

This is a repository copy of *Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80279/

Version: Accepted Version

Article:

Patacci, M, Haughton, PDW and McCaffrey, WD (2014) Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France. Journal of Sedimentary Research, 84 (4). 270 - 277. ISSN 1527-1404

https://doi.org/10.2110/jsr.2014.26

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 RHEOLOGICAL COMPLEXITY IN SEDIMENT GRAVITY FLOWS FORCED TO DECELERATE AGAINST A

2 CONFINING SLOPE, BRAUX, SE FRANCE

3 MARCO PATACCI^{1,2}, PETER D. W. HAUGHTON¹, AND WILLIAM D. MCCAFFREY²

¹UCD School of Geological Sciences, University College Dublin, Belfield, Dublin 4, Ireland

²Turbidites Research Group, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

6 Keywords: hybrid bed; linked debrite; onlap; mudstone clasts; flow deflection

7

ABSTRACT

8 Hybrid event beds are now recognized as an important component of many deep-sea fan and sheet 9 systems. They are interpreted to record the passage of rheologically complex sediment gravity 10 currents (hybrid flows) that comprise turbulent, transitional, and/or laminar zones. Hitherto, the 11 development of hybrid flow character has mainly been recognized in system fringes and attributed 12 to distal and lateral flow transformations and/or declining turbulence energy expressed over lateral 13 scales of several kilometers or more. However, new field data show that deposition from hybrid 14 flows can occur relatively proximally, where flows meet confining topography. Turbidity currents 15 primed to transform to hybrid flows by up-dip erosion and incorporation of clay may be forced to do 16 so by rapid, slope-induced decelerations within 1 km of the slope. Local flow transformation and 17 deposition of hybrid event-beds offer an alternative explanation for unusual facies developed at the foot of flow-confining seafloor slopes. 18

19

INTRODUCTION

A recurring bed type in many sandy deep-water systems involves an association of clean sand and clay-prone, typically chaotic sand-mud units. An idealized event bed (Haughton et al. 2009) is made up of a basal structureless sandstone (H1), succeeded by a banded sandstone (*sensu* Lowe and Guy 2000; H2), a muddy sandstone with or without mudstone clasts (H3), a laminated very fine

24 sandstone or siltstone (H4), and finally a mudstone cap (H5). Event beds of this general type have 25 been documented for some time (e.g., Wood and Smith 1958, Ricci Lucchi and Valmori 1980), but 26 interest in them has intensified over the last decade as it has become apparent that they occur very 27 widely in deep-marine sequences. They are also an important component of many producing 28 hydrocarbon reservoirs, where they introduce significant bed-level heterogeneity and can impact on 29 production efficiency (Haughton et al. 2003, 2009; Talling et al. 2004; Amy et al. 2009; Hodgson 30 2009; Muzzi Magalhaes and Tinterri 2010). Examples from various basins have highlighted several 31 variants of the idealized bed; H2 may be poorly expressed in some systems (Talling 2013) although 32 often it is cryptic and requires subtle weathering and/or differential cementation to reveal the 33 characteristic banding. In other cases (e.g., the distal Tyee Formation; Haughton et al. 2010) H4 may 34 be absent, suggesting the lack of a trailing low-density sediment cloud. The H3 division may be 35 mudstone clast-prone, or simply comprise a clay-rich sandy interval. The basal H1 division is 36 generally structureless and/or dewatered sandstone but in some cases may be laminated.

37 Various emplacement mechanisms have been suggested for such beds (see Sumner et al. 2009, 38 Talling 2013 for reviews), most invoking the development of zones of different rheology within the depositing current (a 'hybrid flow'). The hybrid event beds that they leave are thus part turbidite 39 (H1, H4), and part debrite (H3) and may include elements of transitional-flow deposition as well 40 41 (H2). Variable clast and clay content in the H3 division may reflect a range of matrix strengths in the 42 trailing linked debris flow (Talling 2013). In many cases, the change to more cohesive flow behavior 43 distally seems to be promoted by incorporation of significant clay into the flow, often initially in the 44 form of abundant mud clasts that then disintegrate. Near-bed increases in clay content (following 45 local erosion of muddy seafloor, longitudinal fractionation, and/or selective sand deposition; 46 Haughton et al. 2003; Talling et al. 2004) together with declining turbulent energy (Baas and Best 47 2002; Haughton et al. 2009; Sumner et al. 2009; Baas et al. 2011) and decreases in axial gradient 48 (Talling et al., 2007, Wynn et al., 2012) combine to damp turbulence and promote the onset of 49 cohesive behavior. Hybrid event beds are common in some systems but only locally developed or

absent in others; their occurrence may relate to factors such as the availability of clay along the
transport path, the likelihood of erosion up-dip, and changes in local gradient. In some basins, hybrid
event beds mark periods of tectonic activity that presumably promoted up-dip erosion (Haughton et
al. 2003, Muzzi Magalhaes and Tinterri 2010).

54 In most of the examples studied to date, hybrid flow conditions are inferred to develop on length 55 scales of several kilometers to tens of kilometers in down-dip lateral and distal fringe settings or on 56 variably confined, distal basin floors. The aim of this study is to re-examine a classic onlap setting in 57 the French Alps where mudstone clast-rich sandstones have previously been related to slope 58 instability induced by the arrival of a turbidity current (McCaffrey and Kneller 2001; Puigdefàbregas 59 et al. 2004). The beds are reinterpreted as either fully developed or incipient hybrid event beds, here 60 developed immediately next to a confining slope. Detailed bed correlations are used to demonstrate 61 coherent facies trends as the paleoslope is approached, suggesting onset of hybrid flow 62 development over very short lengths scales (hundreds of meters) in a relatively proximal part of the 63 overall system. We argue that flow deceleration next to a confining slope can locally force hybrid 64 flow development and deposition, and preserves key stages of the transformation process due to 65 rapid arrest of the flow; these may not be as well expressed (if at all) down-dip where flow energy dissipates more gradually. The emphasis on flow transformation processes at the foot of counter 66 67 slopes has wider implications for facies prediction next to confining (onlap) slopes and is particularly 68 important for predicting clay distribution and hence likely reservoir quality trends in this setting.

69

THE BRAUX UNIT, SE FRANCE

The Braux Unit (Annot Sandstone of SE France) records the Upper Priabonian deep-water clastic fill
of the lower part of the Annot sub-basin (Callec 2004). The stratigraphy can be divided into a Lower
Braux Unit (Crete de la Barre lower member of Callec 2004; La Ray member of Puigdefàbregas et al.
2004) and an Upper Braux Unit (Crete de la Barre upper member of Callec 2004; La Barre member of
Puigdefàbregas et al. 2004), separated by a chaotic muddy unit 10-20 meters thick (Sinclair 1994).

75 The basin is bounded by a marl-cored slope to the west, which in the Crete de la Barre study area 76 (Fig. 1) has a restored dip direction of ENE and a variable dip angle up to 15 degrees (Sinclair 1994, 77 Puigdefàbregas et al. 2004, Salles et al. 2011). Sinclair (2000) provided a basin morphology 78 reconstruction, inferring a slightly NE-SW elongated depression with estimated dimensions of 10 km 79 by 20 km. Whereas the general paleoflow direction for the Annot system is usually consistently 80 towards the north (see summary in Joseph and Lomas 2004), paleoflow within the Braux Unit is 81 more diverse and shows a significant spread, in particular in proximity to the western onlap margin 82 where south-directed paleoflow indicators are locally present (Sinclair 1994); Kneller and McCaffrey 83 (1999) suggested that point-sourced flows entering the basin only a few kilometers from the slope 84 expanded radially across the basin floor, before being deflected either toward the north or the south 85 as they interacted with the slope (their Fig. 6; see also Fig. 1). Additional paleoflow data collected 86 during the present study are consistent with this interpretation of the dispersal pattern (see 87 Appendix Figure 1).

88

METHODS

89 The study focusses on the Upper Braux Unit, exposed along the Braux road and on the adjacent hill 90 slopes extending to the southwest and northeast. Some of the sections originally documented by 91 Kneller and McCaffrey (1999) have been remeasured, and additional logs have been collected to 92 better constrain lateral changes in bed character approaching the confining slope. For clarity, the 93 bed nomenclature of Kneller and McCaffrey (1999) has been retained. A total of 400 m of section 94 was logged at a scale of 1:20 in 12 separate logs. A correlation panel 1.5 km long (Appendix 1) has 95 been created by walking out key beds along the outcrop and by matching of beds with distinctive 96 character. The overall sheet architecture of the Upper Braux unit and distinctive vertical bed-97 thickness patterns allow individual event beds to be traced laterally at kilometer scale with a high 98 degree of confidence. Selected beds have been sampled in vertical profiles for petrographical 99 analysis of sandstone texture.

EVENT BED CHARACTER ADJACENT TO THE BRAUX ONLAP SURFACE

101 The studied part of the Upper Braux Unit is characterized by a wide range of event-bed types. These 102 include centimeter- to decimeter-thick planar-laminated and ripple cross-laminated, weakly graded 103 beds interpreted as deposits of low-density turbidity currents (LDT sensu Bouma 1962), and 104 decimeter- to meter-thick structureless poorly graded sandstones with abundant dewatering 105 structures interpreted as deposits of high-density turbidity currents (HDT sensu Lowe 1982). 106 However, many beds (with thicknesses ranging from a few tens of centimetres to 2-3 m) show a 107 tripartite character and sedimentary facies associations involving mudclasts and units of argillaceous 108 sandstone that are less easily reconciled with conventional turbidite models. These are particularly 109 well developed close to the onlap surface (mostly within 1 km) and include beds previously 110 described as sandwich beds containing central units of mudclast-breccia (McCaffrey and Kneller 111 2001). For the purposes of this study, three intergradational bed types are identified in addition to 112 the familiar LDT and HDT deposits: thick structureless and dewatered sandstones with discontinuous 113 pods and clusters of mudclast breccia (Type A); sandstone beds with a continuous mudclast breccia 114 layer capped by a parallel-laminated or ripple-laminated sandstone interval (Type B), and sandstone 115 beds with a lower medium- to coarse-grained cleaner sandstone overlain by an argillaceous finegrained sandstone containing floating mudstone clasts and capped by a variably thick division of 116 117 structured (parallel-laminated and ripple-laminated) fine- to very fine-grained sandstone (Type C). 118 All three bed types are laterally equivalent to HDT deposits when traced away from the onlap over 119 distances approaching a kilometer.

120 Description

Type A beds are typically 1.5 to 3 m thick and are amongst the thickest of the event beds present (Fig. 2A). They have planar flat or undulose bases and planar flat tops, the former with erosional grooves. They are dominated internally by structureless sandstone with local evidence for dewatering and prominent internal mudstone clast breccias which occur in patches up to 2 m thick

and many tens of meters long in which the clasts are densely clustered and surrounded by a clean
sandstone matrix. The mudclast patches can have ragged margins with the surrounding sand, but in
some cases they have well defined, rounded lateral edges. They occur centrally with thicker sand
beds. The mudstone clasts are often elongated and usually up to some tens of centimeters in size (in
rare cases up to 1 m) and either chaotically arranged or with a crude bedding-parallel fabric. The
matrix is generally of a sand grade similar to that of the surrounding bed.

Type B beds have a well-developed and more continuous chaotic sand-mud division in which
variably abundant mudstone clasts are surrounded by fine-grained sandstone (Figs. 2B, 3). Small
(millimeter-size) plant fragments can also be present. The breccia division typically varies in
thickness due to rugosity on both the lower surface, and irregular contacts with the overlying
sandstone. Margins of the breccia layer are generally sharply defined. The underlying sandstones
are up to coarse grained and generally graded. They can have abundant groove casts, often deeper
and with more diverse orientations than those of Type A beds.

138 Type C beds (Fig. 2C) range in thickness from 0.5 to 1.5 m and are characterized by a thick central 139 division of structureless argillaceous fine- or medium-grained sandstone with or without millimeter-140 and centimeter-size mud clasts. This central part of the bed is often rich in plant fragments with 141 dimensions usually of a few millimeters to a few centimeters across, as well as muscovite flakes. The 142 lower interval – typically only a few to a few tens of centimeters thick – consists of cleaner 143 structureless sand, sometimes with rare centimeter-size randomly distributed mud clasts. This 144 interval can be missing, especially in close proximity (a few tens of meters) to the bed pinch-out 145 against the confining slope. Abundant groove casts are common at the bed base. The bed is capped 146 by a fine-grained parallel or ripple-laminated sandstone interval. This division often shows extensive 147 loading and growth due to collapse of the upper sand interval into the underlying argillaceous division, in some cases descending as sheared sandstone balls to coalesce with the basal sandstone 148 149 (e.g., bed Z3, Fig. 2C). Color banding and the repetition (a few times) of a sequence of laminated

sandstone and a supradjacent structureless sandstone that may load into the underlying laminated
sandstone can sometimes characterize this upper interval (e.g., bed Z2, Fig 2C).

Compositional analysis of the mudstone clasts in bed types A-C reveals affinities with the siliciclastic turbidite succession rather than the marly confining slope (Patacci 2010; cf. Kneller and McCaffrey 1999; Puigdefàbregas et al. 2004). However, there is no evidence of local erosion beyond the presence of deep (up to 10 cm) groove casts and rarer flute casts on bed bases; inclined erosional contacts or amalgamation surfaces between turbidite beds are very rare within 1 km of the confining slope.

158 The complex irregular boundaries between internal divisions are in contrast to the overall event-bed 159 geometries, which are characterized by sharp planar and parallel bases and tops (Fig. 4; see also full 160 correlation panel, Appendix 1). Remote from the slope, Types A-C beds are rare and the stratigraphy 161 comprises mostly HDTs with subsidiary LDTs. The LDTs tend to maintain their character along the 162 studied transect. However, when traced toward their onlap, over half of the HDTs pass laterally into 163 a type A-C bed within 500-1000 m of the paleoslope (Fig. 1). Approaching the slope, Types A-C beds 164 themselves vary their character greatly and can pass one into another (Fig. 4). They usually show an 165 increase in thickness of the central mudclast-rich and chaotic divisions which occur progressively 166 lower in the bed. Observed transitions approaching the slope are between Type A and B and 167 between Type B and C, but never in the opposite direction. Type C beds in particular show an increase in the thickness of the central argillaceous interval and the thinning (and sometimes the 168 169 disappearance) of the basal cleaner sandstone when traced toward the onlap slope. The argillaceous 170 interval does not climb the confining slope, whereas thin (up to 25 cm thick) LDT event beds that can 171 be directly correlated to the upper division of a related tripartite bed adjacent to the slope can be 172 followed for at least a few tens of meters upslope (e.g., beds P and Z2, Fig. 4).

173

174 Interpretation

Several models have previously been suggested for the tripartite beds of the Upper Braux Unit (here 175 176 distinguished as types A, B, and C). These have generally focussing on individual examples and 177 therefore not on the full variety of beds developed. Stanley (1980) suggested that tripartite beds 178 were the result of syndepositional and postdepositional dewatering-related liquefaction processes. 179 McCaffrey and Kneller (2001) invoked slope instability triggered by the arrival of a turbidity current, 180 with the chaotic division being emplaced by a debris flow originating from the confining slope. 181 Puigdefàbregas et al. (2004) interpreted such beds as a product of local substrate deformation and 182 delamination induced by the arrival of a sandy turbidity current. Whereas there is evidence for local 183 instability in the form of muddy slumps and debris flows shed from the slope (Sinclair 1994), and 184 evacuated scars and multi-bed remobilisation higher on the onlap surface (Puigdefàbregas et al. 185 2004), field observations highlight several problems with the existing models: (1) the mud clasts are 186 clastic in composition (so cannot be sourced from higher on the marly confining slope); additionally, 187 they do not appear to be locally sourced on or adjacent to the confining slope inasmuch as there is 188 no direct evidence for slope failure or delamination there; (2) while it might be expected that higher-189 energy flows (i.e., those depositing thicker beds with coarser grain size) would trigger more 190 extensive local failure, beds of Types A-C show various thicknesses and maximum grain sizes; (3) the 191 chaotic middle division of bed Types B and C often contains carbonaceous material likely sourced 192 from along the gravity-flow pathway and not the local lateral slope; (4) the variability of the chaotic 193 and deformed central division (ranging from mudclast breccias to well-mixed argillaceous sandstone) 194 cannot easily be explained by local failure or deformation, because the proximity of the source of 195 the material should have resulted in deposits with a similar degree of disaggregation and mixing. 196 An alternative interpretation is that the facies trends result from the rheological complexity of the 197 primary flows. The argillaceous sandstone division in Type C beds is thus interpreted as an 198 expression of rheological transformations that occurred as consequence of flow interaction with the

slope, resulting in the development of zones of turbulence-suppressed and/or fully cohesive
behavior and their associated deposits. These beds are interpreted to be hybrid event beds *sensu*Haughton et al (2009). Types A and B beds (clean sandy turbidites with mudstone clasts in clusters or
in a continuous layer) can be thought of as the deposit of flows approaching some transformation
point, such that they were arrested by the confining slope at different stages before full
transformation could occur; here the mud clasts have been hydraulically segregated and then buried
under high suspension-fallout rates of sand (see Postma et al. 1988 and Kneller and Branney 1995).

206

207

DISCUSSION – A WINDOW INTO FLOW TRANSFORMATION STAGES

208 The range of bed types in the Upper Braux Unit is likely the result of a combination of both parent-209 flow character and local topographic influence. Because the variety of bed types does not appear 210 associated to any change in slope morphology, a wide spectrum of parent flows of various 211 magnitude and mud content is inferred to have reached the study area. Flows which deposited Type 212 C beds (where the matrix of the chaotic division contains dispersed clay and lacks large clasts) must 213 have been longitudinally well fractionated, with segregation of mud clasts and/or carbonaceous 214 matter and/or clay to the rearward part of the flow, before encountering the slope. Immediately 215 prior to rapid deceleration, collapse, and deposition of the central argillaceous division, such flows 216 may already have developed zones with turbulence-suppressed or fully laminar rheology, or may 217 have been on the threshold of doing so. Types B and A beds seem to represent stages of less evolved 218 flows, where continuous or clustered collections of mud clasts were buried by sand before they 219 could be incorporated into a linked debris flow; they may have acquired the muddy material 220 relatively locally, perhaps due to erosion of the local feeder conduit. In general, the argillaceous 221 sandstone intervals in Type C beds (H3 division sensu Haughton et al., 2009) have relatively little 222 matrix clay (10-15%). None achieves the "starry night" textures of linked debrites seen in the distal 223 parts of other systems where sand grains are suspended in dark clay (e.g., Haughton et al. 2003).

This may be a function of the relatively proximal setting, which limited both longitudinal
fractionation prior to transformation and the potential for mudclast abrasion and clay release. Lowdensity turbidity currents depositing thin turbidites (LTD) may not have been erosional at all along
their transport pathway.

228 The effect of the topographic setting on the flow non-uniformity is discussed in detail by Kneller and 229 McCaffrey (1999), who suggested that flows successively experienced depletive, accumulative, and 230 uniform conditions (sensu Kneller 1995) away from the slope, on impact and after flow reorientation 231 parallel to the slope, respectively. However, basin-floor topography may have had a contrasting 232 effect on different parts of the hybrid or incipiently hybrid flow, as inferred by the relative 233 proportions of the different divisions within the tripartite beds as they are traced away from the 234 slope (Figs. 4 and 5). Where topography captures and deflects the fully turbulent and relatively thick 235 flow front, turbulence intensity may be enhanced next to the slope, as inferred by Kneller and 236 McCaffrey (1999) and depositional fallout rates subdued, causing the clean-sandstone basal division 237 to thin toward the slope, as observed. However, the geometry of the chaotic mud-rich divisions is 238 different, in that they usually thicken toward the confinement, pinching out at the base of the slope, 239 but without climbing up it. This suggests that in the turbulence-suppressed parts of the flow which 240 deposited this division, the run-up-induced deceleration adjacent to the slope might have 241 dominated, resulting in a rapid loss of momentum next to the confining topography, with 242 consequent rapid deposition. Deposition from a trailing low-density and relatively thick turbulent 243 cloud completed depositional events, emplacing thin, structured sandstones that pinch out higher up the onlap surface, succeeded by thin mudstones pinching out yet higher. 244

The combined effect of radial expansion onto a flat basin floor together with flow deflection and run-up onto a counter slope close to the point of entry into the basin (Figs. 1 and 5) is thought to have forced the flows to experience an overall deceleration, inducing deposition from parts of the flow that might ordinarily have bypassed, thus providing evidence of flow transformation stages

generally not captured in the deposit at one location. In the absence of local flow non-uniformity
effects, such flows may have run out for many further kilometers, either dropping out the clasts en
route or perhaps eventually depositing as fully developed hybrid event beds (HEBs).

252

CONCLUSIONS

253 We document the occurrence and character of different types of tripartite event bed, including fully 254 developed hybrid event beds, immediately adjacent to a proximal lateral basin margin, in a narrow 255 band within a few hundreds of meters from a counter slope. Flow deceleration and arrest induced 256 by flow interaction with the slope is thought to have overprinted the depositional patterns of larger-257 scale flow evolution by forcing the deposition (and transformation) of flows at different stages of 258 development that otherwise might have left no depositional record at this location. A variety of flow 259 transformation stages are recorded by the tripartite beds, ranging from incipient (producing sandy 260 intervals with mudstone clast clusters) to fully evolved (resulting in a homogeneous argillaceous 261 sandstone division with small or no mudstone clasts – hybrid event beds). The presence of a confining slope can thus be a key element controlling facies variability and geometry in hybrid-prone 262 263 deep marine clastic systems in areas remote from the ultimate down-dip pinch-out.

264

ACKNOWLEDGMENTS

This research was funded by Turbidites Research Group sponsors Anadarko, BG-Group, BHP Billiton,
BP, Chevron, ConocoPhillips, Kerr McGee, Devon, Maersk, Marathon, Nexen, Petronas, Shell, Statoil,
and Woodside. We thank reviewers Esther Sumner and Bill Arnott for their constructive input to an
earlier draft of the paper.

269

REFERENCES CITED

Amy, L.A., Peachey, S.A., Gardiner, A.A., and Talling, P.J., 2009, Prediction of hydrocarbon recovery
from turbidite sandstones with linked-debrite facies: Numerical flow-simulation studies: Marine and
Petroleum Geology, v. 26, p. 2032-2043.

- 273 Baas, J.H., and Best, J.L., 2002, Turbulence modulation in clay-rich sediment-laden flows and some
- implications for sediment deposition: Journal of Sedimentary Research, v. 72, p. 336-340.

275 Baas, J.H., Best, J.L., and Peakall, J., 2011, Depositional processes, bedform development and hybrid

bed formation in rapidly decelerated cohesive (mud–sand) sediment flows: Sedimentology, v. 58, p.

277 1953-1987.

- Bouma, A.H., 1962, Sedimentology Of Some Flysch Deposits; A Graphic Approach To Facies
 Interpretation: Amsterdam, Elsevier, 168 p.
- 280 Callec, Y., 2004, The turbidite fill of the Annot sub-basin (SE France): a sequence-stratigraphy
- approach, in Joseph, P., and Lomas, S.A., eds., Deep-Water Sedimentation in the Alpine Basin of SE
- 282 France: New Perspectives on the Grès D'Annot and Related Systems: Geological Society of London,
- 283 Special Publication 221, p. 111-135.
- Haughton, P.D.W., Barker, S.P., and McCaffrey, W.D., 2003, 'Linked' debrites in sand-rich turbidite
 systems: origin and significance: Sedimentology, v. 50, p. 459-482.
- Haughton, P.D.W., Davis, C., Mccaffrey, W.D., and Barker, S., 2009, Hybrid sediment gravity flow
- 287 deposits Classification, origin and significance: Marine and Petroleum Geology, v. 26, p. 1900-1918.
- Haughton, P.D.W., Davis, C., McCaffrey, W.D., and Barker, S., 2010, Reply to Comment by R. Higgs on
- 289 'Hybrid sediment gravity flows classification, origin and significance': Marine and Petroleum
- 290 Geology, v. 27, p. 2066-2069.
- Hodgson, D.M., 2009, Distribution and origin of hybrid beds in sand-rich submarine fans of the
- Tanqua depocentre, Karoo Basin, South Africa: Marine and Petroleum Geology, v. 26, p. 1940-1956.
- 293 Joseph, P., and Lomas, S.A., 2004, Deep-water sedimentation in the Alpine Foreland Basin of SE
- France: New perspectives on the Grès d'Annot and related systems an introduction, in Joseph, P.,
- and Lomas, S.A., eds., Deep-Water Sedimentation in the Alpine Basin of SE France: New Perspectives

296 on the Grès D'Annot and Related Systems: Geological Society of London, Special Publication 221, p.
297 1-16.

- 298 Kneller, B., 1995, Beyond the turbidite paradigm: Physical models for deposition of turbidites and
- their implications for reservoir prediction, in Hartley, A.J., and Prosser, D.J., eds., Characterization of
- 300 Deep Marine Clastic Systems: Geological Society of London, Special Publications 94, p. 31-49.
- Kneller, B.C., and Branney, M.J., 1995, Sustained high-density turbidity currents and the deposition
 of thick massive sands: Sedimentology, v. 42, p. 607-616.
- 303 Kneller, B., and McCaffrey, W., 1999, Depositional effects of flow nonuniformity and stratification
- 304 within turbidity currents approaching a bounding slope; deflection, reflection, and facies variation:
- 305 Journal of Sedimentary Research, v. 69, p. 980-991.
- 306 Lowe, D.R., 1982, Sediment gravity flows: II. Depositional models with special reference to the
- 307 deposits of high-density turbidity currents: Journal of Sedimentary Petrology, v. 52, p. 279-297.
- Lowe, D.R., and Guy, M., 2000, Slurry-flow deposits in the Britannia Formation (Lower Cretaceous),
- North Sea: a new perspective on the turbidity current and debris flow problem: Sedimentology, v.
- 310 47, p. 31-70.
- 311 McCaffrey, W., and Kneller, B., 2001, Process controls on the development of stratigraphic trap
- 312 potential on the margins of confined turbidite systems and aids to reservoir evaluation: American
- Association of Petroleum Geologists, Bulletin, v. 85, p. 971-988.
- 314 Muzzi Magalhaes, P., and Tinterri, R., 2010, Stratigraphy and depositional setting of slurry and
- 315 contained (reflected) beds in the Marnoso-arenacea Formation (Langhian-Serravallian) Northern
- 316 Apennines, Italy: Sedimentology, v. 57, p. 1685-1720.
- Patacci, M., 2010, Termination of Turbidites against Confining Slopes: Flow Behaviour and Facies
 Trends: Ph.D. thesis, Dublin, University College Dublin, 382 p.

- 319 Postma, G., Nemec, W., and Kleinspehn, K.L., 1988, Large floating clasts in turbidites: a mechanism
- 320 for their emplacement: Sedimentary Geology, v. 58, p. 47-61.
- 321 Puigdefàbregas, C., Gjelberg, J., and Vaksdal, M., 2004, The Grès d'Annot in the Annot syncline: outer
- 322 basin-margin onlap and associated soft-sediment deformation, in Joseph, P., and Lomas, S.A., eds.,
- 323 Deep-Water Sedimentation in the Alpine Basin of SE France: New Perspectives on the Grès D'Annot
- and Related Systems: Geological Society of London, Special Publication 221, p. 367-388.
- Ricci Lucchi, F., and Valmori, E., 1980, Basin-wide turbidites in a Miocene, over-supplied deep-sea
 plain: a geometrical analysis: Sedimentology, v. 27, p. 241-270.
- 327 Salles, L., Ford, M., Joseph, P., De Veslud, C.L.C., and Le Solleuz, A., 2011, Migration of a synclinal
- 328 depocentre from turbidite growth strata: the Annot syncline, SE France: Société Géologique de
- 329 France, Bulletin, v. 182, p. 199-220.
- 330 Sinclair, H.D., 1994, The influence of lateral basinal slopes on turbidite sedimentation in the Annot
- 331 sandstones of SE France: Journal of Sedimentary Research, v. A64, p. 42-54.
- 332 Sinclair, H.D., 2000, Delta-fed turbidites infilling topographically complex basins: a new depositional
- 333 model for the Annot Sandstones, SE France: Journal of Sedimentary Research, v. 70, p. 504-519.
- 334 Stanley, D.J., 1980, The Saint-Antonin Conglomerate in the Maritime Alps: a model for coarse
- 335 sedimentation on a submarine slope: Smithsonian Contributions to the Marine Sciences, v. 5,
- 336 Washington, D.C., Smithsonian Institution Press, 25 p.
- Sumner, E.J., Talling, P.J., and Amy, L.A., 2009, Deposits of flows transitional between turbidity
 current and debris flow: Geology, v. 37, p. 991-994.
- Talling, P.J., Amy, L.A., Wynn, R.B., Peakall, J., and Robinson, M., 2004, Beds comprising debrite
- 340 sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional
- 341 environments: Sedimentology, v. 51, p. 163-194.

342	Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov, A.M.,
343	Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zuhlsdorff, C., and Amy, L.A.,
344	2007, Onset of submarine debris flow deposition far from original giant landslide: Nature, v. 450, p.
345	541-544.
346	Talling, P.J., 2013, Hybrid submarine flows comprising turbidity current and cohesive debris flow:
347	Deposits, theoretical and experimental analyses, and generalized models: Geosphere, v. 9, p. 1-28.
348	Wood, A., and Smith, A.J., 1958, The sedimentation and sedimentary history of the Aberystwyth grits
349	(upper Llandoverian): Geological Society of London, Quarterly Journal, v. 114, p. 163-195.
350	Wynn, R.B., Talling, P.J., Masson, D.G., Le Bas, T.P., Cronin, B.T., and Stevenson, C.J., 2012, The
351	influence of subtle gradient changes on deep-water gravity flows: a case study from the Moroccan
352	turbidite system, <i>in</i> Prather, B.E., Deptuck, M.E., Mohrig, D., Van Hoorn, B., and Wynn, R. B., eds.,
353	Application of the Principles of Seismic Geomorphology to Continental-Slope and Base-of-Slope
354	Systems: Case Studies from Seafloor and Near-Seafloor Analogues: SEPM, Special Publication 99, p.
355	371-383.

356

FIGURE CAPTIONS

357 Figure 1. Geological and location map of the Crête de la Barre area. Positions of logged sections (logs 358 0-2, log 3.5, and log 5) are shown. The onlap traces (dot-dashed line) represent the base of the 359 Upper and Lower Braux Units. Inferred paleoflow (arrows) was drawn using data after Kneller and 360 McCaffrey (1999) and inferred onlap surface contours (thick dashed lines) are after Puigdefàbregas et al. (2004). N.L., Nummulitic Limestone; U.C., Upper Cretaceous. Pie charts show bed types at each 361 362 location (% by thickness). HDT, deposits of high-density turbidity currents; LDT, deposits of low-363 density turbidity currents; Type A, sandstones with discontinuous pods and clusters of mudclast 364 breccia; Type B, sandstone beds with a continuous mudclast breccia layer; Type C, sandstone beds 365 with a middle argillaceous sandstone interval with floating mudstone clasts. Tripartite beds (Types A-

B-C) are common 0-400 m from the confining slope (logs 0-2), but are rare farther away from it. The
plots consider only beds and intervening mudstones that crop out at all three log locations (26 event
beds).

369 Figure 2. A) Type A tripartite bed on the Braux road section (Bed D, log 2) showing discrete pods of a 370 thick mudstone-clast breccia enclosed in clean sandstone. B) Type B tripartite bed (Bed M, log 2) 371 characterized by a laterally continuous central unit made up of densely packed mud clasts 372 surrounded by fine sandstone (hammer for scale). C) Beds Z2 and Z3 (both Type C tripartite beds) at 373 log 2 location showing central clay-rich sandstone divisions with scattered mudstone clasts 374 sandwiched between cleaner sandstone divisions. Bed Z3 is characterized by a thin upper clean 375 sandstone which shows prominent loading and growth into the underlying mixed mud-sand chaotic 376 division (hammer for scale). D) Thin section in plane polarized light from argillaceous sandstone in 377 Bed Z3 (from location labelled "d" on Part C) showing abundance of pore-filling clay and small clay 378 chips in the central division of this Type C bed.

379 Figure 3. Bed P at log 0.8 location (Type B tripartite bed). A) Photograph, B) sedimentary log, and C) 380 thin-section images are shown. Bed P is characterized here by three distinct divisions: 1) a relatively 381 thick fining-upward clean sandstone basal division with scattered mudstone clasts up to 20 cm in 382 size; 2) a chaotic middle division with a mixed mud-sand matrix and usually smaller centimeter-size 383 mud clasts and 3) an upper cleaner sandstone with laminations. Boundaries between divisions are 384 rugose, showing loading and growth geometries in basal parts of the upper cleaner sandstone. Thin-385 section photographs (c) indicate the overall fining-upward trend and an enrichment in clay in the 386 chaotic middle division.

Figure 4. Sedimentary logs showing representative examples of development of different types of "tripartite character" toward the confining slope. An overall increase in thickness of the middle mudclast-rich and chaotic divisions and their shift toward the base of the bed can be observed in most beds approaching the slope. Bed transitions approaching the slope are shown. Bed names are

after Kneller and McCaffrey (1999). Numbers in square brackets are estimated pinch-out distances in
meters (measured normal to inferred paleoslope). Correlation confidence is very high as bed
correlations are based on full bed-to-bed detailed matching and walking of individual key beds
(however, dashed correlations are only inferred), which confirm the correlations established by
earlier workers (Kneller and McCaffrey 1999, Puigdefabregas et al. 2004, Callec 2004). See Fig. 1 for
logs location and Appendix 1 for full correlation panel. Note: given outcrop constraints, it is not
possible to specify what the relative likelihoods of transition are.

398 Figure 5. A) Cartoon illustrating the forced deceleration and consequent partial transformation of a 399 flow encountering the Braux confining slope. X-X' shows the approximate location of the studied 400 outcrop section. B-D) Summary of bed lateral changes observed in the outcrop. Large-magnitude 401 flows may either pass untransformed down the basin (in which case the bed comprises structureless 402 sandstone extending to the pitchout) or as shown in Part B, they may preserve evidence in the form 403 of mudclast clusters for incipient transformation frozen in the deposit. Intermediate-magnitude 404 flows that had sufficient energy to entrain mud clasts and clay up-dip are forced to transform, 405 creating hybrid event beds (Type C beds) at the base of slope. Less energetic flows that were less 406 erosional up-dip decelerated without flow transformation.

Appendix 1. Correlation panel showing the Upper Braux Unit onlapping toward the SW along the
Crête de la Barre ridge. Bed names (A-Z) are after Kneller and McCaffrey (1999). Distance between
log 0 and log 2 is to scale. Log 2 is drawn "inclined" to highlight its spatial relationship with logs to
the SW.