 Net 

Average for each 
chamber group 
(±SE) 

1.1 -0.109 -0.096 -0.163 -0.369  
1.2 -0.174 -0.190 -0.102 -0.466  
1.3 -0.125 -0.114 -0.082 -0.321 -0.39 ± 0.04 
2.1 0.045 -0.703 -0.880 -1.538  
2.2 0.317 -1.067 -1.217 -1.966  
2.3 0.304 -0.284 -0.468 -0.449 -1.3 ± 0.5 
3.1 -0.145 -0.621 -0.845 -1.611  
3.2 -0.076 -0.811 -1.115 -2.001  
3.3 -0.215 -0.946 -1.194 -2.356 -2.0 ± 0.2 
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