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Abstract

This report deals with the applications of neural networks in inverse model learning and
compensation to the mobile manipulator dynamic trajectory tracking and control. The mobile base is
subject to a non-holonomic constraint and the base and onboard manipulator cause disturbances to
each other. Compensational neural network controllers are proposed to learn to reach a sequence of

. targets with given times, to track dynamic trajectories under a non-holonomic constraint and torque
limit constraint, and to compensate for uncertainties in the non-holonomic base and the manipulator
and the disturbances between the base and the manipulator. Both multi-layered perceptron networks
and radial basis function networks are considered in the report. Comparison was made between neural
network controllers with and without model information. It is shown through various simulations the
proposed neural network compensation schemes perform better than traditional controllers.

1. Introduction

A mobile manipulator is a combination of a robot arm and a vehicle with infinite working space in the
horizontal plane. In the case of simultaneous locomotion and manipulation, the robot hand in
principle will have the dynamics of the robot arm and the working space of the vehicle[1]. A typical
task of a mobile manipulator includes the following two steps: first, move the vehicle in an
unstructured environment towards a target either following a prescribed trajectory or going in a
collision-free path, second, in the vicinity of the target position, move the vehicle and the onboard
arm simultaneously so that the endeffector can follow a trajectory accurately to perform a task, for
example doing welding or cutting.

. Neural network based controllers have received much attention in recent years[2]-[7]. This type of
controller exploits the possibilities of neural networks for learning non-linear functions as well as for
solving certain type of problems where massive parallel computation is required. The learning
capability of NNs is used to make the controller learn a certain nonlinear function, representing direct
dynamics, inverse dynamics or any other mappings in a process.

This report deals with neural networks in inverse model learning and compensation to the motion
control of a mobile manipulator in the following three aspects:

1. Sensor guided motion control of a vehicle in an unstructured environment.

2. Dynamic control of a mobile platform with a non-holonomic constraint.

3. Compensation control to the dynamic interactions between a vehicle and its onboard manipulator.

The control of mobile robots by means of sensory information is a fundamental problem in robotics.
The autonomous, unsupervised control of a mobile robot in a novel environment is particularly
challenging. Several researchers[8][9] have attacked some of the problems in mobile robot control
using techniques from engineering and artificial intelligence. Problems that have been researched
vary from sensor fusion to path planning and intelligent navigation. Here we focus on low-level
control, that is, moving the vehicle to a single or a sequence of stationary targets by using simple
movements. More specific description is that a target and the time to reach the target is given and the
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wheels produce corresponding torques to move the vehicle the target in the given time. A necural
network is applied to learn the relationship between the distance and angle difference fo a target and
the output torques of the vehicle. We will show an adaptive neural network architecture can carry out
simple reaching movements robustly and efficiently.

Motion planning and control of mobile robots has been an active topic in robotics in the past several
years[10][11]. Nevertheless, much less is known about the dynamic control of platform/manipulator
system with a non-holonomic constraint on the platform and the developments in this area are very
recent. Some researchers[12]-[14] have proposed some methods to the motion control of mobile
manipulators. But they do not consider the non-holonomic constraint or are not robust enough to
uncertainties or disturbances.

In many cases, a constrained robot is required to follow a trajectory which may not be followed
accurately without violating the wheel torque limits and/or the non-holonomic constraint. But if the
wheel input torques are compensated effectively, a good trajectory, which is very close to the desired
one, can be generated. In some other cases, a mobile robot with a non-holonomic constraint is
required to go through several positions at given times. The requirement is to minimise the position
and orientation errors at these positions. In this report, a neural network compensator is proposed to
learn the relationship between the given trajectory and the compensation torques, and then the
compensation torques are added to the feedforward torques produced by the dynamic equations to
control the motion of the mobile robot.

The kinetic laws of mechanics imply that the motion of any member of a multibody system - as is also
the mobile manipulator - causes disturbant forces and torques to act upon other system members.
erroneous displacements result from this influence, if the joint and the platform controllers fail to
react appropriately. In this report, two separate neural network controllers are designed for the
platform and the manipulator, respectively. Compensation forces are produced by these neural
networks to cancel the disturbant forces caused by the other member of the system.

Various simulation results are given in this report to show the effectiveness of the neural network
controllers.

2. Dynamic model of a mobile manipulator

A mobile platform with an onboard manipulator as shown in Figure 1 is considered in this report. The
manipulator has one rotational link and two planar links. The platform has two driving wheels(the
centre ones) and four passive ones(the corner ones). The two driving wheels are independently driven
by two motors.

X

Figure 1 A mobile platform with an onboard manipulator

Considering the inertial reference frame in the (X,Y) plane and choosing a point P along the axis of
the driving wheels on the mobile platform as shown in Figure 2, the mobile platform at point P can
be described by three variables(x, y, ), where (x, y) denotes the Cartesian position and 8, describes

the heading angle, respectively . For the manipulator, the joint angles of the three links are 6,,0, and
6

3.
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Figure 2 Top view of the mobile platform

Define a vector of coordinates

q=(q1aQZ’q3’q4’CIs’qﬁ)T (1)

where q,, q, and q, denote the platform position(x, y) and the heading angle 6, respectively, and
q., q, and q, denote the manipulator joint angles 8,0, and 6, respectively.

The platform is subject to the following non-holonomic constraints:
- )'csinep-1-}',r.cos6p =0 (2)

i.e., the platform can not move in the direction normal to the axis of symmetry. Note that the position
(x, y) and the heading angle 0, of the platform are not independent of each other due to the non-

holonomic constraint.
The non-holonomic constraint (1) can be rewritten as a matrix form as:
Ag, =0 (3)
. T
where A = [-—sinﬂp cosB, 0], q, = [x v Bp] .

The Newton-Euler method is used to derive dynamic equations of the mobile manipulator. In order to
apply the iteration equations, the platform is visualised as having three joints, two prismatic
joints(along x and y directions, respectively) and one rotational joint(along the vertical direction).
The coordinate system is then built up based on the fictitious joints and the real manipulator joints.
After the complete coordinate system is built up, the Newton-Euler iteration equations are applied to
obtain the platform fictitious joint torques and the manipulator joint torques.

Considering first the mobile platform alone with no onboard manipulator, and referring to Figure 2,
the dynamic equations of the platform written in Cartesian coordinates, after the inclusion of the
forces due to the non-holonomic constraint, are

6
mX = COSI E(t,+7) - N, sinf, )
. sin@,
my = - (t,+7) + N, cosb, )]
. R
I ep = ;(Tr -TI) (6)

where T, T, are the external torque inputs acting on the right and left driving wheels; m, is the

mass of the platform; r is the radius of the wheels; R is the width of the platform; I is the rotational
inertia of the platform; N_ is the centripetal force due to the non-holonomic constraint, as shown in
Figure 2. Here, T, and T, are subject to lower and upper torque limit constraints:

Tow ST T ST, (7)




where T, and Typp ATE the lower and upper torque limits of the two wheels.
Differentiating (2), multiplying (4) and (5) by -sin6, and cos8, respectively, and adding, we obtain
N¢ = m,(%cos6, + ysin6 )8, (8)

Rewriting Equations (4)-(6) with the constraint included, the following equation is obtained for the
platform without an onboard manipulator:

[cosB, cosO,]
m, 0 O x m,sing, ()'c'cosBP +ysm BP)BF sirer sir{()p 5
0 m, O ¥ | +|-m,cos 0, (kcos6, +ysin,)0, | = - - " ©)
0 0 Ijlg, 0 R R
= r r =

or in a concise form as:
Mpap ¥ K(qp’qp) =btp (10)

where M, is the platform inertia matrix, K is the term with the centripetal force and b is torque
coefficient matrix. Note the b matrix is not square matrix. However the inertia matrix is found to be
positive definite and symmetric.

From Equation(9), it can be seen that the platform has three output variables, but only has two driving
torques. Furthermore, the three variables are constrained by the non-holonomic constraint and they
are not independent on each other.

An important effect of the non-holonomic constraint is that an error in any of output variables x , y
and @ requires to adjust both 7, and 7, and hence affects the other two outputs. Or in another way, a
change in any of the two wheel input torques will affect all the 3 variables x , y and 0, while in a
manipulator, this kind of coupling is much weaker. This strong coupling makes the control of a
platform with a non-holonomic constraint more difficult than that of a manipulator.

For the case when the manipulator is on board the platform, the dynamic equations for the composite

platform/manipulator system are obtained in a similar fashion. The dynamic equations for the
platform X, Y directions are given by

cosB (1, +1,) ) .

= —”—r—'—-——— -cosB f,, +sin6 f - Nsinf, (1)

.. sinB (1, +7)
s

: - sin@, f,,, - cos, f,, + N cos®, (12)

where f,_, f denotes the projections of the joint force from the first manipulator link onto the
heading direction and axis direction of the platform, respectively.

Differentiating Equation(2), multiplying Equations(11) and (12) by -sinB, and cos6 respectively,
and adding, we obtain

N, = m_(xcos®, +ysin0,)0, +f, (13)

The composite dynamic equations of the mobile manipulator system can be expressed as
M(a)q +K(q,q) = br (14)

where

_M- Mmm Mmp — " Km + Kmp E Im O q m tm
(q)" Mpm Mpp ,K(QyQ)- K.P+Kpm ] i 0 bp ,q_ qp 11-' Ip 3

qm=[61 0, 63]T’ qp=[x y GP]T;




T T,

1. v w =l ,-cp=|:t ];
1

I_ is an mxm identity matrix, m is the degree of freedom of the manipulator.
The disturbant couplings between the platform and the onboard manipulator are:

me = Mpm(':]m + Kpm (15)

Dmp = Mmpﬁp + Kmp (16)
where the disturbant force D,,, from the manipulator to the platform consists of the inertial term
M i,
motion; the disturbant force D__ from the platform to the manipulator includes the inertia term

M
Precompensation of D, and D__ leads to the consequence that the platform controller acts only on

and the term K with centrifugal and Coriolis components in case of the manipulator

mplp and the term K with centrifugal and Coriolis components in case of the platform motion.

the platform only and the manipulator controller acts only on the manipulator only.

3. Neural networks for sensor-based motion control of a mobile robot

The control of mobile robots by means of sensory information is a fundamental problem in robotics.
A typical example of sensor-based motion control is to guide the robot through a sequence of targets
with some sort of sensing. For instance, the robot might be instructed to pick up a series of objects, or
to navigate through a building or other environment by indicating a series of way points.

In this problem our work is based on a mobile robot equipped with a full set of sensing system. The
robot has separated translational and rotational driving wheels and it is subject to the non-holonomic
constraints mentionéd above, which is that the robot can not move in the direction normal to the
heading angle of the robot. The full sensing system can always give the current position and direction
of the robot. Therefore, once a target position is given, the displacement between the current position
and the target position, and the angle from the current position to the target can be obtained directly.
A neural network is proposed to learn the mappings between the displacement and the corresponding
forces and torques required by a mobile robot to reach the target in a given time. The neural network
structure is given as in Figure 3.

Figure 3 A multi-layered perceptron neural network to learn torque-to-displacement mappings

It is a multi-layer perceptron with one hidden layer. The number of inputs, number of nodes in the
hidden layer and the number of outputs are 3, 5 and 2, respectively. The inputs to the neural network
are the displacement of x, yand 8, namely Ax, Ay and A6. The outputs are the translational force
and rotational torque of the mobile robot.

The robot is trained in two ways. One is through simulation and the other is through real navigation




In the simulated training process, a simulated model is used to produce the motion of the robot. A
large number of random targets and the given times to reach the targets are given to the neural
network. The neural network is trained to learn the forces and the torques needed for the mobile robot
to reach the targets in the given time. Because the desired output forces and torques of the robot are
not known, an indirect training method is used as shown in Figure 4. First, The displacement inputs
are put at the neural network input layer. Then the output torques from the neural network are
executed on the simulated model of the robot. Next, the output displacement from the simulated
model is compared with the given displacement. And finally the errors are sent to the neural network
to update the weights of the network.

.\
58, | Neal Dynamic | 2% &, 8
Ne Model
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Figure 4 The neural network indirect learning structure

During the process of training the above neural network through the real robot in the real
environment, first the translational force and rotational torque are put to the real robot, and then the
corresponding motion is measured and recorded. The measured distances and rotating angles are
paired with the given forces and torques to train the multi-layed perceptron network with the
backpropagation learning paradigm. The forces and the torques are used as the desired outputs of the
neural network and thus the network is trained in a direct way.

After the neural network is trained, it is applied to the simulated model and the real robot to reach
arbitrary targets or a sequence of targets in a trajectory.

The above neural network can be easily trained to move the robot to reach targets without time
constraint. The network outputs are changed to translational and rotational velocities, while the inputs
are the same.

4. Dynamic trajectory following by neural network compensators

4.1 Structure of the neural network compensation control system

From Equation (3)-(5), we can obtain the following two equations:

T, +7, = mr(XcosB +¥sin6 ) (17)

1, -1 = %ép (18)
or

T, = %(%GP + m r(Xcos6, +ysin@,)) (19)

T = %( - %ép + m,r(%cosd, + ysind))) (20)

From Equations(17)(18), it can be seen that t, —t, directly affects ép, and T, +7, directly affects X,

y and ép. And Equations (19)(20) show that the input variable affecting t, and 1, are 0, X, yand

p?




ép. Therefore it is not difficult to assume that in order to control the orientation of the platform, the

difference between the right wheel toque and the left wheel toque is required to be adjusted, while to
control the x and y direction motion, the sum of these two torques needs to be changed first. Based on
this assumption, the outputs in the neural networks proposed for platform motion control are chosen

as 7,+7, and T, -7,. The inputs to the neural network are chosen as 6, X, yand Bp For
generation of compensation torques At, and At,, the network outputs are chosen as AT, +At, and
At, - Ax,. After the neural network output layer, an additional layer is used to obtain the torque <,

and 1, from T, + 7, and T, -7, or to obtain At and At from At, + At and AT, - At,.

X,y
iws}dvepd;epd [nvers.e T,T + Robot x,y,BP
Dynamics ; Q+ . >
ANl
A(8,)
A F
NN
£ AT, AT,
q
Ax, Ay, A0,
Xg>Ya6pa
A

Figure 5 Structure of the neural network control for the platform

Based on the above analysis, a neural network compensation control system is proposed in this section
as shown in Figure 5. The inputs of the control systems are the desired x, y and 8, and their
" accelerations. The inverse dynamic equations are applied as feedforward to produce the computed
wheel torques and the inputs to the inverse dynamics and the neural network are 6, X, yand é’, :
The neural network is used as a compensator to generate the compensation torques. When the given
trajectory is feasible and there are no model errors and disturbances, the robot will follow the desired
trajectory accurately. When the given trajectory is not feasible or there is tracking errors, the neural
network starts to learn on-line and produce compensation torques to reduce the tracking errors. The
second function of the neural network is that when the robot slips, i.e. the non-holonomic constraint is
violated and a corresponding constraint error(All=Aq ) occurs, then this error is fedback to the neural

network for training and producing corresponding compensation torques to reduce the slippage and
the tracking errors.

Two types of neural networks are considered in this report. They are multi-layered perceptron
networks and radial basis functions networks.

4.2 Multi-Layered Perceptron neural network compensator

The multi-layered perceptron(MLP) neural network compensator is a four-layer perceptron with two
hidden layers, four input nodes and two output nodes. The four inputs are 0, X, ¥ and 6. The two
outputs are At + AT, and At, - At,. The errorsAx, Ay, A8, and An are applied to update the weights
of the network. The network is trained using well-known back propagation method.




Figure 6 The MLP structure for platform compensation control

The structure of the neural network is given in Figure 6, where bias connections are not shown. The
neural network is trained to learn the relationship betweenat, +At, and the inputs and the

relationship between At, — At, and the inputs. The wheel compensation torques At, and At are then
indirectly calculated from the neural network outputs At, + AT, and At, - At,.

The trajectory tracking error is defined as:
e= (X, =x)? +(ya-y) +(8,4-0,)" , (21)

As the desired outputs of the network are not available, the errors used for updating the weights are
chosen according to the inverse dynamic equations of the platform. Here, the errors used to update the
weights connecting to the two network outputs AT, + AT, and At, — At, are chosen respectively as:

b, = K,(x,-x)+K,(y,-Y) (22)
8, = K, (8,4-6,) (23)

The weights are updated according to the standard back-propagation algorithm.

4.3 Radial Basis Functions neural network compensator

In this subsection, a Gaussian radial basis functions(RBF) neural network is applied to develop the
wheel compensation torques. The RBF is a standard one hidden layer network with fixed centres.

Figure 7 shows the structure of the RBF. The errors used for updating weights are similar to that in
MLP.

Figure 7 The RBF structure for the platform compensation control




5. Compensation control to the dynamic interactions between the platform and
the onboard manipulator

5.1 Dynamic control of a manipulator by using a neural network

The neural network compensation control for an n-link manipulator is proposed as shown in Figure 8.
The NN model is used to model the inverse dynamics of each joint, for nonlinear compensation of the
manipulator. Control input torque to each joint consists of the compensation torque from the neural
network and the feedback torque from the PD control. The neural networks are the standard MLP
trained by back-propagation algorithm.

""""" x "~ Joint1
N "NN controller

el +%,
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Figure 8 Structure of the neural network control scheme for an n-link manipulator

5.2 Compensation control to the dynamic interactions between the platform and the
onboard manipulator

A compensation control structure is proposed as shown in Figure 9. The system includes two sub-
control systems, one for the manipulator, one for the platform. The manipulator and the platform are
coupled due to the disturbant forces. The coupling disturbant forces are compensated by the neural
network controller in each sub-control system.

Manipulator
NN controller
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C == c—>3 Platform ——2
e DU
Platform
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Figure 9 Structure of the decoupling control to a platform/manipulator system




6. Simulations

6.1 Reaching a sequence of targets by a mobile robot(B12)

In this simulation, a mobile robot(B12) is asked to go through a sequence of targets in the given
times. The robot stops once a target has been reached and then start to move to the next target. The
time between any two consecutive stops is given as 0.5 seconds. Two kinds of simulations are carried
out. The first one is by neural network learning without any model information. The other one is by
neural network learning with model information. The neural networks are multi-layered perceptrons
with only one hidden-layer.

6.1.1 Neural network learning without any model information

Figure 10 and Figure 11 shown the simulation results of two examples. Without any model
information, there are large tracking errors at some targets. The right figures shown the error norms
during the neural network learning processes. The final error norms of example 1 and example 2 are
0.14 and 0.16, respectively.

s - 2
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1F
E
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A
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3
4 2}
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xm) Time{sac)
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Figure 10 Simulation results of example 1 without any model information (a) the actual path (b) the
error norms during the NN learning process

2.5 35 —

(@) (b)

Figure 11 Simulation results of example 2 without any model information (a) the actual path (b)
the error norms during the NN learning process

6.1.2 Neural network learning with model information

Figure 12 and Figure 13 shown the simulation results of two same examples as above. With model
information, the tracking errors are much smaller. And also the neural networks learn much faster.
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The right figures shown the error norms during the neural network learning processes. The final error
norms of the above two examples are 0.05 and 0.04, respectively.
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Figure 12 Simulation results of example 1 with model information (a) the actual path (b) the error
norms during the NN leamning process
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Figure 13 Simulation results of example 2 with model information (a) the actual path (b) the error
norms during the NN learning process

6.1.3 Simulations by SIMULINK neural networks

Two simulation models as shown in the Figure 14 and Figure 15 are built by using MATLAB
SIMULINK to simulate the motion of the robot. The models include two parts--the neural network
and the dynamic model of the mobile robot(B12). The neural networks are trained beforehand and
their weights are imported from the saved weight matrix.
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Figure 14 The SIMULINK model for reaching arbitrary targets by a NN without model information
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Case 1 SIMULINK simulation results without model information

The following two figures(Figure 16 and Figure 17) shown that by the neural network control without
any model information the robot has large tracking errors at some target positions.

xYAa

(@ (b)

Figure 16 Simulation results of example 1 by SIMULINK without model information (a) the given
path connecting a sequence of targets (b) the actual path

(a) (b)

Figure 17 Simulation results of example 2 by SIMULINK without model information (a) the given
path connecting a sequence of targets (b) the actual path

Case 2 SIMULINK simulation results by neural network with model information

The following two figures shown that with model information a neural network controller has better
tracking results than without any model information.

¥

(a) (b)

Figure 18 Simulation results of example 1 by SIMULINK with model information (a) the given path
connecting a sequence of targets (b) the actual path
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C) (b)

Figure 19 Simulation results of example 2 by SIMULINK with model information (a) the given path
connecting a sequence of targets (b) the actual path

6.2 Dynamic trajectory following by a constrained platform

Case 1

A number of points are given and the robot is required to go through these points at specified time.
The criterion is to minimise the position and orientation errors at these points. The trajectories
between these points are created by splines. The compensation torques by generated by the NN are
added to the torques computed from the inverse dynamics to control the motion of the platform.
Figure 20 and 21 show the simulation results of two examples of such trajectory tracking by MLP
compensation. Figure 22 and Figure 23 show the simulation results of the two examples by RBF
compensation.
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Figure 20 (a) the desired trajectory(solid, *: given positions), the trajectory by computed
torques(dashed/dotted) and the trajectory by MLP plus feedforward control(dashed) (b) error norms
during the MLP learning process.
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Figure 21 (a) the desired trajectory(solid, *: given positions), the trajectory by computed
torques(dashed/dotted) and the trajectory by MLP plus feedforward control(dashed) (b) error norms
during the MLP learning process.
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Figure 22 (a) the desired trajectory(solid, *:
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Figure 23 (a) the desired trajectory(solid, *:

Case 2
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given positions), the trajectory by computed
torques(dashed/dotted) and the trajectory by RBF plus feedforward control(dashed) (b) error norms
during the MLP learning process.
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A continuous trajectory is given with 30% of platform weight error. The task for the neural network
compensator is to learn the relationship between the trajectory inputs and the compensation torques.
The compensation torques are added to the computed torques to control the robot to follow the given
trajectory as closely as possible. Figure 24 shows the tracking results by a PD control only.

The tracking process by an MLP compensation is shown in Figure 25, which is better than by PD

control only.
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Figure 24 Trajectory tracking by PD controller only with 30% platform weight error(desired:

dashed/dotted, actual: solid)
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Figure 25 Trajectory tracking by MLP compensation with 30% platform weight error(desired:
dashed/dotted, actual: solid)

Case 3

In this case, it is assumed that a slippage happened between 0.5s and 0.6s from the starting. During
this period the non-holonomic constraint is violated. A constraint error is fedback to the neural
network to speed the learning process. Figure 26 and 27 shows the results by the feedforward plus PD
control and the results by a neural network plus PD control. As the results shown, feedforward plus
PD control failed to control the platform back to the desired trajectory, while the neural network
controller successfully bring the platform back to the desired trajectory very quickly
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6.3 Dynamic control of a 2-link manipulator

In this simulation, a 2 link manipulator is required to follow a given trajectory with the joints'
trajectories specified. A 25% weight error of the second link is considered. The feedforward plus PD
control failed to follow the desired trajectory as shown in Figure 28, while the neural network
controller compensated the weight change very well as shown in Figure 29.
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Figure 28 Manipulator trajectory tracking by feedforward plus PD control with a 25% weight error in
the second link (a) trajectories of the first joint(desired: dashed/dotted, actual: solid) (b) trajectories
of the second joint(desired: dashed/dotted, actual: solid) (c) tracking errors of the two joints(first
joint: solid, second joint: dashed)
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Figure 29 Manipulator trajectory tracking by MLP plus PD control with a 25% weight error in the
second link (a) trajectories of the first joint(desired: dashed/dotted, actual: solid) (b) trajectories of
the second joint(desired: dashed/dotted, actual: solid) (c) tracking errors of the two joints(first joint:
solid, second joint: dashed) (d) error in the MLP learning process

6.4 Decoupling control of a platform/manipulator system

This simulation considers the neural network compensations against the disturbant forces from the
manipulator to platform and from the platform to the manipulator.

Case 1; Manipulator neural network compensation to the disturbance from the platform

Figure 30 shows the motion of the platform and its disturbant forces to the manipulator. Figure 31 is
the simulation results from a PD controller only which does not work in this case. The results by the
neural network compensation is shown in Figure 32. The MLP can compensate the disturbance quite
well and the learning process converges very fast only with slight vibration in the beginning.
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Figure 32 Manipulator trajectories and their errors by an MLP compensator in the case of platform
motion (a) trajectories of the first joint(desired: dashed/dotted, actual: solid) (b) trajectories of the
second joint(desired: dashed/dotted, actual: solid) (c) trajectories errors(first joint: solid, second
joint: dashed/dotted) (d) error during the MLP learning process

Case 2: Platform neural network compensation to the disturbance from the manipulator

Figure 33 shows the motion of the manipulator and its disturbant forces to the platform. Figure 34 is
the simulation results from a PD controller only. The results by the neural network compensation is
shown in Figure 35. The MLP can compensate the distubance quite well and the learning process
converges steadily.
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7. Conclusions

This report proposed a neural network compensation controller to a platform/manipulator system. The
difficulty with the control of such a system is that the platform is subject to a non-holonomic
constraint and there exist disturbances between the platform and manipulator motions. Traditional
controllers( PID or adaptive controllers) can not achieve satisfactory control performance. Neural
networks can virtually learn to compensate any tracking errors and have strong robustness. The
presented simulation results well shown the advantages of the proposed neural network compensators.
The multi-layered perceptron network is mainly considered in this report, but the radial basis
functions network can also be applied to solve the similar problems as shown in two examples.
Comparison was made between neural network controller with and without any model information.
Due to dynamic requirements, without any model information the neural network controller has a
larger tracking error than with model information. If no dynamic constraint is applied, the mappings
between the output and the input of a robot motion controller become less complicated, and hence a
neural network alone can learn the mappings and give good peformance.
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