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Abstract A numerical simulation for two-dimensional laminar air–water flow of a non-

linear progressive water wave with large steepness is performed when the background wind

speed varies from zero to the wave phase speed. It is revealed that in the water the difference

between the analytical solution of potential flow and numerical solution of viscous flow is

very small, indicating that both solutions of the potential flow and viscous flow describe the

water wave very accurately. In the air the solutions of potential and viscous flows are very

different due to the effects of viscosity. The velocity distribution in the airflow is strongly

influenced by the background wind speed and it is found that three wind speeds, U = 0,

U = um (the maximum orbital velocity of a water wave), and U = c (the wave phase speed),

are important in distinguishing different features of the flow patterns.

Keywords Air–water interface · Low wind speed · Progressive wave

1 Introduction

The study of air–water flow is important for the coupling processes between waves and the

adjacent airflow. This process is a main research topic for the marine atmospheric boundary

layer and ocean boundary layer; a recent review can be found in Sullivan and McWilliams

(2010). The air–water flow has received considerable attention over time. The first theoretical

analysis was the analytical solution for two-layer potential flow and has been well documented

in Lamb (1916) and Milne-Thomson (1994).
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382 X. Wen, S. Mobbs

Laboratory and field studies on ocean surface waves have been carried out in many previous

studies. Kawai (1982) measured velocity distributions in the air using the suspended particle

technique, and Mitsuyasu and Honda (1982) measured the growth of the water waves. Cheung

and Street (1988) measured the turbulent velocity distribution in the water under an air–

water interface, while Hasselmann and Bosenberg (1991) measured the pressure in the air

at two-fixed points above the mean water level and analyzed the growth and decay of the

interface. Banner and Peirson (1998), using particle image velocimetry (PIV) techniques,

measured the velocity distributions beneath wind-driven air–water interfaces and analyzed

the tangential stress. Donelan (1999) conducted a laboratory experiment to determine the

wave growth and attenuation in following and opposing airflow. More recently, Veron et al.

(2007) used PIV to measure the velocity distributions in the air and calculated the shear

stress. Peirson and Garcia (2008) measured the wind-induced growth of slow water waves.

The coupled boundary layer air–sea transfer field campaigns of Black et al. (2007), Chen

et al. (2007) and Edson et al. (2007) are the most recent observations and measurements of

air–sea flow.

The field observations and experimental measurements have revealed many valuable and

important details of the characteristics of wind-waves such as the movement of the water sur-

face, the distributions of the velocity, shear stress and pressure above the wave crest. However,

the movement of the water surface has caused formidable difficulties in the measurements,

which can only be made well above the peak of the wave; and hence, many details of the

water and airflow in the vicinity of the surface have not been revealed. In fact, there is still a

lack of detailed measurements of the velocity in the water and air near the surface. It is also

still difficult to find detailed measurements of pressure and shear-stress distributions in both

water and air near the interface.

The wave generation theories of Miles (1957) and Phillips (1957) are popular and influen-

tial theoretical models of air–sea flow. The theoretical model based on perturbation solutions

of the airflow equations is developed by Belcher and Hunt (1998), and this model has revealed

many important features of the airflow over a wavy surface. Ocean wave forecasting mod-

els have been developed since 1970 (Janssen 2008) and have been widely used in practical

applications. These models have a unique attractive feature because of their energy balance

equations, but there are uncertainties in the empirical calculations of the energy input, wave–

wave interaction and energy dissipation since the mechanism of the interaction between the

water wave and the airflow is still not fully understood.

Recent studies have begun to apply computational fluid dynamics (CFD) methods to reveal

the details of ocean surface waves. Numerical simulations have been performed for potential

flow based on boundary integral methods. Tsai and Yue (1996) reviewed and summarized

studies in this research area. Later, numerical simulations of viscous airflow over a stationary

wavy boundary were performed by De Angelis et al. (1997) and Henn and Sykes (1999).

However, the airflow over a travelling wave is different from that over a stationary wavy

boundary. Numerical studies have also been performed for the more realistic airflow above

a travelling wavy surface by Al-Zanaidi and Hui (1984) who simulated the turbulent flow

over a small Stokes wave using a two-equation turbulence model. Maat and Makin (1992)

investigated the effects of the wave steepness on the flow pattern in the air above the Stokes

wave by employing a turbulent model. Meirink and Makin (2000) used a low Reynolds

number model to simulate the airflow above a sinusoidal wave. In reality the water surface

has flatter troughs and sharper crests. In order to simulate these more realistic water waves,

Li et al. (2000) studied the turbulent airflow above the Stokes wave using low- and higher-

order turbulence models. Sullivan et al. (2000) and, more recently, Yang and Shen (2010)

simulated the turbulent airflow above a sinusoidal wave using direct numerical simulation

123



Numerical Simulations of Laminar Air–Water Flow 383

(DNS). Sullivan et al. (2008) employed a large-eddy simulation (LES) model to analyze

situations with airflow following and opposing fast–propagating sinusoidal waves.

These CFD models have developed significantly in the last three decades from early

potential flow to later, more complex, turbulent models and DNS. The CFD simulations have

substantially increased our knowledge on air–water flow, especially the airflow in the vicinity

of the water surface. In these numerical simulations the shape and movement of the wave

surface are described by the analytical solution of the Laplace equation for potential flow.

In order to reveal how the airflow affects the water wave, McWilliams et al. (1997), Tsai

et al. (2005) and Sullivan et al. (2007) numerically simulated turbulent shear flow in water

driven by the surface stress exerted on the flat water surface.

It has long been a desire that the numerical solution for air–water flows should be obtained

by including both air and water in a fully coupled formulation, i.e. the two-phase flow model

that simultaneously computes the movement of the wave surface and distributions of velocity

and pressure in the water and air. It is rare that the Navier–Stokes equations are solved for

the two phase air–water flows. Only recently have numerical simulations been performed

utilizing a two-phase model.

There are two types of two-phase models: the first solves the Navier–Stokes equations in

the domains separately occupied by the air and water and then the solutions for the air and

water are coupled by the conditions of continuous velocity and shear stress at the interface.

Lin et al. (2008) used this method to investigate the generation of water waves in a turbulent

airflow. The effects of the waves on the turbulence above and below the interface are examined,

and the numerically predicted wavelength of the fastest growing wave agrees with laboratory

measurement. The numerical wave growth rate is consistent with previous studies but may be

several times larger. Similarly, Yang and Shen (2011) coupled the solutions in air and water

by using the conditions at the interface to simulate laminar and turbulent interfacial flows

of a linear progressive wave, and their numerical results agree very well with the analytical

solutions.

A second type of two-phase model solves the Navier–Stokes equations in the whole

solution domain in order to produce solutions in the air and water simultaneously. Fulgosi

et al. (2003) used this approach for the capillary water waves generated by airflow. A two-

dimensional, viscous, laminar, progressive water wave has been studied by Raval et al. (2009)

when the wind speed is zero by utilizing a coupled two-phase model based on a collocation

grid system. Some characteristics of the water wave have been revealed but they did not

present the numerical solutions in the air. When the wind speed is zero, a laminar air–water

flow of a progressive wave was computed using the recently developed Wet/Dry Areas Method

(Wen 2013).

Low wind speed is the condition under which the airflow speed is lower than the wave phase

speed. Under such conditions, the features of the air–water flow are significantly different

from those with a higher wind-speed. Low wind-speed cases have been studied by Smedman

et al. (1999), Grachev and Fairall (2001) and Edson et al. (2007) in their field observations.

Hanley and Belcher (2008) analyzed the wave-driven wind jets using a theoretical model.

Sullivan et al. (2008) examined the interaction between atmospheric turbulence and swell

using a LES model. All these studies reported an upward momentum transfer from the ocean

to the atmosphere under low wind-speed conditions.

The laminar flow of the air–water wave is a regime of viscous fluid flow and the behaviour

of laminar flow at low wind speeds has a direct connection to the wave generation, flow

separation, growth and attenuation. The aim of our study is to investigate the effect of wind

speed on the air–water flow pattern as a non-linear progressive wave propagates along the

interface between the air and water. Section 2 describes the numerical method and the simu-
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lation parameters used in the calculations. Section 3 compares the profiles of the interface of

the numerical solution with the analytical solution when the wind speed is zero, and Sect. 4

investigates the effect of wind on the velocity and streamlines. Section 5 compares the hor-

izontal velocities of the viscous and potential flows along the vertical lines passing through

the peak and trough of the wave and the average horizontal velocity. Finally, Sect. 6 draws

conclusions.

2 Problem Formulation

2.1 Numerical Method

Shown in Fig. 1 is a two-dimensional incompressible air and water flow, where the flow above

a progressive water wave has an average wind speed U and exits the solution domain from

the outlet at the far right. Water waves with zero current velocity are continuously generated

at the inlet at the left end of the domain and propagate in the positive x direction and dissipate

on a step shape beach with an average slope of 1/20 at the far right end of the domain. The

elevation of the progressive wave is η with the wave amplitude a. The wavelength is L ,

periodic time is T , wavenumber k = 2π/L , angular frequency σ = 2π/T , wave phase speed

c = L/T = σ/k, wave steepness 2a/L , the depth of water is h and the depth of air is h′.

v = ui + wj is the velocity vector, p is the pressure, ρ is the density of the fluids, µ is the

viscosity of the fluids; here ρ refers to the water density ρw in the water and the air density

ρa in the air; µ refers to the water viscosity µw in the water and the air viscosity µa in the air,

g is acceleration due to gravity. The Reynolds number is defined by Re = ρaU L/µa. The

frame of reference is a Cartesian coordinate system (x, z) fixed on the ground and is aligned

to the mean water surface shown in Fig. 1.

Let � be a control volume in the fluid and we use the Navier-Stokes equations in conser-

vative integral form Hirsch (1997) for the numerical simulation. When the length in the y

direction is unity, a two-dimensional flow can be modelled by the three-dimensional Navier–

Stokes equations by assuming �y = 1 and v = 0. For a three-dimensional control vol-

ume, � = �x × 1 × �z = �x × �z, the continuity equation for volume conservation is

written as
∫

s

(n · v)dS = 0 (1)

where n = nx i + nzj is a dimensionless unit vector outward from the surface of the control

volume S. The continuity equation for mass conservation is written as
∫

�

∂ρ

∂t
d� +

∫

s

(ρn · v) dS = 0. (2)

Air

Water

Fig. 1 Sketch of computational domain
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Fig. 2 a Staggered location for

u, w, p and f ; b u control

volume

a b

The momentum equation for u is given by
∫

�

∂(ρu)

∂t
d� +

∫

s

(ρn · v)u dS = −

∫

s

nx p dS +

∫

s

µ
∂u

∂l
dS (3)

and the momentum equation for w is given by
∫

�

∂(ρw)

∂t
d� +

∫

s

(ρn · v)w dS = −

∫

s

nz p dS +

∫

s

µ
∂w

∂l
dS − mg (4)

where m =
∫

�

ρ d� is the total fluid mass within the control volume, ∂
∂l

is the directional

derivative along the direction of n. Here f is the fractional volume of � occupied by the

water and satisfies
∫

�

∂ f

∂t
d� +

∫

s

(n · v) f dS = 0. (5)

The staggered grid arrangement for u, w, p and f is shown in Fig. 2a; the control volume

for the velocity component u is shown in Fig. 2b. By applying the standard control volume

method described by Patankar (1980) and Shyy (1994) we obtain the following standard

algebraic equations for u and w:

aP u P = aE uE + aW uW + aN uN + aSuS

+pw Aw − pe Ae +
m0

�t
(u P )0 + ub, (6)

aPwP = aEwE + aW wW + aN wN + aSwS

+ps As − pn An +
m0

�t
(wP )0 − mg + wb. (7)

The coefficients are given by

aE = De + [−Fe, 0], aW = Dw + [Fw, 0],

aN = Dn + [−Fn, 0], aS = Ds + [Fs, 0],

De = (µ
A

�x
)e, Dw = (µ

A

�x
)w,

Dn = (µ
A

�z
)n, Ds = (µ

A

�z
)s,

aP =
m0

�t
+ aE + aW + aN + aS =

m0

�t
+ 	anb

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8)

where subscript 0 represents the solution at time level n and other symbols represent the

solution at time level n + 1. [a, b] represents the maximum of the two operands a and b.

Terms ub and wb contain the contributions from the higher-order terms.
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Fe, Fw, Fn and Fs are the fluid fluxes passing through surfaces Ae, Aw, An and As at time

level n + 1 and are given by

Fe =

∫

Ae

ρu dS, Fw =

∫

Aw

ρu dS

Fn =

∫

An

ρw dS, Fs =

∫

As

ρw dS.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(9)

These mass fluxes are calculated by the Wet/Dry Areas Method (Wen 2013). For the volume

fraction f , a high resolution scheme compressive interface capturing scheme for arbitrary

meshes developed by Ubbink and Issa (1999) for the volume of fluid method is used to solve

Eq. 5 in order to track the interface.

The feature of the Wet/Dry Areas Method used herein is that the mass fluxes passing

through the surfaces of the control volume are calculated by an algebraic expression derived

from the conservative integral form of the Navier–Stokes equations. Wen (2012) explained

why this method produces numerical solution with high accuracy.

2.2 Initial and Boundary Conditions

Since there is no analytical solution of the Navier–Stokes equations available for us to specify

the initial and boundary conditions, the best possible approximation for the problem is the

analytical solution of potential flow. In the solution of a linear progressive wave in a two-layer

potential flow (Milne-Thomson 1994), the surface elevation, η, of the wave travelling in the

x-direction is

η = a sin(kx − σ t). (10)

The velocity components, pressure and volume fraction in the air are given by

u = U − Baakc sin(kx − σ t) cosh k(z − h′), (11)

w = Baakc cos(kx − σ t) sinh k(z − h′), (12)

p = −ρaakc2 Ba cosh k(z − h′) sin(kx − σ t) − ρ u2+w2

2
− ρgz, (13)

f = 0. (14)

In the water they are given by

u = Bwakc sin(kx − σ t) cosh k(z + h), (15)

w = −Bwakc cos(kx − σ t) sinh k(z + h), (16)

p = ρwakc2 Bw cosh k(z + h) sin(kx − σ t) − ρw
u2+w2

2
− ρwgz, (17)

f = 1, (18)

where

Ba =
(1 − U/c)

sinh kh′
, (19)

and

Bw =
1

sinh kh
. (20)
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The dispersion equation takes the following form

ρwσ 2 coth kh + ρa(σ − kU )2 coth kh′
= (ρw − ρa)gk, (21)

or

ρwc2 coth kh + ρa(c − U )2 coth kh′
=

(ρw − ρa)g

k
. (22)

The initial surface elevation of the water wave and velocity distributions in the air and water

are evaluated by substituting t = 0 into Eqs. 10–21. When t > 0, the location of the interface

and the velocity of the water and air at the inlet are calculated by substituting x = 0 into (10)–

(12), (14)–(16) and (18). At the top of the domain, a symmetric condition for the velocity

is applied. At the bottom and on the step beach, a no-slip wall condition is applied. At the

outlet, the normal derivative of velocity is set to zero.

2.3 Simulation Parameters

In the numerical simulation, the water and air depth was set to h = 0.12 m and h′ = 0.78 m,

respectively. The wavelength for the water wave is set to L = 0.2 m and wave amplitude to

a = 0.008 m, which leads to a deep water wave with h/L = 0.6 and a large wave steepness

2a/L = 0.08 (ak = 0.2513). The wave phase speed, c, is calculated using Eq. 22. In order

to find the effect of the wind, the numerical simulations are performed at U = 0, um, 0.5c

and c, respectively, where um is the maximum water orbital velocity at the peak of the wave

of the potential flow and is obtained by setting t = 0, kx − σ t = π/2 and z = a in Eq. 15,

um = Bwakc cosh k(a + h). (23)

As sketched in Fig. 1, the length of the computational domain is 4 m and the length of the

main test domain is 3 m which accommodates 15 wavelengths. The length of step shape

beach is 0.65 m with an average slope of 1/20. At the end of the beach is a vertical wall

jointed by a horizontal outlet channel with a width of 0.63 m. The values of the parameters

used in the simulation are g = 9.8 m s−2, water viscosity µw = 1.0 × 10−3 kg m−1 s−1,

air viscosity µa = 1.0 × 10−5 kg m−1 s−1, ρw = 1000 kg m−3 and ρa = 1.0 kg m−3. The

Reynolds number varies from 0 to 11,152.

A rectangular non-uniform Cartesian mesh is used in the whole solution domain. In order

to resolve the boundary layer at the bed, �z = 0.0001, 0.0003 and 0.0005 m were tested for

the first grid size. It is found that �z = 0.0001 and 0.0003 m produce accurate solutions,

so �z = 0.0003 m is used. Above the first grid, the grid size increases to the middle of the

water wave where the grid size starts to decrease. Uniform grids with 8, 12, 16 and 20 grid

points were tested to cover the wave height. It was found that both 12 and 16 grid points

are sufficient to produce accurate results, therefore, 16 grid points are distributed vertically

around the wave height. Above the peak of the wave, the grid size gradually increases to the

top of the domain. A total of 60, 90 and 120 grid points in z direction were tested, and 90

grid points was found to be sufficient to produce accurate results.

In the horizontal direction, a uniform mesh is used with the grid size of �x = 3�zwave,

where �zwave is the grid size at the wave height. The time of numerical simulations lasts until

the wave generated at the inlet at t = 0 propagates to the middle of the beach. The timestep

varies from 0.00005 to 0.00002 s as the wind speed varies from U = 0 to U = c.

In order to further dissipate the energy on the beach at the right end of the solution domain

an artificial viscosity is added to the air and water on the beach. We use the following equation

to generate the artificial viscosity

123



388 X. Wen, S. Mobbs

µT = (A�)2ρ
√

2Si j Si j (24)

where Si, j = 1
2
(

∂ui

∂x j
+

∂u j

∂xi
), � is the grid size and A is an arbitrary constant. In the calculation

we chose A = 10−100, which produces a nearly flat water surface at the right end of the

beach. When this artificial viscosity was added, the length of the beach and the computational

cost were substantially reduced.

3 The Comparison of the Profiles of the Numerical and Analytical Solutions When

U = 0

For viscous flow, Fig. 3 shows the numerically predicted profile of the interface of the first five

waves when the wind speed is zero. It is observed that the interface of the numerical solution

is periodic. The most remarkable feature of the numerical solution is that the interface has

flatter troughs and sharper crests.

When the wind speed is zero, it is also interesting to compare the numerically produced

profile of the water surface with profiles produced by the solution of the linear wave given

by (10) and the fifth-order solution of the nonlinear wave of Fenton (1985) given by

η = a cos(kx − σ t) +
1

2
kh2 cos

[

2(kx − σ t)
]

+
3

8
k2h3

{

cos
[

3(kx − σ t)
]

− cos(kx − σ t)
}

+
1

3
k3h4

{

cos
[

2(kx − σ t)
]

+ cos
[

4(kx − σ t)
]

}

+
1

384
k4h5

{

− 422 cos
[

(kx − σ t)
]

+ 297 cos
[

3(kx − σ t)
]

+125 cos
[

5(kx − σ t)
]

}

. (25)

Starting at a location of two wavelengths from the inlet, Fig. 4 presents the profiles of the

wave surface produced by (10), (25) and the numerical solution. Figure 4 shows an excellent

agreement between the numerical and the fifth-order solutions. The linear wave given by

Fig. 3 The interface of the first five waves of the viscous flow when U = 0

Fig. 4 Comparison of profiles of the wave surface for U = 0: dotted line linear wave; spaced dash Fenton’s

fifth-order solution; line numerical solution
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(10) is a sinusoid that has the same profile above and below the mean water surface, whereas

the numerical and fifth-order solutions have flatter troughs and sharper crests than the linear

wave.

Another notable difference between the linear wave and Fenton’s fifth-order and numerical

solutions is that the fifth-order and numerical solutions have higher elevation at the peak and

trough. The profile of the input wave at the inlet is the linear wave given by (10), thus Fig. 4

reveals that the linear wave input at the inlet quickly evolves to the non-linear viscous wave

once it propagates into the solution domain. The excellent agreement between the fifth-order

and numerical solutions indicates that both Fenton’s theoretical relation and the numerical

solution produce accurate profiles for the wave surface when the wind speed is zero.

4 Velocity Vectors and Streamlines

From this section we present the results for the fifth wave from the inlet since the difference

between the waves are small. We use velocity vectors and streamlines to present the velocity

distribution and the flow pattern locally and also globally. The dimensionless velocity is

defined as

ū =
u

akc
, (26)

w̄ =
w

akc
, (27)

and the dimensionless streamfunction is defined as

ψ̄ =
ψ

ac
. (28)

For the different wind speeds U = 0, um, 0.5c and c, Figs. 5 and 6 plot the velocity

vectors and streamlines of the fifth wave produced by the numerical solutions of viscous flow

and the analytical solutions of potential flow given by (10)–(21). Figures 7 and 8 present the

detailed velocity distributions of the fifth wave of the viscous flow. In general, Figs. 5 and

6 show the viscous and potential flows have very similar flow patterns. The velocity vectors

and streamlines of the viscous and potential flows are almost the same in the water and in

most of the air. The airflow changes significantly with the wind speed in both viscous and

potential flows. The notable difference between the viscous and the potential flows is that the

velocity of the viscous flow is a continuous function in the solution domain including at the

interface, whereas the velocity of the potential flow is discontinuous at the interface because

the viscosity is ignored in the potential flow.

Figures 5a, b, and 6a, b show the results of the viscous and potential flows when the wind

speed U = 0. The viscous flow in Figs. 5a and 6a exhibits two rotating flows centred in the

air, one anti-clockwise rotating flow just above the peak of the water wave and one clockwise

rotating flow just above the trough. They both roll forward with the wave phase speed c due

to the propagation of the crest and trough. From Figs. 5a and 6a we can see that the two

rotating flows in the air are induced by the orbital motion of the water wave. Figures 7a and

8a show the detailed velocity distributions of the viscous flow at the crest and trough in Fig.

5a. The analytical solutions of potential flow in Figs. 5b and 6b are simply two sinusoidal

waves, one in the water described by (15) and (16) and the other in the air described by (10)

and (11).

Figures 5c and 6c show the instantaneous velocity vectors and streamlines of the viscous

flow when the wind speed is increased to the maximum wave orbital velocity U = um =
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a b

c d

e f

g h

Fig. 5 Velocity vectors of viscous flow on the left in panels (a, c, e, g) and potential flow on the right in

panels (b, d, f, h) when U = 0, um , 0.5c and c (from top to bottom), respectively
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a b

c d

e f

g h

Fig. 6 Streamlines of viscous flow on the left in panels (a, c, e, g) and potential flow on the right in panels

(b, d, f, h) when U = 0, um, 0.5c and c (from top to bottom), respectively
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a

b

c

d

Fig. 7 Detailed velocity distributions of viscous flow at the crest: a U = 0; b U = um ; c U = 0.5c; d U = c

0.323c. These figures show that most air moves in the wind direction but a tiny rotating flow

just above the crest is still visible, indicating that the water orbital motion, which induces the

anti-clockwise rotating flow, causes the air above the crest to decelerate. Above the trough,

the backward moving water and forward moving air create a rotating flow in the air. Figure

7b reveals the detailed velocity vectors in the small rotating flow above the crest while Fig.

8b shows the detailed velocity distribution in the rotating flow at the trough. The potential

flow in Figs. 5d and 6d shows that, unlike the viscous flow, all the air moves with positive

velocity along the wind direction.

When the wind speed increases to half of the wave speed (U = 0.5c), Figs. 5e and 6e

show that, in the numerical results of the viscous flow, the rotating flow above the crest has
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a

b

c

d

Fig. 8 Detailed velocity distributions of viscous flow at the trough: a U = 0; b U = um ; c U = 0.5c; d

U = c

completely disappeared and all the air moves forward, but the rotating flow above the trough

persists. Figure 7c reveals the very small air velocity of the viscous flow above the crest

caused by the wind and water orbital motions. Figure 8c shows that the rotating flow above

the trough is very similar to Fig. 8b because of a small increase of the wind speed from

U = um = 0.323c to U = 0.5c. This small increase also causes a small increase in the

velocity of the potential flow in the air in Figs. 5f and 6f.

Figures 5g and 6g show the velocity vectors and streamlines of viscous flow when the

wind speed is further increased to the wave phase velocity c. It is observed that the air
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velocity substantially increases and the streamlines in the main stream of the flow become

more horizontal. The top boundary of the rotating flow above the trough is closer to the water

surface leading to a smaller rotating flow. Figure 7d reveals that, despite the wind speed being

three times the maximum water orbital velocity um, the air velocity above the peak is still

smaller than um, indicating a very strong effect of the orbiting water on the air. Figure 8d

reveals a further decrease in the size of the recirculation above the trough. When U = c,

(11) and (12) lead to w = 0 and u = c, therefore, Fig. 5h shows that the potential flow has a

constant horizontal velocity everywhere in the air and Fig. 6h shows that all the streamlines

in the air are horizontal lines.

5 Horizontal Velocities

In order to further investigate the velocity distributions for the fifth wave, Fig. 9 plots the

numerical and analytical horizontal velocities varying with z at two locations x/L = 0.25

and x/L = 0.75 for different wind speeds. In general, the numerically predicted horizontal

velocities are in excellent agreement with the analytical solutions of the potential flow in the

water and in most of the air. As revealed in Sect. 4 the differences between the solutions of

the viscous and potential flows occur in the air near the water surface.

At the wave crest x/L = 0.25, Fig. 9a, c, e, g show that the positive u velocity compo-

nent of the potential and viscous flows increases monotonically to the maximum from the

bed to the water surface. A remarkable feature is that the difference between the velocity

magnitudes of the potential and viscous flows is less than 1 %. Across the interface into the

air, the velocity u of the viscous flow always decreases even at the wind speed U = c. This

reduction of the velocity in the air above the crest is clearly caused by the orbital motion of the

water. It is observed in Fig. 9a, c, e, d that the reduction becomes smaller with the increase

in the wind speed. In Fig. 9g the reduction is almost zero. Therefore, it can be expected

that a further increase of the wind speed will not produce a reduction in u and the horizon-

tal velocity u will monotonically increase with z when the wind speed > the wave phase

speed.

At the wave trough where x/L = 0.75 in Fig. 9b, d, f, h, the negative u velocity component

of the potential and viscous flows decreases monotonically to the maximum negative from

the bed to the water surface. The viscous flow has a tendency of becoming more positive

with the increase in wind speed. Across the interface, the u velocities of both potential

and viscous flows increase with z and then decrease again at higher elevations. From the

excellent agreement between the analytical and numerical solutions in Fig. 9 we can draw

the conclusion that the numerical simulation produces high quality results.

In order to analyse the average characteristics of the air flow above the fifth wave, we

define the average of variable φ by

[φ](z) =
1

L

∫

L

φ(x, z) dx . (29)

Figure 10 represents the profile of the average non-dimensional horizontal velocity [ū] at

different wind speeds. It is observed that when the wind speed is zero the average horizontal

velocity is positive near the wave surface and becomes negative at higher elevations due to

the circulation flows above the peak and trough, indicating that when the wind speed is small

the horizontal velocity does not dominate the flow pattern. In fact, Figs. 5a, 6a, 7a and 8a

show the vertical velocity and horizontal velocity have equal magnitude when the wind speed

123



Numerical Simulations of Laminar Air–Water Flow 395

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Elevation of the 
centre of rotating 
flow

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Evlevation of the 
centre of rotating 
flow

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Elevation of the 
centre of rotating

flow

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Elevation of the 
centre of rotating 
flow

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Elevation of the 
centre of rotating

flow

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Elevation of the 
centre of rotating

flow

a b

c d

e f

g h

Fig. 9 Variation of horizontal velocity component with z at x/L = 0.25 on the left in panels (a, c, e, g) and

x/L = 0.75 on the right in panels (b, d, f, h) when U = 0, um , 0.5c and c (from top to bottom); line viscous

flow, spaced dash potential flow, respectively
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Fig. 10 Average horizontal velocity component normalized by U for different wind speeds: line with circle

U = 0, spaced line with star U = um , dotted dash with bullet U = 0.5c, dotted line with square U = c

is small. Therefore, it is the vertical velocity that causes the significant upward momentum

transfer from the ocean to the atmosphere under low wind-speed conditions.

Figure 10 also shows the average horizontal velocity increases as the wind speed increases.

We also observe that the average horizontal velocity increases with z and there is a wind-speed

maximum. The marks in Fig. 10 show the wind-speed maximum moves to a lower position

when the wind-speed increases, indicating a weakening vertical velocity and increasing hor-

izontal velocity. When the wind speed equals the wave phase speed, Fig. 10 shows that the

wind-speed maximum reaches its highest value. Such an increase in the horizontal velocity is

very similar to the acceleration of air over the tops of hills or humps shown in Figs. 7d and 9g.

6 Conclusions

In this paper, the effect of low wind speed on air–water flow is investigated when a non-linear

progressive wave propagates along the interface between the air and the water. It is shown

that, in the water, the velocities of the viscous and potential flows agree extremely well,

indicating that the analytical solution of potential flow describes the water wave extremely

accurately and the effects of the viscosity on the flow pattern and velocity are very small. In

the water, the very small differences between the numerical solutions of viscous fluid and

the analytical solutions of potential flow are also an indication that the numerical solutions

produced by the Wet/Dry Areas Method (Wen 2013) are highly accurate.

Unlike the water, the airflow near the water surface is strongly influenced by the movement

of the water wave, viscosity and wind speed. There is an interesting connection between the

flow patterns in the air and water. The airflow has three distinct patterns when the wind speed

equals zero, the maximum water orbital velocity um and the wave phase speed c.

When the wind speed is zero, the domain of air is occupied by two recirculations with

opposite rotation. They are formed by wave-induced motions, induced purely by the com-

bination of the orbital movement of the water wave, viscosity and the pressure drop in the

vertical direction. The vertical pressure drop is at its largest for zero wind speed, and which

causes the strongest upward momentum transport from the water to the air. Therefore, zero

wind speed is an important speed for the air–water flow.
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When the wind speed is between zero and the maximum wave orbital velocity there exist

two circulations in the air—one above the peak and the other above the trough of the water

wave. It is interesting to see that when the wind speed is greater than the maximum water

orbital velocity, the recirculation and negative horizontal velocity component above the peak

of the water wave disappear but the air velocity above the peak is still lower than the maximum

wave orbital velocity um. Therefore, the water maximum orbital wave velocity um at the peak

of the water wave is an important parameter for the air–water flow.

It is also interesting to see that when the wind speed is equal to the wave phase speed c, the

air velocity above the peak of the wave increases to the maximum water orbital velocity um,

indicating that the air particle above the peak eventually has the same velocity as the water

particle at the peak of the water wave. It is expected that the air velocity at the wave peak will

be greater than the water velocity um at the peak of the wave when the wind speed is greater

than the wave phase speed c. Therefore, the wave phase speed is an important parameter for

the air–water flow.

We also see that a large and strong rotating flow above the trough of the water wave persists

at all different wind speeds due to the large wave slope of the non-linear wave.
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