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         ABSTRACT 

The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet 

current understanding of aeolian sedimentary processes and product remains limited. Most preserved 

aeolian successions represent inland sand-sea or dunefield (erg) deposits, whereas coastal systems are 

primarily known from the Cenozoic. The complexity of aeolian sedimentary processes and facies 
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variability are under-represented and excessively simplified in current facies models, which are not 

sufficiently refined to reliably account for the complexity inherent in bedform morphology and 

migratory behaviour, and therefore cannot be used to consistently account for and predict the nature 

of the preserved sedimentary record in terms of formative processes. Archean and Neoproterozoic 

aeolian successions remain poorly constrained. Palaeozoic ergs developed and accumulated in relation 

to the palaeogeographic location of land-masses and desert belts.  During the Triassic, widespread 

desert conditions prevailed across much of Europe. During the Jurassic, extensive ergs developed in 

North America and gave rise to anomalously thick aeolian sucessions. Cretaceous aeolian successions 

are widespread in South America, Africa, Asia, and locally in Europe (Spain) and the USA. Several 

Eocene to Pliocene successions represent the direct precursors to present-day systems. Quaternary 

systems include major sand seas (ergs) in low-lattitude and mid-latitude arid regions, Pleistocene 

carbonate and Holocene–Modern siliciclastic coastal systems. The sedimentary record of most 

modern aeolian systems remains largely unknown. The majority of palaeoenvironmental 

reconstructions of aeolian systems envisage transverse dunes, whereas successions representing linear 

and star dunes remain under-recognized. Research questions that remain to be answered include: (i) 

what factors control the preservation potential of different types of aeolian bedforms and what are the 

characteristics of the deposits of different bedform types that can be used for effective reconstruction 

of original bedform morphology; (ii) what specific set of controlling conditions allow for sustained 

bedform climb versus episodic sequence accumulation and preservation; (iii) can sophisticated four-

dimensional models be developed for complex patterns of spatial and temporal transition between 

different mechanisms of accumulation and preservation; and (iv) is it reasonable to assume that the 

deposits of preserved aeolian successions necessarily represent an unbiased record of the conditions 

that prevailed during episodes of Earth history when large-scale aeolian systems were active, or has 

the evidence to support the existence of other major desert basins been lost for many periods 

throughout Earth history? 

 

Keywords: Aeolian, Archean, dunes, ergs, Mesozoic, Neogene, Palaeogene, Palaeozoic, preservation, 

Proterozoic, Quaternary. 
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INTRODUCTION  

How can geologists best account for the preserved expression of aeolian sedimentary successions and 

relate such deposits to the varied set of processes responsible for their generation? “The answer my 

friend is blowin' in the wind” (Dylan, 1963), and has been for at least 3.2 billion years. The aim of this 

study is to present an overview of the current state of the science relating to the sedimentology of 

aeolian sand systems and their preserved successions. Specific objectives are as follows: (i) to 

demonstrate the variability and complexity of the sedimentology of recent and ancient aeolian sand 

systems; (ii) to show how the spatial and temporal distribution of aeolian systems and preserved 

successions has varied throughout Earth history; (iii) to discuss the main mechanisms for the 

construction, accumulation and preservation of aeolian systems; and (iv) to present some future 

perspectives relating to issues that currently remain unresolved in aeolian sedimentology, thereby 

highlighting research targets and opportunities for the future. This study is supported by a suite of 

complementary material arranged in a series of tables that detail many of the best-known and most 

representative examples of siliciclastic as well as some carbonate aeolian sand seas and coastal 

dunefields from the Archean and Proterozoic, Palaeozoic, Mesozoic and Cenozoic eras (see also 

Blakey et al., 1988; Tedford et al., 2005; Veiga et al., 2011a; Simpson et al., 2012). Although this 

work represents an attempt to compile an authoritative database of case-study examples for all periods 

in Earth history, many smaller and lesser-known aeolian systems have been omitted due to space 

limitations. The references contained in the supplementary tables of case studies (together with those 

references cited in the main manuscript) are contained in the supplementary file entitled ‘References 

text and tables’. 

 

AEOLIAN SAND SYSTEMS AND THEIR SEDIMENTARY RECORD: CURRENT 

UNDERSTANDING 

Aeolian sand systems can be divided into inland sand sea and coastal dune systems. Inland aeolian 

sand seas (also known as ergs) and the aeolian dunefields present within these large-scale sediment 

systems comprise bedforms of different morphological types and sizes (ranging from ripples to 

megadunes or draas), areas of sand sheets, interdunes (including non-aeolian sediments), as well as 
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related extradune environments of alluvial, fluvial, lacustrine, and marine affinity. Coastal dunefields 

likewise comprise various aeolian bedforms; many of these dune types – such as parabolic dunes – are 

also seen in inland systems, whereas others – such as coast-parallel dune ridges – are unique to coastal 

systems. Associated sediments include beach, wash-over fan, and lagonal facies. 

Following Kocurek (1999) the creation of an aeolian stratigraphic record can be considered in three 

phases (Fig. 1): (i) sand sea (i.e. dunefield) construction; (ii) aeolian accumulation; and (iii) 

preservation of that accumulation. Construction of the world’s largest modern, active sand seas occurs 

in arid regions that typically experience less than 150 mm annual precipitation, although sites of 

significant aeolian construction also occur in non-desert settings, especially along sandy coastlines. 

Although aeolian sediment transport takes place under a wide range in wind energy regimes 

(Fryberger, 1979), it is the directional variability of such regimes that plays a major role in 

determining dune type and therefore dictating the range of sedimentary structures that develop on 

bedforms, and the style and rate of accumulation of deposits of those bedforms (Wasson & Hyde, 

1983). Many present-day actively constructing and accumulating sand seas are located at sites of 

relatively lower wind energy compared to upwind areas, such that sediment transport rates tend to 

decrease in the direction of transport, thereby encouraging sand deposition and accumulation. A 

down-wind reduction in sediment transport rate that leads to aeolian construction and accumulation 

may result from regional changes in atmospheric circulation patterns and wind regimes whereby wind 

speed decreases and/or directional variability increases (Wilson, 1973; Lancaster, 1999, 2013). 

Coastal dunefields typically develop along lowland coasts where plentiful sediment supply (often 

beach sand) is available for inland transport by persistent onshore winds (e.g. Klijn, 1990). The size 

and morphology of coastal dunes is dependent on vegetation cover, sand supply, beach-dune 

interaction, wind regime and coastal orientation with regards to persistent winds. 

Aeolian dunefield construction (the initiation and growth of systems of bedforms) is a function of 

sediment supply, the availability of that supply for aeolian transport and the transport capacity of the 

wind (Kocurek & Lancaster, 1999). Sediment supply is the volume of sediment suitable for aeolian 

transport generated per unit time; supply may be contemporaneous or time-lagged (Kocurek, 1999) 

and can be derived from multiple sources. The proximity of a dunefield to its sediment source area is 
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reflected in the response of the system to changes in boundary conditions. Dunefields that lie close to 

their sediment source (including most coastal dunefields) tend to be sensitive to variations in sediment 

supply, whereas systems that develop far from their ultimate source tend to be more sensitive to 

changes in sediment mobility or availability. Many sand seas are the depositional sinks of local to 

regional-scale sediment transport systems. Mineralogical and geochemical studies, aided in some 

instances by remote sensing data, can establish clear relations between source areas and sediment 

sinks (e.g. Scheidt et al., 2011; Garzanti et al., 2012). In many areas, however, these relations are not 

clear, and the source(s) of sand for major sand seas in the Sahara and elsewhere are poorly 

constrained (Garzanti et al., 2003; Muhs, 2004). Regional wind patterns appear to show long-distance 

transport paths in the Sahara and Australia, but recent work also points to the importance of local 

sources in Australia (Pell et al., 2000) and elsewhere (Muhs et al., 2003). The sand in coastal 

dunefields is derived primarily from the beach; textural and geochemical studies of foredune deposits 

can give information on sediment provinces and transport pathways in the nearshore environment 

(Saye and Pye, 2006). Sediment availability is the susceptibility of surface grains to entrainment by 

the wind (Kocurek & Lancaster, 1999); stabilizing factors such as early intergranular cements (for 

example, gypsum), vegetation cover, coarse-grained lags, and elevated water tables all limit 

availability. Transport capacity is a measure of the potential sediment carrying capacity of the wind. 

Together these factors define the sediment system state (Kocurek & Lancaster, 1999), which can be 

used as a predictor of when and where episodes of aeolian construction will occur. 

Following Kocurek & Havholm (1993), three princioal types of aeolian systems (Fig. 2) are 

recognized: (i) dry aeolian systems in which the water table and its capillary fringe are sufficiently far 

below the depositional surface that they have no effect on dune migration, sediment transport, and 

deposition; (ii) wet aeolian systems in which the water table and its capillary fringe are at or near the 

depositional surface, so that changes in moisture play an important role in the style and pattern of 

sediment accumulation (Kocurek & Havholm, 1993; Mountney, 2012), and in which interdune areas 

are damp or wet (flooded) and characterized by clastic, biogenic, and/or chemical sediments that are 

indicative of a near-surface water table; and (iii) stabilized aeolian systems in which factors such as 

vegetation, pedogenesis, permafrost or surface or near-surface cementation either episodically or 
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continually act to stabilize the substrate while the system remains active overall, thereby encouraging 

aeolian construction and accumulation. 

Aeolian accumulation to generate a body of strata requires a positive net sediment budget for which 

upstream sediment influx exceeds downstream outflux (Fig. 3). Special cases include aeolian 

accumulation in front of steep cliffs (e.g. Clemmensen et al., 1997; Andreucci et al., 2010a). By 

contrast, neutral budgets and negative budgets result in bypass and deflation (erosion), respectively. 

The positive net sediment budget required for aeolian accumulation needs either a downstream spatial 

decrease in the transport rate in response to airflow deceleration, or a temporal decrease in flow 

concentration in response to a reduction in dune size over time (Rubin & Hunter, 1982; Kocurek & 

Havholm, 1993). One commonly recognised mechanism for the accumulation of migrating dunes and 

draas (mega-bedforms) is via bedform climbing, whereby the angle of climb (which for large 

bedforms might typically be only a few tenths of a degree) is determined by the ratio between the rate 

of downwind bedform migration and the rate of rise of the accumulation surface (Fig. 3). Climb at 

low angles means that only the basal parts of large bedforms typically accumulate to generate cross-

stratified sets (Fig. 3). Nevertheless, accumulated, vertically-stacked, cross-stratified sets recording 

the passage of multiple large bedforms are commonly each in excess of 10 m in thickness and some 

can attain thicknesses of >30 m (e.g. Mountney & Howell, 2000). The accumulation of sets via 

climbing and their composition of only the basal-most parts of the original bedforms from which they 

were constructed means that ancient aeolian accumulations are biased representations of original 

aeolian systems because they are composed of assemblages of lithofacies arranged into architectural 

elements that typically record only those processes that operated on the lowermost flanks of the 

original bedforms; such processes typically differ from those that operated on the higher parts of 

bedforms (e.g. Eastwood et al., 2012). 

Interdune migration bounding surfaces separate packages of strata that represent the accumulated 

deposits of successive migrating aeolian dunes and adjoining interdunes; superimposition bounding 

surfaces record the style of juxtaposition of smaller dunes on larger draas, and the style of migration 

of the smaller forms over the larger forms; reactivation surfaces record episodic changes in dune or 

draa lee-slope configuration, including temporal changes in steepness or orientation (Rubin, 1987; 
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Rubin & Carter, 2006). These bounding-surface types define and delineate architectural elements 

comprising packages of aeolian dune and interdune strata that are themselves composed internally of 

various arrangements of lithofacies (Brookfield, 1977; Chrintz & Clemmensen, 1993; Fryberger, 

1993; Kocurek, 1991). The geometry and arrangement of these architectural elements are determined 

by: (i) the scale and morphology of the original dunes and interdunes; (ii) the style of migration of the 

dunes and interdunes over both time and space; and (iii) the style of accumulation, which in many 

systems is controlled by the angle of climb (e.g. Mountney & Thompson, 2002), although in other 

systems is known to be controlled by other mechanisms, including the infilling of local 

accommodation space between older remnant dunes (e.g. Langford et al., 2008). 

When and where the net sediment budget switches from positive to neutral or negative, aeolian 

accumulation ceases and bypass and deflation commence, respectively. Both bypass and deflation 

result in the generation of supersurfaces (Kocurek, 1988) that cap underlying accumulations. Such 

accumulations define aeolian sequences and their bounding supersurfaces can be considered sequence 

boundaries (Fig. 4). Deflation operates either until the net sediment flux becomes neutral or positive 

again, or until it progresses down to the water table (Stokes, 1968), which limits further deflation. 

Supersurfaces of allogenic origin tend to be regional in extent and truncate other bounding surface-

types of autogenic origin, which themselves arise as a consequence of interdune migration and climb, 

bedform superimpositioning or bedform reactivation (Brookfield, 1977, Rubin, 1987; Mountney, 

2006a). Some supersurfaces have been correlated laterally into adjoining non-aeolian environments 

where they merge into, for example, transgressive marine units (Havholm et al., 1993; Blakey, 1996; 

Blakey et al., 1996; Rodríguez-López et al., 2013). Many supersurfaces that bound episodes of 

aeolian accumulation are paraconformities (diastems) considered to represent long-lived hiatuses in 

accumulation: supersurfaces with associated sedimentary features such as large and closely-spaced 

tree-size rhizoliths may take 104 to 105 years to form (Loope, 1985). Several authors have proposed 

that aeolian supersurface generation may occur as a result of Milankovitch-style orbital forcing 

operating with periodicities of 18 to 400 Kyr (Loope, 1985; Clemmensen et al., 1994; Jordan & 

Mountney, 2010, 2012; Mountney, 2006b; Rodríguez-López et al., 2012a). For many systems, the 

amount of time represented by aeolian accumulations probably is significantly less than that 
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represented by intervening supersurfaces (e.g. Loope, 1985); thus, many preserved aeolian 

successions probably represent only a fraction of the geological time over which the aeolian systems 

were active, and the preserved record is therefore highly fragmentary and potentially biased toward a 

specific set of formative processes. 

Long-term preservation of aeolian accumulations in the ancient record requires that the body of strata 

is placed below some regional baseline, beneath which erosion does not occur (Kocurek & Havholm, 

1993). Thus, the rate of generation of accommodation space and the rate at which aeolian 

accumulations fill that space is a fundamental control on preserved architectural style (e.g. Howell & 

Mountney, 1997). 

Approaches to the theoretical modelling of aeolian dune and interdune successions commenced with 

the development of purely qualitative depositional models for aeolian systems, many such examples 

of which were devised in the 1970s; commonly recognized packages of aeolian dune and interdune 

lithofacies were shown to occur as elements delineated by bounding surfaces (e.g. Brookfield, 1977). 

These models, which typically accounted for stratigraphic complexity in two spatial dimensions are 

so-called static aeolian depositional (or facies) models (Mountney, 2006a). One forward stratigraphic 

modelling approach to account for both spatial and temporal changes in aeolian architecture has led to 

the establishment of a conceptual framework for the classification of aeolian systems and their 

accumulated successions (Mountney, 2012). This framework identifies simple, static system 

architectures, that are generated by spatially and temporally invariable controls but additionally 

identifies and models dynamic system architectures in which spatial and temporal changes in dune 

morphology, scale and style of migration and accumulation (for example, angle of climb) give rise to 

more complex preserved architectures. 
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EVOLUTION OF AEOLIAN SAND SYSTEMS THROUGH EARTH HISTORY 

Archean and Proterozoic aeolian sand systems (Table S1) 

The oldest known aeolian system is the 3.2 to 3.0 Ga Lower Moodies Group of the Swaziland 

Supergroup in South Africa (Table S1), which accumulated in a series of intramontane extensional 

basins through which simple barchan dunes migrated (Simpson et al., 2012). The palaeogeographical 

distribution of Archaean and Proterozoic aeolian systems was dictated by the worldwide geographical 

distribution of Archaean and Proterozoic cratons and, due to their extreme age, the preserved global 

record of aeolian systems from these Eons is highly fragmentary. Palaeoproterozoic aeolian systems 

accumulated in intracratonic sag basins, intracratonic and intercontinental extensional rift basins (both 

during rift and thermal phases of basin evolution), and transtensional basins (e.g. Rainbird et al., 

2003; Master et al. 2010). Mesoproterozoic aeolian systems accumulated in intracratonic and 

intramontane basins, rift basins and transpressive strike-slip basins (e.g. Clemmensen, 1988; Martin & 

Thornea, 2002). Neoproterozoic aeolian systems accumulated in intracratonic rift basins (e.g. Grey et 

al. 2005; Sarkar et al., 2011). From this, it is clear that the majority of preserved Precambrian aeolian 

systems are synrift depositional systems in which preservation of aeolian deposits occurred during the 

rifting phases of supercontinents because of the associated increase in accommodation space 

(Eriksson & Simpson, 1998). 

Pre-vegetation Archean and Proterozoic periods were not subject to palaeoenvironmental conditions 

that were especially well-suited to aeolian sediment accumulation and preservation (Eriksson & 

Simpson, 1998). The absence of vegetation as stabilizing agent favoured aqueous-reworking of pre-

existing aeolian deposits, leading to their partial or total destruction, reworking and incorporation into 

a variety of coeval sedimentary environments (e.g. Tirsgaard & Øxnevad, 1998). 

Proterozoic aeolian systems developed in association with a variety of coeval depositional systems 

and lead to fluvial–aeolian interactions, such as those from the Palaeoproterozoic Makgaben 

Formation (Waterberg Supergroup, South Africa, Eriksson et al., 2000 and Simpson et al., 2002), 

Amarook Formation (Wharton Group, Canada, Rainbird & Hadlari, 2000 and Rainbird et al., 2003) 
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and Thelon Formation (Barrensland Group, Canada, Rainbird et al., 2003). Marine reworking of 

Precambrian aeolian deposits was apparently a widely-occurring process along Proterozoic coastlines; 

documented examples include the Palaeoproterozoic Quartzite Member, Mcheka Formation, 

Zimbabwe (Master et al., 2010), the Whitworth Formation, Haslingden Group, Australia (Simpson & 

Eriksson, 1993) and the Neoproterozoic Venkatpur Sandstone, India (Chakraborty, 1991). 

Comparison of Proterozoic and Phanerozoic erg systems reveals a general trend toward the 

preservation of more complex aeolian systems during the Proterozoic. The general atmospheric 

circulation pattern influenced by palaeogeographic changes, palaeoland mass distributions and 

associated orogenic buildups, and the particular properties and characteristics of Archaean and 

Proterozoic atmospheres could have had a different effect on aeolian transport compared to equivalent 

processes that operated during the Phanerozoic. Studies of Han et al. (2014) have demonstrated that, 

for a particular wind speed, the ability of the air flow to transport sand decreases with lower air 

density; however, under the same conditions the saltation height increases. Taking into account that 

recent works like that of Som et al. (2012) have concluded that the density of the 2.7 Ga atmosphere 

was less than twice modern levels, it is possible that changes in air density over geological timescales 

could have influenced aeolian transport mechanisms, and this might be recorded by the predominance 

of different aeolian bedforms at different times. For example, documented examples of cosets of strata 

interpreted to represent the preserved accumulations of draa-scale bedforms are numerous for 

Precambrian successions. Furthermore, the preservation of very-coarse-grained (siliciclastic) 

Precambrian aeolian successions (for example, the Egalapemta Member, Mesoproterozoic, India; 

Biswas, 2005) is noteworthy. The specific dynamic configuration of the Precambrian atmosphere and 

its interaction with sediment grains could explain the occurrence of simple but giant transverse dunes 

with maximum preserved set thicknesses (more than 50 m thick ) as the single aeolian dune cross-

bedded set recorded from the Late Neoproterozoic McFadden Formation (Western Australia; Grey et 

al., 2005).  

The absence of Phanerozoic cold (periglacial) aeolian dunefields compared to their occurrence in 

Precambrian times is noteable. The Neoproterozoic Bakoye 3 Formation, Bakoye Group from Mali 
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(Deynoux et al., 1989) and the Neoproterozoic Whyalla Sandstone from Australia (Williams, 1998) 

constitute the only two examples on Pre-Cenozoic periglacial dunefields. This scarcity of periglacial 

dunefields in the fossil record could be a result of misinterpretation of the particular palaeoclimate 

setting in which some Precambrian and Phanerozoic aeolian systems formed. A re-evaluation of this 

topic is needed. It is known that glacial latitudes have changed through time (see Evans, 2003). It 

should be considered the possibility that cold deserts could have formed associated with glacier fronts 

even during the Phanerozoic. Particular attention should be paid to the latitudinal variation of the 

equilibrium-line altitude (ELA) as a control of glaciation through time (e.g. Isbell et al., 2012). 

 

Paleozoic aeolian sand systems (Table S2) 

During the Cambrian, ergs were located in the main land masses in the Southern Hemisphere (Fig. 5). 

The Backbone Ranges Formation (Mackenzie Mountains, Canada; MacNaughton et al., 1997) and the 

Wonewoc Formation (Wisconsin and Minnesota, USA; Dott et al., 1986; Runkel et al., 1998) 

accumulated in southern Laurentia where interaction between ergs and coastal systems adjacent to the 

Iapetus Ocean occurred (Fig. 5). The Amin Formation and the Lower Haima Group in Oman (Milson 

et al., 1996) and the Lower Roan Formation in Zambia (Annels, 1989) accumulated as inland sandy 

deserts in Gondwana (Fig. 5). Many Cambrian ergs accumulated under the influence of easterly trade 

winds, between the Equator and 30º palaeolatitude (Fig. 5; see Dott et al., 1986). 

Cambro-Ordovician and Ordovician ergs were less widespread than those of Cambrian age (Fig. 5). 

Such aeolian systems again developed under the influence of active trade winds of subtropical high-

pressure systems in land masses of the southern palaeo-hemisphere in Laurentia and Gondwana (Fig. 

5) (for example, the Pedra Pintada Formation/Alloformation; Paim & Scherer, 2007; Almeida et al., 

2009). In particular, aeolian dunefields developed in southern Laurentia record marine–aeolian 

interactions characterized by complex associations of facies of both aeolian and aqueous origin, as is 

the case of the Cambro-Ordovician Nepean Formation (Postdam Group, Canada and USA; Malhame, 

2007) and the Ordovician St. Peter Sandstone (Minnesota and Wisconsin, USA; Dott et al. 1986). In 
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particular, the St. Peter erg succession records palaeowinds that are in agreement with more general 

reconstructions of the southern palaeo-trade wind belt (Dott et al. 1986). 

Silurian and Siluro-Devonian aeolian successions are few in number. The main preserved systems 

accumulated in Western (Perth-Carnarvon Basin) (Trewin & Fallick, 2000) and Central (Amadeus 

Basins) Australia (Fig. 5) (Shaw et al., 1991). The Swanshaw Sandstone Formation of Scotland 

constitutes a mixed aeolian–fluvial succession developed in the transtensional Lanark Basin (Smith et 

al., 2006). These Silurian and Siluro-Devonian systems developed in the southern palaeo-hemisphere 

desert belt. 

During the Devonian, the assembly of Laurussia in response to the final stages of the plate collisions 

of the Caledonian Orogeny, and the northward migration of Gondwana, led to an increase of land 

masses present at subtropical latitudes that were subject to the influence of the southern palaeo-

hemisphere desert belt (Fig. 5). This palaeogeographical configuration enabled the construction, 

accumulation and preservation of several major aeolian dunefield systems (Fig. 5). 

The most representative Devonian aeolian systems are those forming part of the Old Red Sandstone of 

North West Europe (e.g. Browne et al., 2002; Morrisey et al., 2012) which accumulated in 

extensional basins formed as a result of the collapse of the over-thickened crustal belt resulting from 

Caledonian compressional tectonics (McClay et al., 1986). The Old Red Sandstone exhibits a variety 

of aeolian facies, many of which record wind–water interaction processes (for example, the Middle 

Devonian Yesnaby Sandstone Group, Lower Old Red Sandstone Supergroup, Scotland, Trewin & 

Thirlwall, 2002). 

Devonian ergs are characterized by a variety of aeolian facies including aeolian sandsheet successions 

(for example, the Lower Clair Group, Clair Basin, UK; Nichols, 2005), aeolian dunefield successions 

composed of transverse dune deposits (for example, the Slieve Mish Group, Ireland; Horne, 1971), 

barchanoid dune deposits (for example, the Devonian of Scotland; Allen & Marshall, 1981) and draa 

deposits (for example, Kilmurry Sandstone Formation, Ireland, Dodd, 1986; Eday Sandstone, Eday 

Group, Scotland, Marshall et al., 1996). Devonian aeolian dunefield successions with draa and 
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barchanoid dune deposits are preserved in north-east Greenland and these demonstrate aeolian 

interaction with ephemeral streams and terminal fans (see Olsen & Larsen, 1993). Other Devonian 

aeolian systems have been recorded from Antarctica (New Mountain Sandstone; Gilmer, 2008) and 

Australia (for example, the Langra Formation, Jones, 1972; the Tandalgoo Sandstone, Thornton, 

1990). 

The majority of Carboniferous aeolian systems are Pennsylvanian in age, with several spanning the 

Pennsylvanian–Permian boundary. Some examples of early Carboniferous aeolian systems include the 

Devonian to Mid-Carboniferous Khusayyayn Formation in Saudi Arabia (Stump & Van der Eem, 

1995), the recently recognized aeolian systems of the Late Mississippian Loyalhanna Member, 

Pennsylvania, USA (the Mauch Chunk Formation and Appalachian Formation; Swezey et al., 2012) 

and the Devonian–Mississippian Harder Bjerg Formation in Greenland (Olsen & Larsen, 1993; Fig. 

6). 

During the Variscan Orogeny, Gondwana and Laurussia collided creating the Supercontinent 

Pangaea; Pennsylvanian to Permian aeolian systems were constructed in both the Northern and 

Southern Hemispheres (Fig. 6). The main systems crop out in North and South America, with well-

developed examples including the Early Pennsylvanian Juruá Sandstone Formation (the Solimões 

Basin, Brazil; Elias et al. 2007), the Pennsylvanian Tyrwhitt and Tobermory Sandstone Formations 

(the Rocky Mountain Supergroup, Canada; Stewart & Walker, 1980) and the Pennsylvanian–Middle 

Permian Cangapi Formation (the Cuevo Group, Tarija Basin, Bolivia and Argentina; Hernández & 

Echevarría 2009), the Late Carboniferous–Early Permian Patquía Formation (the Paganzo Group, 

Paganzo Basin, Argentina; Caselli & Limarino, 2002; Geuna et al., 2010). In Saudi Arabia, the 

Carboniferous–Permian Unayzah Formation constitutes an economically important gas reservoir 

succession (Melvin & Haine, 2004; Melvin et al., 2010). 

The best-known Pennsylvanian–Permian ergs are reported from the USA. The ‘Tensleep Complex’ 

(the Tensleep Sandstone, Casper Formation, Quadrant Sandstone; e.g. Peterson, 1988), the Honaker 

Trial Formation (e.g. Wiliams, 2009) and the Cutler Group, including the lower Cutler beds (e.g. 
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Jordan & Mountney, 2010, 2012; Wakefield & Mounteny 2013), the Rico Formation (e.g. Loope, 

1985; Chan & Kocurek, 1988) and the Weber Sandstone (e.g. Doe & Dott, 1980; Driese, 1985) are all 

successions that exhibit well-exposed examples of central-erg and erg-margin systems (see Blakey et 

al., 1988 for further examples). 

During the Permian, the construction of extensive erg systems across large parts of Pangaea was 

favoured by the location of land masses of this supercontinent in subtropical latitudes under the 

influence of the southern and northern palaeo-hemisphere desert zones (Fig. 6). The best-known 

Permian aeolian systems are the Rotliegend Group (Rotliegendes) of the North Sea and North-west 

Europe, and the Permian aeolian systems from the USA (Fig. 6). Major reserves of gas (and some oil) 

exist in Permian Rotliegend desert sandstone hydrocarbon reservoirs of North-west Europe, in 

particular in the Southern Permian Basin of the North Sea and some localities of the Northern 

Permian Basin (Glennie, 1970; 1972; 1998; Glennie & Buller, 1983). 

In the Southern Permian Basin of the North Sea, aeolian dune deposits accumulated between wadi 

channels originating from the Variscan Highlands and the extensive sabkha and desert lake located 

southwards of the Ringkøbing-Fyn High (Glennie, 1972). Reconstructed aeolian dune types of the 

Rotliegend Group include transverse-crescentic dunes, barchans, longitudinal/linear and star dunes 

(for example, the Brodick Beds, Clemmensen & Abrahamsen, 1983; the Leman Sandstone Formation, 

Sweet, 1999; the Penrith Sandstone, Turner et al., 1995; Lovell et al., 2006), as well as interdraa, 

draa-plinth and draa-centre deposits (for example, Yellow Sands, Clemmensen, 1989; Chrintz & 

Clemmensen, 1993). Complex wind patterns resulted in the construction of barchanoid draa with 

superimposed oblique crescentic and linear dunes (for example, the Bridgnorth Sandstone Formation, 

UK, Steele, 1981; Benton et al., 2002). 

Permian sedimentary basins of the USA contain extensive and complex aeolian depositional systems 

and record a variety of facies and processes (see Blakey et al., 1988 for compilation). Examples of 

these Permian aeolian units include the Schnebly Sandstone Formation, which comprises deposits of 

an aeolian dunefield associated with evaporite and carbonate deposits (Blakey & Middleton, 1983; 
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Blakey, 1990), and the Lyons Sandstone Formation with deposits of parabolic dunes and blowout-

type interdunes (McKee, 1979). 

Several Permian units in the USA preserve complete examples of central-erg sequences that 

demonstrate evidence for a complex merging relation with marine erg-margin systems. Examples 

include the White Rim Sandstone (e.g. Chan, 1989; Tewes & Loope, 1992, Kamola & Huntoon, 

1994), the De Chelly Sandstone (e.g. Blakey, 1990; Stanesco, 1991), the Yeso Formation (Mack & 

Dinterman, 2002) and the Upper Minnelusa Formation (e.g. Fryberger, 1984, 1993). 

The Permian Coconino Sandstone constitutes the accumulation of an inland dry erg system formed by 

climbing barchans or barchanoid-ridge and transverse dunes (e.g. Blakey & Middleton, 1983; Blakey, 

1990; 1996). Some Permian ergs display examples of fluvial systems reworking the aeolian sands; 

this is the case for the Rush Springs Sandstone (the Whitehorse Group, Kocurek & Kirkland, 1998; 

Poland & Simms, 2012), the Cedar Mesa Sandstone of the Paradox foreland basin (Langford & Chan, 

1988, 1989; Mountney & Jagger, 2004; Mountney, 2006a; Langford et al., 2008) and the overlying 

Organ Rock Formation (Cain & Mountney, 2009, 2011). 

Permian aeolian systems developed in the Southern Hemisphere in Pangaea include the Pirambóia 

Formation in Brazil (Paraná Basin, Dias & Scherer, 2008), the Buena Vista Formation in Uruguay 

(Northern Uruguayan Basin, Goso et al., 2001) and the Permian aeolian systems of Argentina from 

the retroarc Paganzo Basin (for example, the Andapaico Formation and the De la Cuesta Formation, 

Spalleti et al., 2010; Correa et al., 2012). 

 

Mesozoic aeolian sand systems (Table S3) 

Throughout much of the Triassic, widespread aeolian desert and semi-desert conditions prevailed 

across much of northern Pangaea. The majority of Triassic ergs were located in equatorial to mid-

latitudes in the Northern Hemisphere and most of these appear to be aligned following a north–south 

trend close to the eastern margin of Northern Gondwana (Fig. 7). Triassic erg systems of north-eastern 
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Pangaea include the Buntsandstein of Europe, which is characterized by a thick accumulation of red 

beds that record a variety of aeolian and mixed aeolian–fluvial–lacustrine successions (e.g. 

Clemmensen, 1985; Mader, 1985a, Mader & Laming, 1985; Tietze et al., 1997). The Triassic 

Buntsandstein facies in the north-eastern Iberian Chain (central eastern Spain), previously considered 

to be fluvial in origin, is now known to contain an evolving erg system (Soria et al., 2011), which 

comprises a succession that records the transition from a wadi belt, via an inner erg-margin, to a 

central-erg system. 

The equivalent lithostratigraphic unit to the Buntsandstein in the UK and Ireland is the Sherwood 

Sandstone Group (‘New Red Sandstone’) which is present in a series of rift basins in both onshore 

and offshore settings (Fig. 7; Brookfield, 2004, 2008; Tyrrell et al., 2009). Aeolian dunefields were 

mostly characterized by bedforms of modest size, many with damp or wet interdunes controlled by 

water table, as recorded, for example, by the Wilmslow Formation (Øxnevad, 1991; Bloomfield et al., 

2006) and the Helsby Formation (Bloomfield et al., 2006; Mountney & Thompson, 2002) of the 

Cheshire Basin. In Scotland, the Hopeman Sandstone probably straddles the Permian–Triassic 

boundary and is characterized by deposits of the preserved remnants of a series of star dune and draa 

bedforms representing a small fragment of what is inferred to have been a very extensive dry aeolian 

system (Clemmensen, 1987; Glennie & Hurst, 2007; Hurst & Glennie, 2008). In the subsurface of the 

East Irish Sea Basin, Triassic aeolian deposits form important reservoirs for gas (Cowan & Boycott-

Brown, 2003; Meadows, 2006). 

Triassic ergs contructed close to the palaeo-equator (for example, the Oukaimeden Sandstone 

Formation, Morocco) record small aeolian dunes developed on floodplains of ephemeral fluvial 

systems (Fabuel-Perez et al., 2009; Mader & Redfern, 2011). Other Triassic ergs are located close to 

the western margin of Northern Pangaea and examples include the Nugget Sandstone of Utah and 

Wyoming (Fig. 7) (Sprinkel et al., 2011) which may be at least in part of Lower Jurassic age. 

Thick and geographically widespread Jurassic aeolian desert erg successions of the Colorado Plateau 

region are extensively documented and are arguably the most intensely studied of all aeolian 
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successions. Many authors have considered these successions collectively in terms of the regional 

palaeogeographic, palaeoclimatic and palaeotectonic setting (Fig. 7; e.g. Kocurek & Dott, 1983; 

Blakey et al., 1988; Dickinson & Gehrels, 2003; Loope et al., 2004). The best-known Jurassic aeolian 

successions of the south-western United States include the Wingate and Navajo sandstones (and 

stratigraphic equivalents) of the Lower Jurassic Glen Canyon Group, and the Page and Entrada 

sandstones (and equivalents) of the Middle Jurassic San Rafael Group. The Wingate Sandstone 

represents a largely dry aeolian system representative of an erg-centre setting (with compound draa 

development) but also demonstrates styles of interaction with fluvial deposits of the Moenave 

Formation in its erg-margin setting (Clemmensen & Blakey, 1989; Clemmensen et al., 1989; Tanner 

& Lucas, 2007). The Navajo Sandstone of the Glen Canyon Group is one of the most intensely 

studied sedimentary formations of any type and is well-exposed across much of the Colorado Plateau 

region, where it attains a thickness of nearly 700 m in south-western Utah. The succession represents 

the preserved remnant of a giant erg that was present across much of the western part of Pangaea (Fig. 

7; Hunter & Rubin, 1983; Chan & Archer, 2000); this system was subject to seasonal wind reversals 

associated with annual monsoons that occurred each summer when more humid and cooler conditions 

prevailed and wind reversal occurred (Loope & Rowe, 2003; Loope et al., 2008). The Page Sandstone 

of Arizona and southern Utah represents accumulation in an erg system close to the margin of an 

interior seaway; the system is composed of vertically stacked, progradational erg sequences that 

overlie marine deposits of the Carmel Formation such that the two units intertongue (Havholm & 

Kocurek, 1994; Jones & Blakey, 1997; Dickinson et al., 2010). The Entrada Sandstone of the San 

Rafael Group is exposed extensively across much of the Colorado Plateau region and represents the 

accumulated deposits of a coastal to inland aeolian system that was characterized by a complex 

arrangement of aeolian dune, damp and wet interdune, and sabkha elements (Kocurek, 1980, 1981a,b; 

Crabaugh & Kocurek, 1993; Crabaugh & Kocurek, 1998). Relic dune topography is preserved in 

places at the top of the succession as a result of later marine transgression (Benan & Kocurek, 2000). 

The Upper Jurassic Norphlet Sandstone represents the accumulated deposits of a major aeolian erg 

succession that is known principally from the subsurface of Alabama, the shallow-water Gulf of 
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Mexico around Mobile Bay, and further offshore in the deep-water part of the Gulf of Mexico, where 

it forms a major oil reservoir (Taylor et al., 2004; Mankiewicz et al., 2009; Ajdukiewicz et al., 2010). 

Numerous aeolian successions of Jurassic age are documented from South America and especially 

from Brazil. Examples include the Pedreira Sandstone of Paraná Basin in Brazil, which is 

characterized by climbing aeolian dune sets with intervening damp and wet interdune units (Nowatzki 

& Kern, 2000) and the Guará Formation of southern Brazil, which records composite crescentic 

aeolian dune sets and cosets, and aeolian sand-sheet elements interbedded with distal flood deposits 

and fluvial channel-fill elements (Scherer & Lavina, 2006). 

The backarc Neuquén basin of Argentina records a series of Jurassic aeolian successions. The Lotena 

Formation preserves a record of aeolian–fluvial interactions (Veiga et al., 2011a). A tectonic 

inversion during the Late Jurassic led to the desiccation of the entire basin, giving rise to a complex 

array of continental facies for which aeolian deposits form a major part (Spalletti & Veiga, 2007, 

Spalletti et al., 2011). In the southern part of the basin, an upward vertical transition from fluvial-

dominated to aeolian-dominated deposition, probably arising from a climatic shift to drier conditions, 

is recorded as part of the Kimmeridgian Quebrada del Sapo and Tordillo formations (Zavala et al., 

2005a; Veiga & Spalletti, 2007). The Tordillo Formation represents migration and accumulation of 

transverse and barchan dunes in a style that generated a complex hierarchy of internal bounding 

surfaces within a largely dry aeolian system in which only thin dry interdune elements accumulated 

(Zavala et al., 2005a). To the east, aeolian accumulation was more significant and led to the 

preservation of ca 300 m thick sequence of mainly aeolian deposits of the Sierras Blancas and Catriel 

formations, which include deposits of dune, wet and dry interdune and aeolian sandsheet elements 

(Maretto et al., 2002; Spellati et al., 2011).The Piramboia Formation of Entre Rios Province, 

Argentina, is an aeolian unit considered to be primarily of Lower Jurassic age (Silva & Fernandez, 

2004). 

The Lower Jurassic Clarens Formation, which forms a unit of the Karoo Supergroup in South Africa 

records a progressive upward transition from the deposits of a wet aeolian system that developed 



This article is protected by copyright. All rights reserved. 

alongside coeval ephemeral fluvial systems to a dry aeolian system dominated by stacked cross-

bedded aeolian dune sets (Bordy & Catuneanu, 2002; Holzförster, 2007). 

Cretaceous aeolian successions, together with those that probably span the Jurassic–Cretaceous 

boundary, are numerous in South America and many have been the focus of detailed study over 

several decades. The Botucatu Formation of the Paraná Basin (São Paulo and Paraná states, Brazil) – 

which was originally thought to be Triassic in age (Bigarella, 1979a) – has lateral equivalents in 

Parnaiba Basin of northern Brazil and is a near-equivalent of the Bauru, Guará, Sambaiba, Sanga do 

Cabral and Piramboia formations, as well as of the Etjo Sandstone in Namibia (Mountney et al., 1999 

a,b), and possibly the Kudu Formation, offshore Namibia (Mello et al., 2011). Relic aeolian dune 

forms and degraded topography are preserved at the top of the succession where it is overlain by flood 

basalts of the Serra Geral Formation and other flood basalts related to the Etendeka-Paraná Large 

Igneous Province (Scherer, 2002; Waichel et al., 2008). The Serra Geral Formation records the 

exceptional preservation of relic aeolian dune topography of a dry aeolian system by flood basalts 

including various types of completely preserved dunes and sand-deformation features, including sand 

diapirs and peperite-like breccia. 

In the backarc Neuquén Basin of west-central Argentina, Lower Cretaceous sandy aeolian 

accumulations are numerous and mainly related to lowstand periods and to the possible disconnection 

of the basin from the proto-Pacific Ocean (Howell et al., 2005). These successions constitute 

important conventional oil and gas reservoirs. Aeolian deposits have been described from part of the 

proximal system of the Valanginian Mulichinco Formation in the subsurface of the basin (Zavala et 

al., 2005b) and, more marginally, as part of environments of fluvial–aeolian interaction (Schwarz et 

al., 2011). One of the best-described aeolian systems in the basin is the Hauterivian Avilé Member of 

the Agrio Formation (Rossi, 2001; Veiga et al., 2011b). Within this non-marine unit, aeolian deposits 

are locally important and record a complex vertical evolution related to high-frequency climatic 

changes and to the development of multiple supersurfaces associated with aeolian deflation and 

fluvial flooding (Veiga et al., 2002). Finally, the Baremian Lower Troncoso Member of the Huitrín 

Formation is characterized by the transition from fluvial to aeolian deposits (Veiga et al., 2005). For 



This article is protected by copyright. All rights reserved. 

both the Avilé and Troncoso members, marine inundation of the dunefields following transgression 

led to the preservation of relic dune topography, as well as to the development of a complex set of 

facies related to the deformation and reworking of the aeolian sands during the transgression 

(Strömbäck et al., 2005; Veiga et al., 2011b). Aeolian deposits have also been described in the Upper 

Cretaceous record of the Neuquén Basin as part of the Neuquén Group (Sánchez et al., 2008). 

In Africa, the Lower Cretaceous Etjo Sandstone Formation of north-west Namibia is a predominantly 

dry aeolian system in which relic aeolian dune bedforms with up to 100 m of topographic relief have 

been preserved following inundation by flood basalts of the Etendeka igneous province (Mountney et 

al., 1999a, b; Howell & Mountney, 2001; Mountney & Howell, 2000). The lower part of the 

succession records exceptionally thick examples of simple cross-bedded sets of aeolian dune origin 

(individual simple sets up to 52 m thick), with preservation probably having been enabled by the 

migration of a large dune into a pre-existing topographic depression. Aeolian sandstone occurs 

interleaved with flood basalts at multiple levels within the upper part of the succession, which forms 

the lower part of the overlying Etendeka Group Large Igneous Province (Jerram et al., 1999a, b; 

Jerram et al., 2000a, b). 

Various formations composed of Cretaceous strata of aeolian dune origin are present in several basins 

of China, including many in the Gobi Desert region of Inner Mongolia. Cretaceous aeolian dune 

accumulations are recorded from the Sichuan, Ordos, Kuche, Tarim Basin and the Kuqa basins, and 

especially in Inner Mongolia and surrounding regions. The preserved aeolian dunefield deposits 

preserve evidence for the development of both dry and wet (water-table controlled) aeolian systems 

(Xie et al., 2005; Jiang et al., 2008). The Upper Cretaceous (Campanian) Djadokhta Formation of the 

Ulan Nur Basin and the area around Tugrikiin Shiree and Ukhaa Tolgod (Nemegt Basin, Mongolia) 

represent dunefields that experienced heavy rainfall events resulting in the development of perched 

water tables, early calcite cementation, and dune collapse due to sediment gravity sliding 

(Jerzykiewicz et al., 1993; Loope et al., 1999; Seike et al., 2010). 
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In Europe (Spain), the mid-Cretaceous Iberian Desert System, represented by the Utrillas Group (that 

includes the previously known middle and upper parts of the Escucha Formation and the whole 

Utrillas Formation) developed from the early Albian to the early Cenomanian along the western 

Tethyan margin (Iberian Basin, eastern margin of Iberia) between the Tethys Ocean (to the east) and 

the highland Variscan Iberian Massif (to the west) over an area of more than 20,000 km2 (Fig. 7; 

Rodríguez-López, 2008; Rodríguez-López et al., 2008). The mid-Cretaceous Iberian Desert System 

displays a tripartite spatial configuration: a back-erg characterized by aeolian–fluvial (wadi) 

interactions, a central-erg characterized by thick accumulation of linear draa, other compound-draa 

sandstones and desert roses, and a fore-erg in which the interaction between compound aeolian dunes 

(draas) and coastal sedimentary environments (lagoons, tidal creeks, tidal deltas and marshes) 

occurred (Rodríguez-López et al. 2006; 2008; 2010; 2012a). The sedimentary record of this desert 

basin displays different erg sequences bounded by supersurfaces (Rodríguez-López et al., 2013). 

Palaeogene aeolian sand systems (Table S4) 

Palaeogene erg systems have been the subject of only relatively modest investigation, mainly as part 

of regional studies; it is therefore difficult to draw conclusions regarding their distribution and 

development. Only one example of aeolian accumulation has been described for the Palaeogene of 

Europe (Fig. 8) and this corresponds to the Sables de Fontainebleu Formation (or Fontainebleau 

Formation) of early Oligocene age (Alimen, 1936). This unit is part of the fill of the Paris Basin and is 

composed of a 50 to 70 m thick succession of clean, fine-grained, well-sorted sand arranged in 

accumulations expressed as elongated ridges and is thought to represent the preserved topography of 

an ancient coastal barrier system (Thiry et al., 1988; Cojan & Thiry, 1992). 

Palaeogene aeolian systems of North America are restricted to those of the Oligocene of western 

USA. The most important example corresponds to the ‘Chuska Erg’, an extensive sand sea (ca 

140,000 km2) developed in the uplifted Colorado Plateau between 33.5 Ma and 27 Ma (Lucas & 

Cather, 2003; Cather et al., 2008). The accumulated record of this sand sea (known as the Nabora 

Pass Member of the Chuska Sandstone) attains a maximum thickness of 535 m and records the 

northerly migration of transverse dunes (Cathers et al., 2008). Also in the western USA, in the Great 
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Plains of South Dakota, Nebraska and Wyoming, volcaniclastic aeolian deposits have been described 

as part of the Brule Formation of the White River Group (Tedford et al., 2005). 

Few aeolian successions have been described for the Palaeogene of Africa and these are mainly of 

Middle to Upper Eocene age. The Hadida Formation, which developed in the Tindoouf-Ouarzazate 

Basin of Morocco, includes medium-grained, cross-bedded sandstone that occurs intercalated in a 

>300 m thick sequence mainly composed of gypsiferous mudstones (Swezey, 2009; Tesón et al., 

2010); this succession is regarded as the earliest record of the Saharan system (Swezey, 2006). Apart 

from these proto-Saharan deposits, sandy aeolian successions have been described as part of the 

Palaeocene fill of the Congo Basin in the West African margin of Gabon in the form of deposits 

originally described as the ‘Gres Polymorphes’ (De Ploey et al., 1968) that comprise a 180 m thick 

succession of cross-stratified sandstones with individual sets several metres thick interpreted as 

aeolian deposits (Batéké Sands, Séranne et al., 2008). Aeolian deposits have also been described in 

the Fayum District in Egypt as part of the Qasr El-Sagha Formation (El-Fawal et al., 2011). These 

include a 45 m thick succession of Middle to Upper Eocene age, previously described as channelized 

delta plain deposits (Bown & Kraus, 1988) but more recently reinterpreted as part of a desertification 

phase that caps a prograding deltaic system (El-Fawal et al., 2011). 

The only example of Cenozoic aeolian accumulation from Oceania comes from southern Australia, 

where the upper portion of the Middle to Upper Eocene Ooldea Sand (Barton Sand) represents a 

barrier dune complex developed during the transgression of the Eucla Basin (Hou et al., 2006). 

 

Neogene aeolian sand systems (Table S4) 

 

Neogene sandy aeolian systems are relatively common and have been described worldwide. Most of 

these systems owe their origin to local climatic and tectonic factors. However, as the position of most 

major continental landmasses has not changed significantly since the Miocene, many Neogene aeolian 

systems have apparently been controlled by climatic conditions similar to those experienced by 

present-day desert systems, and such successions therefore constitute the precursors of some of the 

most important Quaternary aeolian systems, as in the Sahara, Kalahari and Namib sand seas. 
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Only one example of Miocene aeolian accumulation in Europe has been identified. It corresponds to 

the Vale de Chelas Sands in the Lower Tejo Basin of Western Iberia, a 10 m thick succession of 

cross-bedded sandstones of aeolian origin, interpreted as a coastal system (Telles Antunes et al., 1999; 

Pais et al., 2012). Pliocene aeolian deposits in Europe have been described in more detail and are 

mainly related to the onset of the Northern Hemisphere glaciation that led to stronger westerly winds. 

In central Spain, the Middle to Upper Pliocene Escorihuela Formation records the accumulation and 

preservation of an aeolian dunefield related to syn-sedimentary activity of normal faults in a syn-rift 

environment. This system is dominated by the interaction between constructive and destructive 

episodes related to high-frequency climatic changes (Rodríguez-López et al., 2012b). Accumulation 

during the Middle to Upper Pliocene is also recorded in the northern Apennines of Italy, and is 

associated with extensional tectonics and the alternation between relatively more humid and more arid 

episodes in the Valdarno Basin (Ghinassi et al., 2004). Here, deposits of the Rena Blanca Sand Unit 

are dominated by the superimposition of wetting–drying–wetting cycles that record high-frequency 

climatic oscillations, each apparently of ca 40 ka duration (Ghinassi et al., 2004). 

In the USA, several Miocene aeolian systems have been described and are mainly controlled by local 

tectonic conditions associated with warm and dry climatic conditions. In western and central USA, 

some local systems have developed related to extensional basins such as the Zia Formation of the 

Santa Fe Group in the Albuquerque Basin (Galusha & Blick, 1971) and the Ojo Caliente Sandstone of 

the Tesuque Formation in the La Española Basin (Koning et al., 2004), both related to the large 

structure of the Río Grande Rift. These systems give rise to locally thick successions (up to 160 m) 

related to the development of dunefields that were strongly influenced by local conditions. Aeolian 

deposits have also been described in the High Plains of the USA, including the Early Miocene 

Arikaree Formation (Bart, 1977) in south-east Wyoming, where large-scale, cross-bedded sandstones 

have been related to the accumulation of barchan and transverse dunes. Finally, an aeolian origin has 

also been reported for a ca 100 m thick succession of the Comondú Group in Baja California, Mexico, 

related to the infill of the forearc basin developed between the Late Oligocene and Early Miocene 

(Umhoefer at al., 2001). 
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Neogene aeolian accumulations in South America are related to the complex evolution of the Andes. 

The compressional regime in the western margin of South America led to the development of a 

complex foreland with multiple basins that formed important sites of accommodation that were 

themselves subject to an arid local climate regime. This resulted in the accumulation of several 

aeolian units, some with local names that record this stage of evolution, especially during the 

Miocene. For instance, the Petaca Formation in southern Bolivia (Uba et al., 2005) and the Aguada 

Member of the Chacras Formation (Voss, 2002) in the Salar de Antofalla in north-west Argentina 

probably commenced accumulation in the latest Oligocene, but underwent their most important phase 

of accumulation during the Lower to Middle Miocene. These units are between 100 m and 150 m 

thick and record the interaction between aeolian and fluvial systems. One of the best described 

examples of an aeolian system developed in the Andean foreland is the Lower Miocene Vallecito 

Formation (Tripaldi & Limarino, 2005). This unit attains a maximum thickness of 1,200 m and 

comprises a complex facies arrangement that records the interaction of dunes, aeolian sandsheets and 

wet interdunes that interact with fluvial and lacustrine systems. The succession records a large aeolian 

system developed as the first syn-orogenic fill of the Andean foreland in this part of north-western 

Argentina (Tripaldi & Limarino, 2005). Another Lower Miocene unit with similar characteristics is 

the Pachaco Formation in the Precordillera of San Juan in western Argentina. The middle member of 

this formation is 700 m thick and records the accumulation of a large dunefield dominated by barchan 

and seif dunes and draas (Milana et al., 1993). The Angastaco Formation is related to an aeolian 

dunefield associated with fluvial systems that developed in the Lower Miocene of north-western 

Argentina (Do Campo et al., 2010). Both the Mariño Formation in the Precordillera of Mendoza 

(Irigoyen et al., 2000) and the Santo Domingo Member of the El Durazno Formation in the Sierra de 

Famatina (Dávila & Astini, 2003) also record synorogenic aeolian systems associated with the 

development of the Andean foreland during the Middle Miocene. In southern Patagonia, aeolian 

deposits have been also described as part of the Lower to Middle Miocene Santa Cruz Formation 

(Pinturas Formation of Bown & Larriestra, 1990) and in distal portions of the Andean Foreland and in 

the passive South American margin, sandy aeolian facies have been described as part of the Río 

Negro Formation associated with a marine transgression from the Atlantic (Zavala & Freije, 2001). 
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Most of the Neogene aeolian systems of Africa are closely related to Quaternary systems and they 

record early accumulation conditions, with some differences due to changes in climate over the past 

10 Myr (Fig. 8). The oldest record is the Middle Miocene Tsondab Sandstone Formation in Namibia 

which comprises a succession up to 220 m thick of cross stratified and massive sandstones with the 

local development of pedogenic carbonates and palaeosols (Ward, 1988; Kocurek et al., 1999; 

Ségalen et al., 2004). This unit is interpreted as a proto-Namib sand sea that was influenced by winds 

that blew from the south/south-west, as today, but which developed under more humid conditions 

than those experienced today (Kocurek et al., 1999). The succession comprises two sequences, each 

separated by a stabilization surface; deposits record the preservation of north-trending linear dunes 

that gradually undertook a lateral component of migration to the east. These linear forms supported 

superimposed dunes, similar to the large linear bedforms of the present-day Namib Desert, mainly as 

a consequence of a sustained wind regime that has been established since the Miocene (Ségalen et al., 

2004). Elsewhere in the Namib, up to four aeolian sequences are recognized (Senut et al., 1998), 

comprising the deposits of star, linear and transverse dunes (Ségalen et al., 2004). 

Miocene aeolian deposits have been described in the Chad Basin and these are associated with the 

early hominid specimens in the Toros-Menalla site 266, in northern Chad, central Africa (Schuster et 

al., 2002; Vignaud et al., 2002). Accumulation of these aeolian successions was related to the early 

development of the Sahara (Schuster et al., 2002; Vignaud et al., 2002) although the relevance of this 

finding and its implication for pre-Quaternary desert development has been disputed (Swezey, 2006). 

Upper Miocene to Lower Pliocene aeolian deposits are also present in the Western Cape of South 

Africa. In this area the Prospect Hill Formation is composed of calcarenites with shell fragments that 

record the development of a coastal dune system overlying sandy beach deposits (Franceschini & 

Compton, 2004). 

The Garet Uedda Formation (or Members U and V of the Sahabi Formation) in Libya has been 

described as Upper Pliocene age and an aeolian origin has been proposed for this 25 m thick sequence 

of quartzitic sands interbedded with sandy shales (Tawadros, 2012). Some relic forms of the Kalahari 

Desert might be as old as Upper Pliocene and they record the aeolian reworking of fluvial sands 

(Lancaster, 2000; Haddon & McCarthy, 2005). These units have different formal names (Gordonia 
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Formation, Kalahari Sand, Batéké Sands and Zambezi Formation) and they can be correlated from 

Zaire and south-western Angola in the north to Botswana, Namibia, and northern South Africa in the 

south. Deposits of these successions are mainly unconsolidated sand and their distribution suggest a 

larger sand sea than the Quaternary Kalahari Desert, giving rise to the largest sand body on Earth (the 

‘Mega Kalahari’) that covered over 2.5 million km2 (Thomas and Shaw, 1990). 

Neogene aeolian activity in Asia was dominated by the accumulation of thick sequences of fine-

grained deposits (loess) in the Loess and Tibetan Plateaus and aeolian deposits interbedded with 

alluvial deposits (e.g. Zheng et al., 2003). Sandstone aeolian accumulations are not common and only 

one example has been identified in the Middle East: the Shuwaihat Formation, a Middle Miocene unit 

exposed on a 16 m high cliff near Abu Dhabi in the United Arab Emirates (UAE; Whybrow et al., 

1999) interpreted as the record of the interaction between transverse and barchanoid dunes and a 

continental sabkha (Bristow, 1999). 

 

Quaternary aeolian sand systems 

Sand seas and dunefields occurring today developed during the Quaternary Era, during which 

significant changes in climate and sea-level related to glacial–interglacial cyclicity affected the 

supply, availability and mobility of sediment. Their accumulation and present configuration therefore 

reflects the legacy of these changes, in addition to contemporary processes. Quaternary aeolian sand 

systems occur on all continents and at all latitudes, from the Antarctic to the Arctic (Fig. 9). 

Quaternary aeolian systems are here sub-divided into those located inland and those occurring along 

the coast. 

 

Inland sand seas and dunefields (Table S5) 

Inland dune systems occur widely, with a concentration in low to mid-latitude arid regions of the 

Northern Hemisphere (35–50°N), especially in the arid regions of central Asia, on the semiarid Great 

Plains of North America, and in low latitude desert areas of Africa, Arabia and Australia (15–30°N 



This article is protected by copyright. All rights reserved. 

and 15–30°S). Their geological setting varies, with many sand seas in Africa, Australia and Arabia 

occurring in cratonic basins; central Asian and South American sand seas, by contrast, are located 

mostly in foreland basins (Fig. 10). Dune types also vary, with linear dunes comprising about 50% of 

all dunes and dominating in many areas of the Sahara, south-east Arabia, Australia and southern 

Africa (e.g. Lancaster, 1999; Pye & Tsoar, 1990). Crescentic dunes comprise 40% of dunes and 

dominate sand seas in the northern Sahara, many parts of Arabia, and parts of central Asia and China. 

Star dunes comprise around 8% of dunes in low latitude inland sand seas, mainly in areas where 

topography creates complex wind regimes. 

Wet systems form inland where the depositional surface intersects local perched or regional 

groundwater tables. Good examples of wet systems are the White Sands dunefield in New Mexico 

(Fig. 11; Kocurek et al., 2007) and the Liwa area of the United Arab Emirates (Glennie, 2005; Stokes 

& Bray, 2005). Changes in sea-level, climate and/or vertical crustal movements that affect the 

groundwater table may result in a system changing over time from wet to dry or vice versa, as in the 

Wahiba Sands of Oman (Radies et al., 2004). Likewise, spatial changes in groundwater levels result 

in some parts of the system being dry and others wet, as in the Rub’ al Khali sand sea of Saudi Arabia 

(Glennie, 1970; Al-Masrahy & Mountney, 2013). 

It appears that the majority of modern and Quaternary aeolian sand systems operate as dry systems in 

which the water table is significantly below the depositional surface, such that it has no effect on the 

dynamics of the dune system. The major controls are therefore sand supply, its availability for 

transport and mobility (magnitude and frequency of winds capable of transporting sand). The Namib 

Sand Sea (Fig. 12) is a good and comprehensively-studied example of a dry system, sourced 

principally by sand from the interior of southern Africa via the Orange River (Garzanti et al., 2012). 

Its accumulation is interpreted to be the product of regional changes in wind regime, which result in a 

reduction of transport rates in the direction of transport, leading to deposition of sand by bedform 

climbing and dune growth. Estimates of angles of bedform climb made by Lancaster (1989) range 

from 0.003° for the linear dunes to 0.03 to 0.16° for crescentic dunes in the southern part of the sand 

sea. There is a clear spatial pattern of sand accumulation in central areas of the sand sea, represented 
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by the equivalent or spread out sand thickness of complex linear dunes that reach 150 to 200 m in 

height (Bullard et al., 2011; Lancaster, 1989) (Fig. 12). Isotopic and sediment budget estimates for the 

age of the sand sea converge at around one million years (Vermeesch et al., 2010), but many of the 

dunes are relatively young, with OSL ages of 17 to 24 ka for compound linear dunes in the southern 

sand sea (Bubenzer et al., 2007) and less that 6 ka for linear dunes on the northern margin of the sand 

sea (Bristow et al., 2007). Although there is evidence for episodic dune accumulation in the Namib, it 

appears that the persistence of arid to hyper-arid conditions throughout the Quaternary has promoted 

development of a very well-organized dune system. 

Stabilized dune systems are those in which vegetation or some other factor (for example, permafrost 

and pedogenesis) periodically or continually stabilizes the substrate while the system remains active 

overall. Large-scale stabilized systems include the Thar Desert sand sea in India, much of the South-

western Kalahari and the Simpson-Strzlecki in Australia (Fig. 13) and parts of the Negev-Sinai sand 

sea (Egypt and Israel). Characteristic dune forms of these systems are vegetated linear dunes and 

parabolic dunes. Quaternary climatic changes also resulted in some dune systems becoming stabilized 

at times of increased precipitation, as in the early Holocene, when well-developed soils developed on 

the dunes of the southern Sahara (Kocurek et al., 1991; Lancaster et al., 2002). Such episodes of soil 

formation are important to preservation of older episodes of dune accumulation. 

Many studies have indicated that dunes in arid Australia have accumulated episodically and some are 

of great age (up to one million years) (Fujioka et al., 2009). In many locations, the cores of linear 

dunes may exceed 380 ka in age, with multiple late Pleistocene and Holocene accumulation episodes 

(Fitzsimmons et al., 2007; Lomax et al., 2011). These episodes of dune growth have taken place 

without complete reworking of the dunes, in large part because of pedogenic alteration and 

stabilization of the deposits of older dune accumulation episodes by aeolian addition of clay and 

carbonate derived from nearby alluvial and lacustrine environments (Cohen et al., 2010; Hesse, 2011). 

Successive episodes of stabilization, reworking and dune growth result in an accretionary structure for 

the dunes, often associated with lateral migration in addition to dune extension (Rubin, 1990). Similar 
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structures have been observed in stabilized (vegetated) linear dunes in other regions (e.g. Roskin et 

al., 2011; Telfer, 2011). 

Coastal systems (Table S5) 

Coastal dunefields may be divided into those composed of siliciclastic material and those composed 

of carbonate (or mixed carbonate and siliciclastic) material. The former type typically develops along 

humid-type, mid-high latitude coasts, whereas the carbonate-rich dunes/dunefields form along arid to 

semi-arid, mid-low latitude, coasts bordering productive carbonate platforms. 

Dune types vary and their size and morphology is dependent on a number of factors including 

vegetation cover, sand supply, wind regime and coastal setting. Sand blown off the beach typically 

forms partly vegetated and fixed foredunes. Aeolian erosion of the foredunes can lead to the 

formation of blowouts and parabolic dunes and/or transgressive dunefields (Hesp, 1999). Along 

cliffed coasts special dune types including echo dunes and climbing dunes can develop (e.g. 

Clemmensen et al., 1997). 

Most coastal dunefields in North-west Europe can be classified as wet as the groundwater table 

typically is close to the surface. Depth to the groundwater table is in many cases linked to sea-level, 

especially in subsiding coastal basins (Kocurek et al., 2001; Mountney & Russell, 2009). In other 

examples, especially in systems developed on uplifting coastal areas like the northern part of 

Denmark, dune dynamics are influenced by high precipitation rates and the formation of perched 

groundwater tables (Clemmensen et al., 2009; Pedersen & Clemmensen, 2005). Dunefields develop 

both on retreating and prograding coasts. Both types may share many sedimentary characteristics, but 

prograding systems tend to develop successive lines of stabilized foredune ridges (e.g. Bristow & 

Pucillo, 2006; Madsen et al., 2007; Reimann et al., 2011), whereas retreating systems more 

commonly experience phases of transgressive dune formation in the form of inland migrating 

parabolic dunes (Clemmensen et al., 2001a; Pedersen & Clemmensen 2005). 

The Lodbjerg and Hvidbjerg coastal dunefields provide examples of wet-stabilized siliciclastic 

systems developed on a retreating coast (Figs 14 and 15). These two systems form part of an almost 
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unbroken belt of coastal dunefields that flank the North Sea coast of Jutland, Denmark (Clemmensen 

et al., 2009; Pedersen & Clemmensen, 2005). Luminescence dating of the sand units and radiocarbon 

dating of the peaty palaeosols has made it possible to establish a detailed chronology of dunefield 

evolution (Fig. 16). Episodes of transgressive dune formation that occurred around 2200 BC, 800 BC, 

100 AD, 1050 to 1200 AD, and between 1550 and 1650 AD were linked to periods of increased 

storminess (cool, wet summers), whereas stabilization took place during periods of decreased 

storminess (Clemmensen et al., 2009). The series of ages obtained by Clemmensen et al. (2001a) 

indicate accumulation of around 10 m of aeolian sand (below present groundwater table) since 2200 

BC, at an average rate of 2.4 mm/yr. 

Swina barrier coastal dune system is another example of a wet-stabilized siliciclastic system 

developed on a prograding shoreline. The Swina barrier is situated in north-west Poland along the 

southern part of the Baltic Sea; the dunefield is developed on top of two sandy spits that have formed 

between Pleistocene headlands (Reimann et al., 2011). Spit formation and shoreline progradation 

have taken place during the past 6600 years. The coast now forms a smooth and curved shoreline 

segment and is still prograding. The Swina barrier system is sourced by sand eroded from nearby 

headlands. Luminescence dating of the dunes indicates six hiatuses in foredune building, at 2100 BC, 

900 BC, 200 BC, 200 AD, 600 AD, 1000 AD and 1600 AD. It is concluded that most of these phases of 

foredune erosion and instability were caused by climatic shifts to a cooler and windier climate. The 

transgressive dune formation ca 1600 AD was linked to increased storminess during the ‘Little Ice 

Age’ and this episode of dune formation seems to be contemporaneous with phases of increased 

aeolian activity in other dune systems in North-west Europe (e.g. Clarke & Rendell, 2009; 

Clemmensen & Murray, 2006; Clemmensen et al., 2009). 

Carbonate-rich aeolian systems are commonly developed in mid-latitude and low-latitude, arid and 

semi-arid climate belts; these aeolian systems occur in a variety of settings including lowland and 

cliffed coasts (e.g. Brooke, 2001; Frébourg et al., 2008). Due to the climatic setting of these systems 

they are most logically classified as dry. The carbonate sand is lithified soon after deposition (Guern 

& Davaud, 2005) thereby forming one mechanism of preservation that is poorly known from 
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siliciclastic systems. These lithified carbonate-rich aeolian deposits are termed aeolianites (Brooke, 

2001). 

Particularly well-developed carbonate aeolian systems occur in the Western Mediterranean region 

(Clemmensen et al., 1997; Fornós et al., 2009; Andreucci et al., 2010a). Quaternary successions with 

carbonate-rich aeolian sand units crop out quasi-continuously along the north-west coast of Sardinia 

near the town of Alghero (Andreucci et al., 2010a,b; 2014). The aeolian units, which are lithified, 

occur along a cliffed coast and can be subdivided into cliff-front dune accumulations and valley-head 

sand ramps (Andreucci et al., 2010a; Fig. 17). Note also other major Quaternary aeolianites in South 

Africa (e.g. Roberts, 2008) 

 

AEOLIAN RESEARCH: THE WAY FORWARD AND FUTURE RESEARCH PROSPECTS 

Aeolian facies and sequence stratigraphic models: a useful approach to capturing complexity in 

aeolian successions? 

Relating preserved aeolian stratigraphy to original bedform morphology and behaviour 

Although it is now possible to effectively describe in detail both: (i) the morphological characteristics 

of modern bedforms and larger dune fields; and (ii) the geometry of architectural elements of 

preserved aeolian successions, notably by using the forward stratigraphic modelling techniques 

developed by Rubin (1987) and Rubin & Carter (2006), several problems remain regarding how to 

relate ancient preserved sets of aeolian strata to the morphology and migratory behaviour of the 

original bedforms. In particular, in cases where large compound and complex morphological dune 

types have accumulated in desert basins in which the rate of accommodation generation has been 

highly variable over time or space, for example in response to spatially and temporally variable 

synsedimentary tectonic activity (e.g. Rodríguez-López et al., 2013). 

The accumulated sedimentary record of most modern inland dunefields remains largely unknown, 

with only fragmentary glimpses of aeolian sedimentary architectures having so far been revealed from 
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modern aeolian systems via techniques such as trenching (e.g. McKee, 1966) and ground-penetrating 

radar (GPR) studies (e.g. Bristow et al., 2000). 

Conversely, relatively few ancient aeolian successions are known that preserve, intact, the original 

morphologies of the bedforms that gave rise to the architecturally complex set and cosets of aeolian 

cross-bedding that dominate the ancient sedimentary record (e.g. Mountney et al., 1999). Thus, the 

development of aeolian facies models that are used to relate modern dunes and dunefields to 

accumulated deposits remains problematic in terms of how best to interpret the preserved sedimentary 

architectures of ancient aeolian deposits. 

Despite great progress on understanding of the geomorphology of Quaternary inland sand seas, there 

are few data relating to their stratigraphic and sedimentological record. In many areas, Quaternary 

sand seas and dunefields have not left a significant accumulation and the bedforms present in many 

modern dunefields are known to be partially or completely legacy landforms inherited from LGM 

times (e.g. Lancaster et al., 2002); thus, such forms do not necessarily reflect the currently prevailing 

climatic and sediment supply conditions. Elsewhere, information from the subsurface (for example, 

GPR data, cores and well logs) does not exist or is proprietary. The costs and logistics of acquiring 

such datasets are often prohibitive, but where they have been developed, the understanding of the 

sedimentary record of inland sand seas has been transformed and relations between contemporary 

processes and the sedimentary record established (Bristow et al., 2000; 2005; 2007; Derickson et al., 

2008; Kocurek et al., 2007; Radies et al., 2004; Stokes & Bray, 2005). There is a clear need to 

advance knowledge in this area by a coordinated program of research that seeks to link dune 

processes to the sedimentary record. One valuable step in this direction is the development of a 

methodology for reconstructing wind direction, wind speed and duration of wind events from aeolian 

cross-strata (e.g. Eastwood et al., 2012). The stratigraphic record of Quaternary (Holocene) coastal 

dunefields is better documented because such systems have been investigated by GPR mapping, 

outcrop and core studies, and placed in a chronological framework by luminescence and radiocarbon 

dating (e.g. Clemmensen et al., 2001a; Pedersen & Clemmensen 2005); but also in these systems 

there is a need to link aeolian processes more closely to the sedimentary record. Sedimentary units 

with flat-bedded strata form a large portion of the stratigraphic record of these Holocene coastal 
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systems (Clemmensen et al., 2001a), but it is not yet clear whether these facies represent the trailing 

edges of inland migrating parabolic dunes or featureless sand plains formed in between the parabolic 

dunes. 

The sedimentary structures of modern dunes need to be described more systematically in the 

literature. This includes the internal structures of fixed linear dune ridges as well as those of many 

transgressive (actively migrating) dunes including the parabolic dunes of coastal areas. Studies of the 

internal sedimentary structures of dunes can be conducted from some natural exposures, including 

blow-outs, but the most systematic observation is provided from ground-penetrating radar mapping of 

the dune bodies (e.g. Bristow et al., 1996; 2000a,b; Clemmensen et al., 2007; Tamura et al., 2011). 

Such studies of internal structures should be accompanied by geomorphological studies, map studies 

of dune evolution and data on wind patterns. Bristow and Hill (1998) attempted to reconstruct 

changes in dune morphodynamics and ancient wind conditions from preserved sets of cross-

stratification in the Miocene Shuwaithat Formation, by using a reconstruction of localized wind 

patterns in relation to position on dune bedform slopes. This detailed reconstruction differs in scale to 

the more commonly attempted reconstructions of regional palaeowinds. 

To date, relatively few pre-Quaternary coastal dune deposits (particularly in siliciclastic 

environments) have been described in the literature. Many ancient coastal dune deposits may have 

been overlooked and more studies of the internal structures of such modern dunes are needed to create 

a database of varied examples of sufficient size that will enable facies models for coastal aeolian dune 

systems to be ‘distilled’, and from which criteria for the recognition of characteristic stratigraphic 

architectures indicative of different coastal-dune types can be established and applied to the 

stratigraphic record. 

Recognition of the deposits of different aeolian bedform types in the preserved record 

One fundamental problem that remains in relation to the interpretation of original dune-type from the 

stratigraphic architecture preserved in the rock record is that the majority of reconstructions envisage 

transverse (and related barchanoid) dune types, whereas successions representing linear and star (and 

other) bedform types remain apparently under-recognized, despite such bedforms forming the 
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majority of bedforms in modern dunefields. Given that there is no reason to suspect that linear and 

star bedforms were less abundant in the geological past, this suggests that current models and methods 

for the recognition and reconstruction of primary bedform type from preserved sedimentary 

architectures are not sufficiently refined to reliably distinguish bedform type. The reasons for these 

limitations in current facies models probably involve one or more of the complex factors considered 

below. 

Linear bedforms, which make up ca 50% of the dunes in the world’s modern dune fields, principally 

transport sediment in an orientation close to parallel to the trend of their crestlines, but Bristow et al. 

(2000a, 2007) used GPR techniques to convincingly demonstrate that a minor component of 

transverse motion in such bedforms favours the preferential preservation of cross-strata that dip in the 

direction of that transverse component of migration. Thus, such linear forms tend to produce cross 

strata that dip toward an azimuth that is at a high orientation to the migration direction of the primary 

bedform. The accumulation of sets of such cross-strata is therefore very difficult to distinguish from 

the deposits of transverse bedforms. This has significant implications for the reconstruction of 

palaeowind directions based on analysis of dip-azimuth data determined from preserved foresets, 

which, for linear bedforms, could be in orientations oblique to the dominant wind direction (see 

Scherer, 2000). Although recognition of linear draas is not an easy task, sedimentological and 

architectural features have been proposed as useful tools for their recognition in the sedimentary 

record (see Scherer, 2000 and Rodríguez-López, et al. 2008). 

Many linear and star bedforms in present-day dunefields are isolated from neighbouring bedforms by 

extensive interdune flats and this suggests that such dunefields are not necessarily currently 

undergoing active accumulation, even in cases where the bedforms might be undergoing active 

construction (see Kocurek, 1999). Indeed, many large-scale examples of such bedforms are currently 

partially or fully stabilized by vegetation, by surface crusts or because the present-day wind regime is 

not capable of inducing the migration of such large forms (Bristow & Mountney, 2013). As such, 

linear and star forms (and their deposits) might have a reduced accumulation and, by implication, 
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preservation potential such that successions representing the preserved deposits of such bedforms are 

indeed rare in the ancient stratigraphic record. 

Draa architecture and apparent scarcity in the sedimentary record 

Numerous facies models have been proposed with which to predict the likely arrangement of complex 

cosets of cross-strata arising from the accumulation of compound or complex draas representative of 

landforms comprising two or more scales of bedform that occur superimposed upon one another and 

which might undergo migration in different directions and styles, and at different rates (e.g. 

Brookfield, 1977; Rubin and Hunter, 1985; Rubin, 1987). Large draas are ubiquitous in the central 

parts of most of the world’s major desert dune fields where interdunes have been reduced to isolated 

depressions and neighbouring bedforms can be shown to be migrating over one another to leave an 

accumulation. From a conceptual standpoint, the preservation potential of such draa deposits ought to 

be relatively good where such bedforms accumulate in gradually subsiding basins or under the 

influence of a sustained episode of water-table rise. However, documented examples of draa deposits 

preserved in the ancient geological record are relatively scarce (e.g. Herries, 1993; Clemmensen, 

1989; Chrintz & Clemmensen, 1993; Mountney, 2006a; Veiga & Spalletti, 2007; Langford et al, 

2008; Rodríguez-López et al., 2008; 2012a). Obvious research questions that remain to be addressed 

in relation to this issue are as follows: (i) are the preserved deposits of large draas actually relatively 

common in the ancient aeolian record but remain under-recognised because detailed studies focussed 

specifically on their reconstruction have not yet been undertaken, either because outcropping 

examples have not been recognised or because the style of outcrop is not appropriate for their 

convincing 3D reconstruction; and (ii) is the preservation potential of large draas low such that well-

preserved examples are actually rather rare in the ancient aeolian record? In relation to this second 

point, how might large draa bedforms become preserved? In situations where such bedforms migrate 

over one another, angles of climb would probably be very low and, as such, only the very lowermost 

flanks of these large bedforms would accumulate. Such deposits would tend to be dominated by sets 

of low-angle inclined cross-strata dominated by wind-ripple deposits that represent only the lower 

plinths of large bedforms. Reconstruction of the original bedform morphology from this fragmentary 
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record would be problematic. The potential for the preservation of such large bedforms essentially 

intact is low and would probably require exceptional circumstances, such as inundation by flood 

basalts (e.g. Mountney et al., 1999a,b; Jerram et al., 1999a, b) or important transgressive events 

(Strömbäck et al., 2005; Rodríguez-López et al., 2012a). 

 

Mechanisms of accumulation and preservation: alternatives to bedform climbing 

Many past and current facies models that attempt to account for the preserved sedimentary 

architecture of aeolian successions invoke bedform climbing as a mechanism to explain the 

accumulation of thick preserved successions of aeolian dune and interdune strata. In its most basic 

form, the bedform-climb model envisages a train of contemporaneously active bedforms separated by 

interdunes that undertake gradual and progressive accumulation as they migrate over time, thereby 

accumulating a series of stacked sets of cross-bedded dune and interdune strata. Crucially, 

accumulation via such a mechanism requires a sustained episode of accumulation that is concurrent 

with ongoing bedform migration. Although bedform climbing can be convincingly shown to have 

been responsible for some preserved successions (e.g. Mountney & Thompson, 2002), others are more 

likely to have accumulated in response to punctuated accumulation whereby the preserved record 

represents numerous sequences, each bounded by supersurfaces that represent potentially protracted 

episodes of non-deposition (bypass) or erosion (deflation) (e.g. Loope, 1985). Although accumulation 

via bedform climbing and accumulation to form individual sequences separated by supersurfaces have 

traditionally been considered competing end-member models (e.g. Kocurek, 1991), several studies 

now convincingly demonstrate that both mechanisms for accumulation can occur and that transitions 

between accumulation via bedform climb and via sequence and supersurface generation can occur 

both spatially and temporally for some preserved aeolian successions (e.g. Mountney, 2012). Indeed, 

other mechanisms for the accumulation of aeolian successions are also possible (and arguably likely): 

the model of Paola and Borgman (1991) for the generation of sets of cross-strata in response to the 

migration of bedforms of pseudo-random height and scour depth and in the absence of net deposition 
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(i.e. a zero angle of net climb) describes one such mechanism, although the long-term preservation 

potential of sets generated by such a mechanism remains uncertain because the passage of later 

bedforms would render the deposits prone to reworking in the absence of a component of 

accommodation generation. 

Some obvious research questions that remain to be answered include: (i) what proportion of the 

known aeolian preserved record arose via sustained episodes of bedform climb versus episodic 

sequence and supersurface generation, respectively; (ii) what specific set of controlling conditions 

allow for sustained bedform climb versus what set of conditions allow for episodic sequence 

accumulation and preservation; and (iii) can sophisticated 4D models be developed with which to 

account for complex patterns of spatial and temporal transition between different mechanisms of 

accumulation and preservation and, if so, will such models be dependent on the development of high-

resolution dating techniques, meaning that they will likely be best suited to the analysis of Quaternary 

aeolian successions? 

Encapsulation of time in the aeolian stratigraphic record 

It has long been recognised that the preserved sedimentary record is highly fragmentary (e.g. Barrel, 

1917) such that the majority of geological time is encapsulated within unconformities and this notion 

is summarized succinctly by Ager (1993) in the often-recounted statement that: “the stratigraphical 

record is of one long gap with only very occasional sedimentation”. Indeed, the aeolian record is 

likely to be especially fragmentary because both accumulation of aeolian deposits and also their long-

term preservation demand a rather specific set of circumstances to conspire fortuitously (Kocurek, 

1999) such that accumulation can take place at a time when accommodation space is being generated 

to enable preservation. Indeed, wind-blown sands deposited on thick continental crust are especially 

likely to be riddled with unconformities (e.g. Loope, 1985). 

Several significant research questions remain to be addressed regarding the duration required to 

construct, accumulate and ultimately preserve aeolian system deposits. Specifically, how much time is 

represented by thick accumulations of aeolian strata as a fraction of the total time episode over which 
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the succession accumulated? How much time is encapsulated within the unconformities (i.e. 

supersurfaces) present in successions of multiple stacked aeolian erg sequences and what are the 

fundamental allogenic controls that act at the basin scale to govern the timing of episodes erg 

construction and accumulation versus episodes of supersurface generation (see Rodríguez-López et 

al., 2013)? Are episodes of aeolian construction and accumulation and episoides of supersurface 

formation gradual or abrupt, or does the time required for their development vary according to the 

underlying nature of the climatic and tectonic controls? The role of local synsedimentary tectonics 

(basin setting) and the differences between ergs accumulated in different tectonic settings (for 

example, foreland-basins verus rift basins) remains a largely open research question. How do rates of 

accommodation generation (via basin subsidence), uplift and denudation vary between desert basins 

and how might such rates be reconstructed from the preserved aeolian record? Given that the 

preserved stratigraphical record is generally accepted to be highly fragmentary (e.g. Loope, 1985), are 

specific episodes during which accumulation and preservation occurred necessarily representative of 

conditions that prevailed throughout the entire episode over which aeolian systems were active more 

generally but for which no record was preserved? Alternatively (and arguably, more likely) is the 

preserved aeolian satratigraphic record inherently biased such that certain types of aeolian dunefields 

have a greater chance of preservation because the climatic and tectonic settings in which they are 

constructed and accumulated favour preservation? What specific sets of circumstances are required to 

enable accumulation and preservation? Over what duration can an aeolian sequence accumulate given 

favourable conditions?  

Attempts to address these research issues face a fundamental problem: the availability of appropriate 

dating techniques with which to establish the time periods over which accumulation and preservation 

occurred. Attempts to date aeolian sequences are best suited to studies of Quaternary successions for 

which techniques such as high-resolution OSL and radiocarbon dating can be applied; yet establishing 

the presence, lateral extent and significance of major supersurfaces of regional extent is best suited to 

ancient outcropping successions for which key stratal surfaces can be traced over distances of many 
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hundreds to thousands of square kilometres (e.g. Havholm et al, 1993; Havholm and Kocurek, 1994; 

Blakey et al. 1996). 

An additional problem is that supersurfaces may not necessarily form isochonously across an entire 

basin; rather, their development may proceed in a progressive manner across the basin as the 

conditions responsible for their development gradually change over time and space (cf. Porter, 1986). 

Such a complex evolutionary history could mean that a single supersurface may potentially be time 

transgressive and may exhibit different characterisitcs across its area in response to spatial variation in 

the allocyclic controls responsible for its development at a basin scale (Rodríguez-López et al., 2013). 

 

The role of the water table in enabling accumulation and preservation 

Although many aeolian systems and preserved successions are considered to represent dry aeolian 

systems, a significant number of other examples reveal evidence to suggest that the water table (or its 

near-surface capillary fringe) played a significant role in assisting accumulation and enabling long-

term preservation (Mountney, 2012; cf. Kocurek & Havholm, 1993). Although several well-known 

aeolian successions, including parts of the Permian Cedar Mesa Sandstone (Mountney & Jagger, 

2004) and Jurassic Entrada Sandstone (Crabaugh & Kocurek, 1993), can be shown to have 

accumulated via bedform migration and climb that was coincident with a gradual and progressive rise 

in the relative water table, it is also clear that these succession are also divided into a series of separate 

sequences bounded by supersurfaces. Several questions remain unresolved in relation to the role of 

the water table in enabling aeolian accumulation and preservation; for example, over what period can 

a relative rise in water-table level be sustained to enable wet system accumulation and how thick 

might the resulting preserved wet aeolian sequences be? 

Can alternatives to the ‘climbing wet system’ model be developed to account for the origin of 

individual aeolian dune sets preserved between sets of interdune strata indicative of a wet or damp 

substrate? Might such single aeolian dune sets record the sporadic accumulation and preservation of 

thin aeolian sequences during episodes when controlling conditions conspired to fortuitously enable 
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preservation? If so, might the intervening ‘interdune’ accumulations actually record protracted 

episodes during which accumulation of damp sand flats occurred at very slow rates (cf. Kocurek, 

1981b; Crabaugh and Kocurek, 1993)? 

Why are climbing wet aeolian systems only relatively rarely recognised in modern settings (e.g. 

Mountney & Russell, 2009), yet are increasingly interpreted from ancient successions? Might this 

reflect a bias that is inherent in the preserved stratigraphical record, whereby wet aeolian systems 

have an increased preservation potential because they progressively subside beneath a relative water 

table as they accumulate and this protects these deposits from later deflation (cf. Stokes, 1968; Loope, 

1985; Kocurek and Havholm, 1993)? 

The role of groundwater level in preserving aeolian sand accumulations in coastal settings has been 

emphasized by many authors (e.g. Kocurek et al., 2001; Clemmensen et al., 2001b; Mountney & 

Russell, 2009), but few studies have discussed in detail what actually controls the groundwater level 

in coastal systems (e.g. Bristow et al., 2000b). Sea-level is frequently cited as a dominant control on 

groundwater level (Havholm and Kocurek 1994; Kocurek et al., 2001), but in many coastal dune 

systems in northern Denmark, for example, groundwater level is up to 15 m above sea-level (e.g. 

Clemmensen et al., 2001a). Clearly factors other than sea-level are controlling the groundwater level 

in these coastal systems. 

 

The problem of dating aeolian sediments and rocks 

Age control for episodes of dune construction, stability, and reworking, as well as rates of dune 

accumulation for many Middle and Late Pleistocene and Holocene aeolian systems is being provided 

by luminescence dating techniques (e.g. Murray & Clemmensen, 2001; Lancaster, 2008; Singhvi & 

Porat, 2008; Fornós et al., 2009; Andreucci et al., 2010b; Reimann et al., 2011; Thomas, 2013). In 

most studies, luminescence dating is based on quartz grains having typical grain sizes between 0.18 

mm and 0.25 mm. A luminescence age is derived by dividing the dose absorbed from ionising 
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radiation during burial by the dose rate; the latter originates from the natural radioactivity (U, Th, 40K 

and decay products) in the sediments and, to some degree, with cosmic radiation. 

Supplementary age control can be obtained using K-rich feldspar grains (Buylaert et al., 2012), and 

although quartz optically stimulated luminescence usually is limited to the last ca 100.000 years, 

accurate ages up to 600.000 years can be obtained using feldspar infrared stimulated luminescence 

(Buylaert et al., 2012). Additional age control is provided by radiocarbon dating of organic-rich soils, 

which are common components of many Holocene coastal aeolian successions (e.g. Clemmensen et 

al., 2001a; 2009; Arbogast et al., 2002) but are rare in low and mid-latitude desert dune systems. 

Holocene aeolian sand systems may contain artefacts, and archaeological studies of these items can 

add to the chronological understanding of the evolution of the system (e.g. Kocurek et al., 1991; 

Liversage & Robinson, 1993; Roberts, 2008). Some Quaternary aeolian deposits interbedded with 

shell-bearing beach or shallow marine deposits have been dated by means of U-series analysis or by 

use of aminostratigraphy (e.g. Hearty et al., 1986; Hillaire-Marcel et al., 1996), and a few Quaternary 

aeolian systems have been dated by magnetostratigraphy and susceptibility stratigraphic analysis (e.g. 

Nielsen et al., 2004). 

Pre-Quaternary aeolian successions are hard to date precisely due to the lack of material that can be 

dated numerically. Aeolian successions that are associated with lava flows, however, can be placed in 

a chronological framework (for example, the Cretaceous Etjo Formation of Namibia; Mountney & 

Howell, 2000). Most siliciclastic aeolian deposits contain no fossils that can be used to place them in a 

precise biostratigraphical framework. However, some rare exceptions include the Tertiary Tsondab 

Sandstone of Namibia (Pickford & Senut, 1999). In contrast, carbonate aeolianites contain abundant 

microfossils that potentially could be useful in biostratigraphical analysis (see Babić, et al., 2013). 

However, the application of such dating techniques should be undertaken with care to eliminate the 

risk of possible error associated with aeolian reworking of older bioclasts which could be incorporated 

in more recent dune systems (see Teller et al., 2000). 
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Aeolian systems interbedded with fossiliferous marine strata can be placed in a biostratigraphical 

framework and commonly also interpreted in a sequence or climate stratigraphical context (for 

example, the Late Carboniferous Hermosa Formation, Utah, USA, Atchley and Loope, 1993; the 

Pennsylvanian to Permian lower Cutler beds, Utah, USA, Jordan and Mountney, 2010, 2012). 

Additional methods that have been used in chronological studies of pre-Quaternary aeolian 

successions include combined palaeomagnetic and cyclostratigraphical analysis (for example, aeolian 

sandstones associated with lacustrine sediments in the Triassic of eastern USA and East Greenland; 

Kent & Tauxe, 2005). 

Quantitative modelling of aeolian systems 

Quantitative forward stratigraphic modelling provides a tool with which to demonstrate the link 

between: (i) aeolian bedform morphology; (ii) the processes operating on and between such bedforms; 

(iii) the style of migratory bedform behaviour; and (iv) the sedimentary architecture of preserved 

aeolian successions, which is characterized by packages of lithofacies arranged into architectural 

elements with predictable geometries that are delineated by bounding surfaces of various types. 

Building on the innovative geometrical modelling approach of Rubin (1987), there is a clear need to 

develop an effective approach to the modelling and characterization of the distribution of aeolian 

lithofacies within larger-scale architectural elements and establishment of a method to unequivocally 

demonstrate the primary processes responsible for the generation of such lithofacies distributions. 

Forward stratigraphic models for aeolian systems that account for both spatial and temporal variations 

in original bedform morphology, scale and style of migratory behaviour are needed. Such dynamic 

models (cf. Mountney, 2006b, 2012) will be useful to predict the 4D evolution of aeolian systems and 

the 3D distribution of resultant aeolian architectural elements, which will vary both spatially and 

vertically (as a function of temporal system evolution). 

Another outstanding research issue is the establishment of a modelling technique with which to 

demonstrate the relation between the development of bounding surfaces due to autogenic processes, 

such as bedform migration and climb, and those that might be influenced by allogenic controls. For 
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example, bedform climbing to generate an accumulation (which is generally considered to be an 

autogenic process) requires a sustained supply of sediment that is available for transport, and a wind 

that is capable of carrying that sediment to the site of accumulation (Kocurek & Lancaster, 1999); 

each of these controls will probably be influenced by allogenic factors, such as climate change, 

tectonism or relative sea-level change (in the case of near-coast aeolian systems). It is now evident 

that many processes once considered to be either allogenic or autogenic in origin are, in fact, more 

complex and reflect combined extrinsic and intrinsic controls (see Veiga et al., 2005; Mountney, 

2012; Rodríguez-López et al., 2012a). 

Forward stratigraphic modelling should aim to provide a quantitative approach to the 4D sequence 

stratigraphic modelling of aeolian successions, whereby the generation of aeolian sequences and their 

bounding supersurfaces (for example, deflation surfaces) can be accounted for in terms of formative 

processes. Coupled with advances in the application of dating techniques to Quaternary aeolian 

successions, such modelling approaches could be used to demonstrate the longevity (or otherwise) of 

episodes of aeolian dune-field construction and accumulation versus episodes of destruction and 

supersurface development (cf. Loope, 1985; Kocurek & Havholm, 1993; Mountney, 2006a; Jordan & 

Mountney, 2012; Rodríguez-López et al., 2012a, 2013). 

Crucially, any adopted modelling approach must be undertaken in combination with detailed studies 

of outcropping successions, whereby meticulous recording of key stratal surfaces (such as 

supersurfaces of regional extent) using recently available digital technologies such as laser scanning 

(LiDAR) and photogrammetry will provide the hard data with which to constrain and justify modelled 

synthetic stratigraphies. One particularly important application of this combined and integrated 

outcrop analysis and conceptual modelling technique will be to test scenarios for which accumulation 

and preservation might take place in response to bedform climb, versus scenarios for which episodic 

and punctuated accumulation of aeolian sequences bounded by supersurfaces might occur. 

Potential applications of new approaches to forward stratigraphic modelling of aeolian systems and 

their preserved successions have been applied to better understand aeolian hydrocarbon reservoirs 
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such as the Permian Rotliegend Group of North Sea (Howell & Mountney, 1997), the Permian 

Unayzah Formation of Saudi Arabia (Melvin et al., 2010a) and the Jurassic Norphlet Sandstone of the 

Gulf of Mexico (Story, 1998; Ajdukiewicz et al., 2010). Future aeolian modelling applications 

include: (i) the development of more realistic object-based reservoir models for the improved 

characterization of net and non-net aeolian reservoir intervals; (ii) the prediction of the likely 

distribution and lateral extent of low permeability barrier and baffles to flow, for example due to the 

presence of mudstone units in interdune elements; (iii) the prediction of fluid-flow pathways 

(Lindquist, 1988; Garden et al., 2005); and (iv) a technique for reconstructing 3D aeolian architecture 

from attributes present in 1D core samples (e.g. Romain & Mountney, 2014). Similar approaches 

could also be used for the characterization of water aquifers (e.g. Bloomfield et al., 2006) and for 

assessment of aeolian successions as potential sites for the underground sequestration of CO2 

(Chiaramonte et al., 2008). 

How can studies of Quaternary dunefields and sand seas inform understanding of ancient 

preserved aeolian successions in the rock record? 

Preceding sections have highlighted the issues and challenges involved in understanding the preserved 

record of aeolian strata. In many cases, the record of Quaternary aeolian accumulation can provide 

data to inform these questions. 

Relating preserved strata to original bedform morphology requires better documentation of the 

sedimentary structures and architecture of modern dunes of all types. Such documentation will also 

aid the recognition of different dune types in the sedimentary record and will address the question 

posed by Rubin & Hunter (1985): why are deposits of longitudinal (linear) dunes rarely recognized in 

the sedimentary record? Ground penetrating radar (GPR) can provide such data in an efficient 

manner, but attempts at 3D reconstructions of the sedimentary architecture of modern dunes are rare 

(see Bristow et al., 2007, for an example). There exists a clear need for a comprehensive program of 

3D GPR imaging of a representative selection of modern dunes to provide a ‘library’ of architectural 

styles for comparison with the rock record. Such studies will need to be guided by selection of 
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appropriate spatial scales for acquisition of GPR data and make use of innovative software 

applications for visualization of these complex datasets. 

The nature of the intervals of time represented by episodes of accumulation separated by bounding 

surfaces of different orders can now be addressed, at least for Quaternary successions, by high 

resolution OSL dating of dunes and their accumulations and radiocarbon dating of associated organic-

rich soils, coupled with stratigraphic information from exposures or GPR (e.g. Clemmensen et al., 

2001ab; Pedersen & Clemmensen, 2005). A promising development is the modelling of dune 

accumulation using a probabilistic approach (Telfer et al., 2010; Bailey & Thomas, 2013). The 

discontinuous nature of many dune accumulations is becoming very clear. Optically stimulated 

luminescence dating studies in several areas suggest that intervals of rapid accumulation of sand 

separated by long hiatuses is a common feature of dune accumulation (e.g. Atkinson et al., 2011; Bray 

and Stokes, 2003; Bristow et al., 2007; Telfer, 2011). However, Leighton et al. (2013) have 

conducted a detailed sampling of aeolian sedimentary units in large linear dunes in the UAE, and 

conclude that stratigraphy alone is not sufficient at the studied sites to guide OSL sampling. For 

example, significant unconformities that represent a hiatus in dune accumulation are not 

distinguishable in the field from bounding surfaces representing more rapid changes in dune 

dynamics, whereas unconformities separating stratigraphic units of similar sedimentary properties do 

not always conform to the duration of associated hiatuses determined from OSL ages of the units. 

On a broader spatial and temporal scale, a synthesis of multiple data sets to determine the boundary 

conditions of tectonics, topography and climate in which Quaternary aeolian sand systems have 

developed would provide a valuable baseline against which to evaluate ancient sand seas and 

dunefields. Such an approach requires a data intensive investigation that transcends the efforts made 

by Breed et al. (1979) and will require collection of data that describe aspects of spatially changing 

dune and interdune morphology and migratory behaviour across dunefields and their marginal areas 

(e.g. Al-Masrahy & Mountney, 2013). Coastal dunefields should be treated separately and dunefield 

evolution in particular related to coastal setting, sea-level and climate change. Similar approaches, 

most notably in relation to Distributive Fluvial Systems (DFS), have transformed our ability to 
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understand these systems and have significantly altered perspectives on how and where these systems 

form and are preserved in the rock record (Hartley et al., 2010; Weissmann et al., 2010), leading to a 

new interest in the sedimentology of these features and their relations to groundwater and 

hydrocarbon reservoirs. The work of Livingstone et al. (2010) in Namibia is a promising start to this 

type of study. 

What will be the ultimate preserved record of the great Last Glacial Maximum sand seas? 

The period during the last Glacial Maximum (19 to 26 ka) and immediately following it (11.5 to 19 

ka) is characterized by widespread evidence of inland dune and draa construction. Preservation of the 

deposits of these landforms and their eventual incorporation into the rock record is, however, much 

less certain and requires that preservation space (sensu Kocurek, 1998) exists as a result of subsidence 

and burial, sea-level rise and/or a relative or absolute rise in the water table. There are few 

documented examples of any of these situations. Subsidence alone is usually insufficient to preserve 

aeolian deposits unless accompanied by a rise in water table that limits bedform migration and 

erosion. Such conditions may have existed locally during early Holocene wet phases in the Sahara and 

Arabia, but subsequent aridification has resulted in falling water tables and reworking of 

accumulations, as in the Liwa area of the UAE where Marine Isotope Stage 5 (MIS-5) and Holocene 

aeolian deposits dominate (Stokes & Bray, 2005). Similarly, during the early Holocene, dunes in the 

southern and western Sahara and parts of Arabia were stabilized by soil formation (Talbot, 1985) and 

this stabilized surface has survived in many places to the present day. 

A promising environment for preservation of Last Glacial Maximum dune deposits may occur where 

dunes from inland migrated or extended on to the continental shelf during glacial periods of low sea-

level and were subsequently preserved by shallow marine and/or coastal sabkha deposits during the 

early Holocene sea-level rise. Such scenarios exist in Mauritania (Hanebuth et al., 2013; Lancaster et 

al., 2002), in the Arabian Gulf (Al-Hinai et al., 1987; Shinn, 1973), where crescentic dunes have built 

a clastic wedge offshore of Qatar, overlain by coastal sabkha deposits, and in north-western Australia, 

where linear dunes are preserved by estuarine muds deposited during the Holocene transgression 

(Jennings, 1975). Hanebuth et al. (2013) present a detailed analysis of the architecture of aeolian and 
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shallow marine deposits off northern Mauritania, which indicates preservation of deposits of an inland 

dune complex of MIS-4 age, but not of the MIS-2 (LGM) dunes, despite the intensity of this aeolian 

constructional phase. These authors hypothesize that LGM dune deposits are not preserved because 

they were not cemented prior to the sea-level rise. Alternatively, the position of major dune 

complexes may have shifted to the south between MIS-4 and MIS-2. In either case, the present study 

demonstrates the likely sporadic nature of preservation of inland dune deposits in the Quaternary 

sedimentary record. 

During the Last Glacial Period global sea-level was low and during the Last Glacial Maximum sea-

level had dropped to a level ca 120 m below that of the present day. Luminescence dating indicates 

that these conditions of low sea-level frequently led to inland wind transport of bioclastic sand from 

exposed shelf areas (e.g. Zhou et al., 1994; Preusser et al., 2002; Radies et al., 2004; Fornós et al., 

2009; Andreucci et al., 2010a). Sand – commonly in the form of transgressive dunes – migrated far 

inland building large (coastal) dunefields such as the Wahiba Sands, Sultanate of Oman (Radies et al., 

2004), or more isolated aeolian accumulations such as cliff-front dune or ramp deposits on Mallorca 

and Sadinia, Western Mediterranean (e.g. Clemmensen et al., 1997, Fornòs et al., 2009; Andreucci et 

al., 2010). Preservation of dune sand in the Wahiba Sands took place during a subsequent episode of 

increased wetness and elevated groundwater table (Radies at al., 2004), whereas preservation of the 

cliff-front aeolian accumulations in the Western Mediterranean was linked to early cementation 

(Fornòs et al., 2009). 

 

CONCLUSIONS 

Wind has been an agent responsible for eroding, transporting and depositing sediments on Earth since 

at least 3.2 Ga. The study of the sedimentary record of aeolian deposits has allowed resolution of 

some fundamental questions regarding sedimentology and stratigraphic architecture. However, 

important questions regarding the complexity of the relative role of different allocyclic controls, 

preservation mechanisms and facies variability remain to be resolved. Multidisciplinary approaches 

are required to address a series of research problems of fundamental importance: has the terrestrial 

atmosphere had the same properties throughout Earth history? Facies models of aeolian systems are 
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currently too simplistic and do not account for the complexity inherent in facies patterns. The 

sedimentary record is likely to be fundamentally biased because preserved aeolian deposits represent 

only a fraction of the dunefields that have persisted throughout Earth history. Furthermore, common 

mechanisms for aeolian accumulation tend to preserve only the lowermost parts of dune aprons, such 

that attempts to reconstruct aeolian palaeoenvironments are based on data that reflects only a small 

part of an original dunefield system. The development of detailed facies and sequence stratigraphic 

models will require high-resolution dating techniques, meaning that they will probably be best 

devised via the analysis of Quaternary aeolian successions. At the basin scale, the significance of syn-

sedimentary tectonics has probably been understudied with respect to other allocyclic controls (for 

example, climate) known to influence erg architecture and supersurface generation. This study serves 

to outline the current limitation in current understanding of aeolian systems and their preserved 

successions: it is hoped that this discussion will stimulate thought and renewed activity in addressing 

shortcomings in existing knowledge. 
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FIGURE CAPTIONS 

 

Figure . 1. Schematic diagram showing the three-phase creation of the aeolian rock record and main 

controlling factors as proposed by Kocurek (1999). 

 

Figure 2. Characteristics of dry, wet and stabilizing aeolian systems illustrating the role of 

aerodynamic configuration, water table level and stabilizing agent as controls on accumulation space. 

After Kocurek (1998). 

 

Figure 3. Spectrum of preserved dune and interdune architectures resulting from temporally and 

spatially invariable (i.e. static) aeolian system behaviour. The angle of bedform climb defines fields of 

accumulation and deflation, with bypass occurring when the angle climb is zero. Within the field of 

accumulation, preserved sedimentary architecture is partly determined by the proportion of the 

accumulation surface covered by dunes. Accumulating dry aeolian systems typically require 100% 

dune cover whereby dunes have been constructed to a size where interdunes are reduced to isolated 

depressions between bedforms. Accumulating wet or stabilizing systems have less than 100% dune 

cover. The angle of climb is determined by the ratio of the vertical accumulation rate and bedform 

migration rate. The stratal configurations are scale-independent and can potentially occur in systems 

of any size; after Mountney (2012). Bedform spacing is the crest to crest (or toe to toe) distance 

between adjacent bedforms in an orientation perpendicular to the trend of elongate bedform crestlines; 

dune wavelength records the extent of a bedform in an orientation perpendicular to the trend of the 

bedform crestline and this may vary from a maximum dune wavelength to a minimum dune 

wavelength within one dune segment as a function of bedform sinuosity (Al-Masrahy & Mountney, 

2013). Bedform spacing and dune wavelength will be the same for straight-crested dunes that lack 

intervening interdune flats. 

 

Figure 4. Spectrum of interdune geometries generated by variations in the frequency and magnitude of 

water table change, the rate of dune migration and the net aeolian sediment budget. (A) Entrada 
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Sandstone, Kocurek (1981a). (B) Navajo Sandstone (Herries, 1993). (C) and (D) Helsby Sandstone 

Formation (Mountney & Thompson, 2002). (E) Cedar Mesa Sandstone (Langford & Chan, 1988, 

1989; Mountney & Jagger, 2004). (F) White Sands (Simpson & Loope, 1985; Loope & Simpson, 

1992). Modified after Mountney & Thompson (2002). 

 

Figure 5. Palaeogeographic distribution of siliciclastic aeolian sand systems during: (A) late 

Cambrian; (B) middle Ordovician; (C) middle Silurian; and (D) early Devonian. Palaeogeographic 

maps from Scotese (2001) PAEOMAP Project. 

 

Figure 6. Palaeogeographic distribution of siliciclastic aeolian sand systems during: (A) early 

Carboniferous; (B) late Carboniferous; and (C) late Permian. Palaeogeographic maps from Scotese 

(2001) PAEOMAP Project. 

 

Figure 7. Palaeogeographic distribution of siliciclastic aeolian sand systems during: (A) early Triassic; 

(B) early Jurassic; (C) late Jurassic; and (D) late Cretaceous. Palaeogeographic maps from Scotese 

(2001) PAEOMAP Project. For each map, the aeolian successions shown are not all necessarily of the 

same age and therefore were not necessarily all active at the same time. Furthermore, the global 

palaeogeographies depicted in each map might not necessarily be entirely accurate for aeolian 

successions that are slightly older or younger than the age shown in the maps. For example, the early 

Cretaceous Botucatu Sandstone of the Paraná Basin of Brazil and the Etjo Sandstone of north-western 

Namibia are considered to represent preserved portions of the same erg system that developed prior to 

the onset of opening of the South Atlantic, yet the palaeogeography map shown depicts an interval in 

the Late Cretaceous, shortly after the onset of the opening of the south Atlantic. 

 

Figure 8. Palaeogeographic distribution of siliciclastic aeolian sand systems during: (A) Eocene; (B) 

Miocene; and (C) last glacial maximum (18 ka). Palaeogeographic maps from Scotese (2001) 

PAEOMAP Project. 
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Figure 9. Location of major low-latitude and mid-latitude inland sand seas and dunefields, as well as 

coastal carbonate aeolianite deposits. After Sun & Muhs (2007). 

 

Figure 10. Tectonic setting of major inland sand seas and dune fields Tectonic data from Fugro Tellus 

Sedimentary Basins of the World Map 

http://www.datapages.com/AssociatedWebsites/GISOpenFiles/FugroTellusSedimentaryBasinsoftheW

orldMap.aspx. See also Table S5. 

 

Figure 11. Example of a wet aeolian system: White Sands, New Mexico, USA: (A) cross-section of 

dunefield showing relations between aeolian and lacustrine sediments (after Kocurek et al., 2007); (B) 

crescentic ridges migrating across surface of older crescentic dune deposits shown by exposed cross-

bedding; (C) trench in interdune area showing cross-bedded dune structures. 

 

Figure 12. Example of a dry aeolian system: Namib Sand Sea, Namibia. Cross-section of central sand 

sea at 24.2°S; elevation data from ASTER GDEM; extent of Tsondab Sandstone Formation after 

Ward (1988). Landsat image of area for comparison. 

 

Figure 13. Example of a stabilizing aeolian system: Strzelecki Desert, Australia. Along-dune profile 

showing multiple episodes of dune accumulation spanning the past 120 ka. From Cohen et al. (2010). 

‘II’ to ‘VII’ – Marine isotope stages. 

 

Figure 14. Ground-penetrating radar mapping of sedimentary architecture; coastal dunefield at 

Lodbjerg, Denmark (Clemmensen et al., 2001a). The surface of the modern dunefield is situated ca 15 

m above sea-level, and the dunefield is truncated by a coastal cliff toward the North Sea. Partly active 

cliff-top dunes are developed along the cliff. 
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Figure 15. Coastal cliff section at Lodbjerg, Denmark. A Wechselian till at the base of the section is 

overlain by 15 to 20 m of aeolian sand with peaty soils (dark horizons). Terminology of aeolian 

events after Clemmensen et al. (2009). 

 

Figure 16. Simplified aeolian stratigraphy, Lodbjerg coastal dunefield. Note that most previous events 

of aeolian sand movement and transgressive dune formation led to the accumulation of aeolian sand-

sheet deposits. Cross-bedded strata of inland migrating parabolic dunes are only preserved locally. 

The modern cliff-top dunes have eroded part of the underlying aeolian succession. Radiocarbon 

dating of the peaty soils and optically stimulated luminescence dating of the aeolian sand indicate that 

major periods of aeolian sand movement and transgressive dune formation were initiated at ca 2200 

BC, 700 to 800 BC and AD 1100 to 1200. The cliff-top dunes have formed since about AD 1900. 

Terminology of aeolian events after Clemmensen et al. (2009). 

 

Figure 17. Valley-head sand ramp accumulation, north-west Sardinia (Andreucci et al., 2010a). The 

sand ramp is composed of marine bioclastic-rich sand that was blown inland by dominant north-

westerly winds ca 75,000 years ago. Several episodes of ascending dune accumulation are revealed in 

the cliff section. 

 

COMPLEMENTARY MATERIAL. FIGURE CAPTIONS.  

Table S1. Compilation of main Archean, Palaeoproterozoic, Mesoproterozoic and Neoproterozoic 

aeolian sand systems. 

Table S2. Compilation of main Cambrian, Ordovician, Silurian, Devonian, Carboniferous and 

Permian aeolian sand systems. 

Table S3. Compilation of main Triassic, Jurassic and Cretaceous aeolian sand systems. 

Table S4. Compilation of main Palaeogene and Neogene aeolian sand systems. 

Table S5. Compilation of main Quaternary inland dunefiled (ergs). 

Table S6. Compilation of main Quaternary coastal dunefields. 

S7. References text and tables. 
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