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1. Introduction 12 

Sen et al. (2014) address the issue of the age of the Karakoram Fault Zone (KFZ), western Tibet, and 13 

suggest that the fault has accommodated significant eastward extrusion of the Tibetan plateau since 14 

initiating prior to c. 23 Ma. Anisotropy of magnetic susceptibility (AMS) data provided by Sen et al. 15 

potentially provide a new approach to investigating the relationship between the KFZ and the c. 22-16 

16 Ma Tangtse-Darbuk leucogranite (TDL) (Phillips et al., 2004). However, we show that 17 

misinterpretation of key microstructures has led Sen et al. to reach conclusions starkly at odds with 18 

the evidence that they present. Furthermore, we demonstrate that the study lacks the cautionary 19 

procedures and considerations that are crucial to the valid interpretation of AMS data. We show that 20 

the findings of Sen et al. are entirely consistent with pre-kinematic rather than syn-kinematic 21 

emplacement of the TDL. We conclude that the KFZ initiated after cooling of the TDL to ambient 22 



lower amphibolite grade conditions after 15.55±0.74 Ma (Phillips et al., 2004) and is a relatively 23 

recent structure of the India-Asia collision zone. 24 

2. Re-interpretation of field and microstructural observations 25 

Sen et al. recognise that the main bulk of the TDL is relatively undeformed and that strain increases 26 

dramatically towards the Tangtse fault strand. This structural relationship is consistent with the 27 

findings of previous studies of the TDL (Phillips and Searle, 2007; Wallis et al., 2013) and is widely 28 

recognised as indicative of pre-kinematic intrusion of granitic bodies (Lamouroux et al., 1980; 29 

Paterson and Tobisch, 1988). Sen et al. provide AMS data for fifteen KFZ samples and suggest that 30 

ten show magnetic fabrics consistent with the known kinematics of the Pangong Transpressional 31 

Zone (PTZ). Notably, two samples (7/4B and 7/5A) from the TDL interior show AMS fabrics 32 

discordant to the KFZ deformation, which Sen et al. suggest result from magma chamber convection. 33 

These discordant fabrics, preserved outside the marginal KFZ shear zones, fulfil another important 34 

criterion for identification of pre-kinematic granites (Miller and Paterson, 1995; Paterson et al., 35 

1998). 36 

The syn-kinematic interpretation of the TDL put forward by Sen et al. relies on their statement that 37 

samples “MST 7/3A and MST 7/3B, which are relatively undeformed, show a magnetic fabric that is 38 

emplacement related and not tectonized”, presumably meaning that the magnetic fabric formed after 39 

emplacement but before full crystallisation. The evidence that they put forward as showing that these 40 

samples are not ‘tectonized’ are their figures 4a-c. Figures 4a and 4b show only a large garnet in 41 

MST 7/3B and are insufficient to determine whether or not the sample is tectonized as the matrix is 42 

not shown. The quartz microstructure in the sample is shown however in Figure 4c, where the 43 

authors describe it as “devoid of dynamic recrystallization features and lacking any preferred 44 

orientation, showing regular grain boundaries and undulatory extinction.” This description is 45 

inconsistent with the microstructure shown in their Figure 4c. The highly irregular, amoeboid and 46 



embayed quartz grain boundaries are indicative of deformation by grain boundary migration dynamic 47 

recrystallization. Sub-grain walls are also present within larger grains, suggesting a component of 48 

sub-grain rotation. These combined deformation mechanisms indicate deformation at c.500°C at 49 

typical geological shear zone strain rates of c.10-12 s-1 (Stipp et al., 2002) and are consistent with 50 

previous microstructural observations and deformation temperature estimates within the Tangtse 51 

fault strand (Wallis et al., 2013). Higher temperature quartz deformation microstructures such as 52 

“chess board” extinction, which form at near-solidus temperatures (Blumenfeld et al., 1986), are 53 

absent from the images provided. An alternative explanation for the quartz deformation 54 

microstructures could be that they formed by deformation during, and resulting from, ascent and 55 

emplacement of partially crystallised granitic magma, as proposed by Sen and Collins (2013) for the 56 

Ladakh batholith. However, such an interpretation should be supported by evidence of 57 

ascent/emplacement related deformation microstructures (e.g. crystal tiling, magmatic growth in 58 

pressure shadows). Similarly, the interpretation by Sen et al. that the TDL magma chamber 59 

underwent significant convection supports emplacement of mobile fluid magma rather than a crystal 60 

mush undergoing dynamic recrystallization. Sen et al. note that the centre of the TDL preserves 61 

magmatic or high temperature microstructures such as fluid/melt inclusions in garnet and “melt” 62 

filled cleavage and fractures in feldspar. These microstructures alone are insufficient to support syn-63 

ascent/emplacement deformation of the quartz or a syn-KFZ interpretation of the TDL as they may 64 

(most likely given the aforementioned evidence) result from normal magmatic processes including 65 

deformation during magmatic convection, as suggested by Sen et al. for the magnetic fabrics of the 66 

TDL interior. The concordance between the magnetic fabrics in samples MST 7/3A and MST 7/3B 67 

and the wider macroscopic, microstructural and magnetic deformation fabrics of the KFZ is therefore 68 

best explained by deformation of these samples at c.500°C in the margin of the Tangtse fault strand, 69 

not by deformation during ascent/emplacement or sub-solidus cooling. The evidence put forward by 70 

Sen et al. is therefore entirely consistent with a pre-KFZ interpretation of the TDL and lends no 71 



support to the syn-KFZ interpretation. The KFZ must therefore have initiated after final solidification 72 

of the TDL at 15.55±0.74 Ma (Phillips et al., 2004). The syn-kinematic migmatite structures formed 73 

at c.17.4 Ma (Phillips et al., 2013) therefore do not record anatexis and melt migration within the 74 

KFZ shear zone but provide valuable information on magma migration through the regionally 75 

deforming crust of the Karakoram terrane prior to KFZ initiation. 76 

3. Critique of AMS analysis 77 

AMS can serve as a proxy for deformation when (1) all magnetic carriers are identified, that (2) all 78 

possible controls on AMS are carefully taken into account and (3) a genetic relationship between the 79 

origin of AMS and deformation fabrics is confirmed (Borradaile & Jackson, 2004, 2010). Modern 80 

AMS investigations (Borradaile et al., 2011; Kontny et al., 2011; Kruckenberg et al., 2010) include a 81 

variety of corroborative data  (other than AMS data) to identify the magnetic carriers, and determine 82 

the grain size and extent of magnetostatic interactions of any ferromagnetic phases. These additional 83 

procedures include magnetic hysteresis measurements (Tauxe et al., 2002), Isothermal Remanent 84 

Magnetisation (IRM) acquisition curve analysis (Robertson & France, 1994), FORC analysis 85 

(Roberts et al., 2000) and thermomagnetic experiments (Ferré et al., 2003). In some cases it is also 86 

necessary to determine the petrological relationship between the magnetic carriers and surrounding 87 

crystal fabric with microscopy and/or SPO or CPO measurements (Kruckenberg et al., 2010). By 88 

failing to conduct most of these additional analyses, Sen et al. are unable to correctly identify the 89 

magnetic carriers and cannot rigorously evaluate the controls that may influence their AMS results. 90 

Sen et al. present AMS data from 15 samples identified as leucogranite, dioritic gneiss, pink 91 

mylonitised granite and migmatite.  Sen et al. first use bulk susceptibility (Km) and corrected degree 92 

of anisotropy (P’) (Jelínek, 1981) to split their sample suite into paramagnetic and ferromagnetic 93 

samples (Figure 5a, Sen et al.). Sen et al. correctly note that many of the dioritic gneisses have high 94 

values of Km (>10-3 SI) which are typical values for ferromagnetic materials. Sen et al. use a single 95 



thermal magnetisation experiment on sample 7/3AX (Figure 5b, Sen et al.) to infer the presence of 96 

magnetite in all sample lithologies other than leucogranite. Whilst most of the values of Km are high 97 

for these samples (>10-3 SI), the variability in Km and P’ suggests that magnetite may not be the 98 

magnetic carrier in all of these samples and at least two of these samples (7/7, 26/8/4, 27/8/2A) are 99 

most likely to be paramagnetic. This variability in Km and P’ highlights the inappropriateness of 100 

using a single thermomagnetic result to determine the magnetic carriers of multiple samples with a 101 

variety of lithologies. Valid identification of the magnetic carriers requires further investigation, 102 

either via additional thermal magnetisation experiments or more suitably via magnetic hysteresis 103 

analysis (Tauxe et al., 2002) and IRM acquisition curve analysis (Robertson & France, 1994). Where 104 

ferromagnetic phases are identified, the grain sizes and magnetostatic interactions between these 105 

grains, which also control AMS, should also be evaluated through magnetic hysteresis and FORC 106 

analysis (Roberts et al., 2000; Dunlop, 2002). 107 

There are other unexplained errors presented in the Km, P’ and T plots in Figures 5a and 5d. Figure 108 

5a (Km vs. P’) displays seven leucogranite data points (white circles) and eight dioritic gneiss data 109 

points (black squares), whilst Figure 5d (T vs. P’) displays eight leucogranite data points and seven 110 

dioritic gneiss data points. Figure 5a displays an anomalous data point (Km = 17500 : P’ = 1.7) that is 111 

not presented in Table 2. Only three leucogranite data points with P’ >1.2 are displayed in Figure 5a, 112 

whereas four leucogranite samples have P’ >1.2 in Table 2. Sample 27/8/2A (migmatite) is 113 

represented by a white circle (i.e. leucogranite) in Figure 5a and a black square (diorite gneiss) in 114 

Figure 5d. We highlight this last error because if sample 27/8/2A had been displayed as a black 115 

square amongst the white circled leucogranite data cluster then Figure 5a would actually disagree 116 

with Sen et al.’s assumption that magnetite controls the AMS of all samples except leucogranite. The 117 

values of Km displayed in Table 2 and Figure 5a should also be presented as an order of x 10-6 118 

(Tarling & Hrouda, 1993). 119 



Sen et al. state that the AMS fabrics of the diorite gneisses, migmatites and pink mylonitic granites 120 

are concordant with the local strike of the KFZ and must be representative of lateral shearing along 121 

the KFZ. However, the magnetic foliation of half of these samples is misaligned with the strike and 122 

dip of the local structural foliation by 15-90o and 9-38o respectively. Sen et al. claim that the 123 

discordances between the orientations of the structural and magnetic fabrics “can be attributed to 124 

scattered crystallization of very fine grained magnetite having no significant preferred orientation,” 125 

however, there is no clear evidence that magnetite controls the AMS of all of these samples and 126 

without knowing the nature of all magnetic carriers and their relation to the surrounding deformation 127 

fabric, it is not possible to justify a correlation between magnetic and deformation fabrics. 128 

Furthermore, Sen et al.’s explanation is actually incorrect. A scattering of magnetite grains with no 129 

significant preferred orientation would produce a very scattered AMS fabric with wide confidence 130 

ellipses surrounding the mean AMS axis orientations. Most of the AMS fabrics presented in Figure 6 131 

are actually very well defined, with tight clusters and small confidence ellipses around the mean 132 

AMS axes. 133 

Sen et al. present good evidence to suggest that biotite is the magnetic carrier in the leucogranite 134 

samples and that their random orientations within the Durbuk Pluton are likely to represent a 135 

magmatic fabric. However, the authors’ interpretation that the AMS fabrics of leucogranite samples 136 

7/3A and 7/3B represent syn-kinematic magmatic fabrics is less convincing. Such interpretations 137 

require evidence of a KFZ aligned magmatic fabric in the absence of solid-state deformation. We 138 

have demonstrated that the microstructural evidence from sample 7/3B is actually typical of dynamic 139 

recrystallisation textures formed during solid-state deformation. It should also be noted that the 140 

accompanying AMS fabric from this sample is actually misaligned with the strike and dip of the 141 

KFZ by 28-43o and 27-42o respectively. We find the AMS orientation of 7/3B to be statistically 142 

indistinguishable from the random AMS orientations of the rest of the leucogranite samples and 143 

cannot justify a correlation between the AMS of this sample and KFZ-related deformation. Without 144 



evidence for a lack of solid state deformation from 7/3A, it is not possible to suggest that this AMS 145 

fabric was formed during syn-kinematic magmatic flow. It is just as likely that the strong AMS 146 

fabric in 7/3A is due to localised shearing at the margin of the pluton after crystallisation. 147 

4. Concluding Remarks 148 

Mis-interpretation of critical microstructures has led Sen et al. to a syn-kinematic emplacement 149 

interpretation of the TDL. Instead, the field and microstructural evidence that they observe is entirely 150 

consistent with a pre-KFZ interpretation of the TDL, and precludes syn-KFZ emplacement. 151 

Furthermore, the AMS results reported by Sen et al. lack the supporting magnetic data needed to 152 

determine and evaluate the AMS controls. Without these constraints, a valid correlation between 153 

AMS and deformation fabrics cannot be made. We conclude that KFZ deformation in this region 154 

commenced after solidification of the TDL at 15.55±0.74 Ma (sample P1, Phillips et al., 2004) and 155 

cooling to ambient lower amphibolite grade conditions (Wallis et al., 2013). 156 
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