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The purpose of this study is to incorporate heat transfer devices inside the passive terminal of a wind 

tower unit, highlighting the potential to achieve minimal restriction in the external air flow stream while 

ensuring maximum contact time, thus optimising the cooling duty of the device. Computational Fluid 

Dynamics (CFD) was used to develop a numerical model of a wind tower system and simulate the air flow 

pattern around and through the device to the test room. Results have indicated that the average internal 

airflow rate was reduced following the integration of the vertical and horizontal heat transfer device 

configuration, reductions of 4.11 % and 8.21 % was obtained respectively. Furthermore, the proposed 

cooling system was capable of reducing the air temperatures by up to 15 K. The technology presented 

here is subject to IP protection under the QNRF funding guidelines. 

1. Introduction 

In hot and arid regions such as the Middle East, there is a large dependence on electricity to run 

mechanical systems for providing ventilation and thermal comfort. During the summer months more than 

50 % of the electrical demand comes from HVAC loads (Lombard et al., 2008). As stated by (WBCSD, 

2011), commercial and residential buildings accounts for almost 40 % of the world energy usage. The 

resulting carbon emissions are substantially more than those in the transportation sector. This represents 

a significant opportunity for reducing the buildings energy consumption and greenhouse gas emissions. 

Natural ventilative methods such as wind towers are increasingly being employed in new buildings to 

reduce the energy consumption and carbon foot print. 

Wind towers have been in existence in various forms for centuries as a non-mechanical means of 

providing indoor ventilation, energy prices and climate change agendas have refocused engineers and 

researchers on the low carbon credentials of modern equivalents. Conventional and modern wind towers 

architecture can be integrated into the designs of new buildings, to provide thermal comfort without the use 

of electrical energy (Hughes et al., 2011). A wind tower system is divided by partitions to create different 

shafts. One of the shafts functions as inlet to supply the wind and the other shafts works as outlet to 

extract the warm and stale air out of the living space as shown in Figure 1 (Jones and Kirby, 2008). 

Experimental and numerical studies (Hughes and Cheuk-Ming, 2011) have shown that wind driven force is 

the primary driving force for the wind tower device, providing 76 % more indoor ventilation than buoyancy 

driven forces.  

The cooling capabilities of wind towers which depend mainly on the structure design itself are inadequate. 

A recent study by (Calautit et al., 2012) investigated the ventilation and thermal performance of a row 

house model integrated with a traditional and modern four-sided wind tower. Both systems were capable 

of supplying the required internal air supply rates however the reductions in internal temperature were 

insignificant (1-2 K). Therefore it is essential to cool the air in order to reduce the building heat load and 

improve the thermal comfort of its occupants during the summer months (Kalantar, 2009). Traditional wind 
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tower systems were integrated with evaporative cooling devices to increase its thermal performance. The 

induced warm air is passed through cooling tubes or moist surfaces, which allows for the cooling of the air 

stream before entering the living spaces (Bouchahm, 2011). However, the addition of these cooling 

devices may reduce the air flow rate inside the channel and reduce the overall efficiency of the wind tower. 

Another disadvantage of this configuration is the requirement of taller towers to have sufficient contact time 

between the air flow and cooling surfaces (Calautit et al., 2013). (Hughes et al., 2012) reviewed different 

types of wind tower designs and cooling methods which have been studied using numerical CFD analysis. 

Furthermore, several works have also used analytical methods (Jones and Kirby, 2009), wind tunnel 

(Montazeri et al., 2010) and far-field testing (Hughes and Ghani, 2009) to validate the results. The good 

correlation between different methods of analysis suggests that the CFD techniques in use were suitable 

for this type of device and such have been used for the purpose of this research. 

 

Figure 1: A flow diagram representing ventilation through a multi-direction wind tower 

A wind tower system incorporating heat transfer devices was designed to meet to lower the internal 

temperatures in hot and humid condtions. Heat transfer devices were installed inside the passive terminal 

of the wind tower unit, highlighting the potential to achieve minimal restriction in the external air flow 

stream while ensuring maximum contact time, thus optimsing the cooling duty of the device. A standard 

roof-mounted wind tower was used as a benchmark for the comparison of the two different heat transfer 

device orientations.  

     

Figure 2: Wind tower systems incorporating (a) vertical HTD arrangement (b) horizontal HTD arrangement 

2. CFD Setup 

A four-sided square wind tower with an internal diameter of 1 m and height of 1.5 m is used for the 

numerical analysis. The vertical HTD arrangement is identical to the standard wind tower model, the heat 

transfer devices are closely arranged in an x-shaped vertical pattern positioned next to the cross-dividers 

inside the passive terminal. A one-sided circular wind tower is used for the analysis of the horizontal heat 

pipe configuration, while retaining the physical parameter and standard components of the benchmark 

model. A total of 70 copper HTDs with an internal diameter and length of 0.015 m and 0.9 m were used in 

the simulation. Figure 2 displays the proposed configurations. 

The proposed wind tower system with the heat transfer devices is incorporated to a test room (micro 

climate) with the height, width, and length of 3, 6, and 6 m (Building Bulletin, 2012). An enclosure was 

created to represent the external wind environment (macro climate). The enclosure with a height, width, 
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and length of 8, 26, and 46 m creates a direct interface through the geometry. The enclosure (the flow 

domain) was set at a distance from the geometry to avoid reversed flow in the region (Mehta, 1991). A flow 

domain representation of the physical geometry of the wind tower design under investigation and location 

of set boundary conditions are shown in Figure 3. 

 

Figure 3: Schematic of a wind tower system mounted on the test room 

2.1 Grid Generation 

The quality of the mesh has important implication on the convergence and the level of accuracy of the 

achieved results (Chung, 2002). The size of the mesh element was extended smoothly to resolve the 

sections with high gradient mesh and to improve the accuracy of the results of the temperature fields. A 

non-uniform mesh was applied to the volumes of the computational model. The mesh arrangement 

consisted of 344,643 tetrahedral non-uniform mesh elements with 70,435 nodes, as shown in Figure 4. 

 

Figure 4: Flow domain representation of the physical geometry of the wind tower design under 

investigation and location of set boundary conditions 
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2.2 Boundary Conditions 
The basic assumptions for the CFD simulation include a three-dimensional, fully turbulent, and 

incompressible flow.  The CFD code uses the Finite Volume Method (FVM) approach and employs the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) velocity–pressure coupling algorithm with 

the second order upwind discretization as recommended in the literature (Saffari and Hosseinnia, 2009).  

The governing equations are the Navier-Stokes and energy equation which will not be repeated here but 

are available in detail in (Fluent, 2006). The turbulent nature of the flow was modelled by the standard k-

epsilon as suggested by (Elmualim, 2006). This technique is well established in the field of research on 

airflow and temperature distribution in structures (Park et al., 2001). The geometry (micro climate) was 

modelled as an open structure with openings on the windward and leeward side which allows the incoming 

air to pass through it, in order to simulate and analyse the air flow pattern inside the structure. The 

enclosure consists of a velocity inlet (operating velocity) at the left hand side of the enclosure, and a 

pressure outlet (atmospheric pressure) on the opposing boundary wall of the enclosure as shown in Figure 

4. The boundary conditions for the CFD model are shown in Table 1. 

Table 1: CFD Model Boundary Conditions  

Inlet velocity (m/s) 0.1 - 4 m/s 

Inlet temperature  310 K 

Pressure outlet Atmospheric 

Time Steady State 

Traditional evaporative cooling wind tower 

Injected water temperature (K) 293 

Injected water mass flow rate (kg/s) 0.05 

Heat transfer devices integrated wind tower 

HTD wall temperature (K) 293 

2.3 Grid Adaptation 
Grid adaptation was used to validate the programming and computational operation of the computational 

model. The numerical grid was refined and locally enriched using the hp-method grid adaptation technique 

(Hughes and Ghani, 2009). This procedure of evaluation requires the use of different mesh sizes or higher 

order approximations by the use of a posterior error estimates. The grid was evaluated and refined until 

the posterior estimate error becomes insignificant between the number of nodes and elements, 

computational iterations and the posterior error indicator. Figure 5 shows that at 1,400,000 elements the 

percentage error between the grid refinements was at its lowest in the last two steps.  

 

Figure 5: Comparison of solutions from various grid adaptation methods. The variables are the average 

velocity at the inlet and outlet of the wind towers and interior of the test room 

3. Results and Discussion 

Figure 6a display the velocity contour of the cross-sectional plane in the test room model. From the 

illustration it is observed that the air flow entering the opening of the uni-directional wind tower is directed 

down to the enclosed space through the floor diffuser. The airflow is accelerated as it shears across the 

walls and floor of the structure, reaching a maximum velocity of 3 m/s. The air stream is circulated inside 

the structure and exits the opening located on the other end. Figure 6b depicts the simulated temperature 
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distribution inside the test room with a uni-directional wind tower incorporating the evaporative cooling 

method. Temperature reduction of 12.6 K is obtained from the CFD analysis. 

 

Figure 6: Velocity contour lines of a cross sectional plane in the test room with (a) Temperature 

distributions within the test room with the evaporative cooling tower (b) 

Figure 7 shows the flow comparisons between the air supply rates as recommended by government 

regulations (Building Regulations, 2000)  for a room of 20 occupants based on air supply per occupant, 

and the air supply rates as calculated through the use of the CFD modelling of benchmark four-sided wind 

tower, vertical heat pipe configuration, and horizontal heat pipe configuration. Each of the wind tower 

systems did not meet this recommendation for an external wind velocity of 1m/s; however, for each of the 

following external wind velocities, each wind tower system surpasses the recommendation. 

 

 

Figure 7: Comparison of the air supply rates of the wind tower configurations at various external speeds 

Figure 8 shows the contour of static temperatures inside the test room with a wind tower incorporating the 

vertical and horizontal HTD arrangement. Air temperature reduction is observed inside the microclimate, 

average temperature of 296.2 K and 295.8 K are obtained inside the models, which is 11-12 % lower 

compared to the wind tower employing traditional evaporative cooling devices (Figure 6b). 

4. Conclusions 

A wind tower system involving heat transfer devices was designed to lower the internal temperatures. A 

numerical analysis was carried out using CFD software to simulate and analyse the air flow pattern, 

pressure coefficient and temperature distribution around and through the wind tower to the test room. The 

work highlighted the effect of evaporative cooling and heat transfer devices on the thermal performance of 

the passive ventilation device. The proposed cooling system was capable of reducing the air temperatures 

by up to 15 K, depending on the configuration and operating conditions. Results have indicated that the 

internal airflow rate was slightly reduced following the integration of the vertical and heat pipe 

configuration, reductions of 4.11 % and 8.21 % were obtained from the achieved computational model.  
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Figure 8: Temperature distributions inside the test room with a commercial wind tower incorporating the 

vertical HTD arrangement (a) and horizontal HTD arrangement (b). 
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