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Abstract

The last 20 years has seen a dramatic improvement in the quantity and

quality of geodetic measurements of the earthquake loading cycle. In this

paper we compile and review these observations and test whether crustal

thickness exerts any control. We found 78 earthquake source mechanisms for

continental earthquakes derived from satellite geodesy, 187 estimates of inter-

seismic “locking depth”, and 23 earthquakes (or sequences) for which post-

seismic deformation has been observed. Globally we estimate seismogenic

thickness to be 14±5 and 14±7 km from coseismic and interseismic observa-

tions respectively. We find that there is no global relationship between Moho

depth and the seismogenic layer thickness determined geodetically. We also

found no clear global relationship between seismogenic thickness and prox-

ies for the temperature structure of the crust. This suggests that the effect

of temperature, so clear in oceanic lithosphere, is masked in the continents

by considerable variation in lithology, strain-rate, and/or grain size. Elastic

thicknesses from Bouguer gravity are systematically larger than the geode-
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tic seismogenic thicknesses but there is no correlation between them. By

contrast, elastic thickness from free-air methods are typically smaller than

the geodetic estimates of seismogenic layer thickness. Postseismic observa-

tions show considerable regional variations, but most long-term studies of

large earthquakes infer viscoelastic relaxation in the lower crust and/or up-

per mantle with relaxation times of a few months to a few hundred years.

These are in apparent contradiction with the higher estimates of elastic thick-

ness. Our analysis of the geodetic data therefore supports the “crème brulée”

model, in which the strength of the continental lithosphere is predominantly

in the upper seismogenic layer. However, the distribution of geodetic ob-

servations is biased towards weaker areas, and faults can also modify the

local rheology. Postseismic results could therefore be sampling weak regions

within an otherwise strong crust or mantle.

Keywords: Moho, Crustal deformation, Geodesy, Continental Rheology,

Elastic Thickness

1. Introduction1

The earthquake deformation cycle is typically divided into three phases:2

The deformation that occurs during an earthquake is referred to as coseismic;3

it is followed by a period of transient postseismic deformation, which even-4

tually decays to a steady-state background interseismic deformation (e.g.5

Thatcher and Rundle, 1979). Recent advances in satellite geodesy, and in6

particular the rapid uptake of interferometric synthetic aperture radar (In-7

SAR), have led to a dramatic increase in the quantity and quality of defor-8

mation measurements of the earthquake cycle (e.g. Wright, 2002; Bürgmann9
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and Dresen, 2008; Weston et al., 2012).10

Owing to the long inter-event time in many fault zones, typically hun-11

dreds to thousands of years, we do not have deformation observations with12

modern instruments spanning a complete earthquake cycle for any single13

fault. Nevertheless, by looking globally we can observe deformation around14

faults at different stages of the cycle. InSAR is particularly suitable for15

measuring the large and rapid coseismic displacements associated with con-16

tinental earthquakes, but has also been valuable in constraining postseismic17

and interseismic deformation in several cases, particularly for remote faults18

with minimal ground-based observations. At the same time, thousands of19

Global Positioning System (GPS) measurements have been made in active20

fault zones (e.g. Kreemer et al., 2003). These have been particularly valuable21

for examining the slower, longer-wavelength deformation associated with the22

interseismic and postseismic phases of the earthquake cycle.23

In the past decade, the strength of continental lithosphere has been the24

cause for considerable controversy (e.g. Jackson, 2002; Burov et al., 2006;25

Jackson et al., 2008; Burov, 2010; Bürgmann and Dresen, 2008). The debate26

has focused on whether strength resides in a single layer in the upper crust27

(the “crème brûlée” model) or whether the upper mantle is also strong (the28

“jelly sandwich” model). Most earthquakes occur in the upper crust; coseis-29

mic deformation can be used to infer the depth range of faulting and hence30

the thickness of the seismogenic layer. During the interseismic and postseis-31

mic periods, deformation occurs in the lower crust and mantle. We can infer32

the seismogenic thickness from simple elastic models of the interseismic pe-33

riod; the rates, location and mechanisms of postseismic deformation can be34
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used to place bounds on the strength of the lower crust and upper mantle.35

In this paper, we compile observations of earthquake cycle deformation36

from the published literature made in tectonic areas across the planet, and37

extract key parameters. In particular we examine the thickness of the upper38

crustal layer that slips in earthquakes but is locked in the interseismic pe-39

riod, and examine the depth ranges and timescales over which postseismic40

relaxation has been inferred to occur. We test whether these parameters are41

related to estimates of Moho depth, elastic thickness, and geothermal gra-42

dient, estimated independently. Finally, we discuss the implications for the43

strength of continental lithosphere.44

2. Seismogenic thickness constraints from coseismic deformation45

During coseismic deformation, the passage of seismic waves through the46

entire crust and mantle is testament to their elastic behaviour on short time-47

scales. On longer timescales, elastic stresses are relaxed through temperature-48

dependent ductile processes such as viscous relaxation (e.g. Rundle and Jack-49

son, 1977; Pollitz, 1992) and aseismic afterslip (e.g. Scholz and Bilham, 1991;50

Perfettini and Avouac, 2004). These processes restrict the vast majority of51

continental earthquakes to the brittle upper crust. The thickness of this seis-52

mogenic layer (Ts) has previously been estimated by examining earthquake53

centroid depths (e.g. Maggi et al., 2000; Jackson et al., 2008) determined by54

inversions of seismic waves that assume a point source for the earthquake.55

Geodetic methods allow for additional information about the depth distribu-56

tion of slip in earthquakes. For small events, most studies assume uniform57

slip on a rectangular dislocation (Okada, 1985). For larger events, detailed58
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slip distributions are often resolved. In most of these cases, information59

about the maximum depth extent of slip in the earthquake can be retrieved.60

Although there are fewer geodetic earthquake solutions than seismic sources,61

the depth range over which seismic slip occurs is arguably more robust.62

We have updated the list of 58 continental earthquakes (Mw & 5.5) stud-63

ied with InSAR from Weston et al. (2011, 2012), with 20 further earthquakes,64

to give a database of 78 events (Figure 1a). The list is spread slightly un-65

evenly across strike-slip (Table 1), normal (Table 2) and reverse (Table 3)66

faulting mechanisms, with 32, 21 and 25 events respectively. For each earth-67

quake we extract the bottom depth of faulting in the published geodetic68

model.69

The majority of studies involve models in which slip is permitted to occur70

over a distributed region of sub-fault patches. A limitation of surface geode-71

tic data is that the resolution of slip decreases with depth (e.g. Funning et al.,72

2005b; Atzori and Antonioli, 2011) and that, consequently, small deep earth-73

quakes are difficult to record. However, of the 78 continental earthquakes so74

far measured, the depth extent of faulting is clustered in the depth range 5–75

25 km, and slip much deeper than this has been shown to be recoverable for76

subduction events (e.g. Pritchard et al., 2002). The spread of InSAR bottom77

depths of faulting is normally distributed with a mean of 14 km and a stan-78

dard deviation of 5 km (Figure 2 inset). The depth distribution of smaller79

events, which are unlikely to have ruptured the entire width of the seismo-80

genic crust, is biased towards the shallower range of depths in our database as81

they are difficult to detect geodetically if they occur in the mid-lower crust.82

We compare the depth estimates of faulting from InSAR with seismic83
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source models (Tables 1–3; Figure 2), where available (86% of events exam-84

ined here). To ensure the seismic solutions are robust and reliable, we only85

use centroid depths from point-source body-wave modelling (typically for86

smaller events) and distributed slip source models from body-wave/strong87

motion (for the larger events). For the larger events, we take the bottom88

depth of faulting in the slip model presented by the authors in each paper,89

as was done for the InSAR solutions. For the earthquakes with distributed90

seismic solutions, (circles in Figure 2), there is a one-to-one correlation be-91

tween the two estimates of bottom depth, with a small bias of 2–3 km towards92

deeper seismological slip when compared to the bottom depth from InSAR.93

This slight discrepancy may arise from the poorer depth resolution in the seis-94

mological solutions, or be because the InSAR models (which typically use95

homogeneous elastic half-spaces) bias the slip slightly shallower compared96

to the layered velocity models typically used in the seismology inversions.97

When the InSAR depths are compared to the seismological centroid depths98

(squares in Figure 2), the relationship follows a two-to-one ratio, as would99

be expected if the slip was symmetrically distributed about the centroid in100

depth and approached the surface.101

We compare the geodetically-determined bottom depth of rupture given102

in Tables 1–3 to the crustal thickness from Crust 2.0 (Bassin et al., 2000),103

for each type of fault mechanism (Figure 3). The maximum depth of slip104

for the earthquakes with geodetic solutions are mostly in the range 5–25 km,105

and occur in regions with crustal thickness in the range of 10–75 km. There106

is a large spread in the data, but we find no systematic relationship between107

a deeper Moho and the depth extent of faulting.108
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3. Seismogenic thickness constraints from interseismic deformation109

Simple geodynamic models of the entire earthquake cycle, with an elastic110

lid overlying a viscoelastic (Maxwell) substrate, suggest that the observed111

deformation is a function of time since the last earthquake (e.g. Savage and112

Prescott, 1978; Savage, 1990). Observations of focused strain late in the113

earthquake cycle around many major fault structures and rapid postseismic114

transients are cannot be explained by these simple models – the former re-115

quires a high viscosity in the substrate and the latter a low viscosity (e.g.116

Hetland and Hager, 2006; Takeuchi and Fialko, 2012).117

The observational data have led to the development of a new generation118

of earthquake cycle models that are able to predict focused interseismic defor-119

mation alongside rapid postseismic deformation (Hetland and Hager, 2006;120

Johnson et al., 2007a; Vaghri and Hearn, 2012; Takeuchi and Fialko, 2012;121

Yamasaki et al., 2013). These studies suggest that, although the velocities122

do change throughout the cycle, they are reasonably steady after the initial123

postseismic transient deformation has decayed. The models partially explain124

the ubiquity of the classic elastic dislocation model (Savage and Burford,125

1973), in which interseismic deformation around strike-slip faults is mod-126

elled as steady creep on a narrow, infinitely-long and deep vertical fault in127

an elastic half space beneath a locked lid (the other significant factor is its128

simplicity).129

We take a pragmatic approach to interseismic deformation, and have130

searched for all examples that have been modelled either using the simple131

deep dislocation formulation or an equivalent elastic block model approach.132

This allows us to examine spatial variations in the ‘locking depth’ parameter133
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in a consistent manner, even if the model is undoubtedly an oversimplifica-134

tion.135

We found 187 estimates of interseismic locking depth in ∼100 publica-136

tions (Table 4; Figure 1). Of these, 131 were determined as free parameters137

in inversions of the geodetic data. Regional variations do exist, with locking138

depths in Iceland being 7±4 km, compared with 20±6 km in the Himalayas,139

for example. However, in general the values are remarkably consistent, nor-140

mally distributed with a global mean of 14±7 km (Figure 4). This is remark-141

ably similar to the global distribution found for the coseismic bottom depths142

(Figure 2), with the same mean at 14 km. As was the case for earthquake143

depths, we find no systematic global relationship between locking depth and144

crustal thickness (Figures 4).145

4. Regional variations in seismogenic thickness146

To search for any systematic variations in seismogenic thickness, we exam-147

ine the distribution of coseismic slip and interseismic locking depths in four148

continental areas for which we have a sufficient number of geodetic results:149

Iran, the Mediterranean, Tibet and the Western US (Figure 5).150

For Iran, the 11 earthquakes so far studied are constrained to be shallower151

than 20 km and match the interseismic locking depths except for two deep152

outliers (Figure 5). The results indicate a large aseismic lower crust above153

the Moho, which is at a depth of 40–45 km.154

The Mediterranean region, which we define broadly to include 16 earth-155

quakes in Turkey, Greece, Italy and Algeria, has depths of faulting and lock-156

ing down to 20–25 km, and a relatively narrow aseismic lower crust above a157
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Moho at 30–40 km (Figure 5).158

The 16 earthquakes with geodetic solutions in Tibet are largely in the159

upper 25 km of crust, with one event deeper at 31 km (Sichuan), and the160

interseismic locking depths, reviewed in depth in Searle et al. (2011), cover161

the same range (Figure 5). However, the Moho for this region is much deeper162

at 50–70 km, leaving a much thicker aseismic lower crust.163

Finally, the Western US has a narrower seismogenic layer of 16 km based164

upon the 9 earthquakes studied in this small region, and similar interseismic165

locking depths, estimated from extensive geodetic analyses (Figure 5). The166

crust is 30–35 km thick, suggesting the aseismic lower crust is ∼15–20 km167

thick.168

Our seismogenic layer thicknesses for these regions are similar to those169

of Maggi et al. (2000), who used seismological constrained centroid depths.170

Maggi et al. (2000) also had sufficient earthquakes in Africa, the Tien Shan171

and North India to establish that seismogenic layer thicknesses are larger in172

these regions. We could not find enough geodetic studies in these regions to173

independently verify this result.174

The consistency between interseismic locking depths and the depth ranges175

of coseismic slip release (Figure 5), which both peak at around 10–20 km for176

the regions where we have sufficient data, implies that it is reasonable to es-177

timate earthquake potential using interseismic geodetic measurements. The178

geodetic data therefore confirm that, for the regions where most continental179

earthquakes occur, the upper half of the crust is largely seismic and able to180

accumulate stress elastically over the earthquake cycle. Deformation occurs181

aseismically and continuously in the lower crust.182
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5. Rheological constraints from postseismic deformation183

A period of accelerated deformation is observed after many large earth-184

quakes, in which instantaneous deformation rates are higher than those ob-185

served before the earthquake. Several mechanisms are likely occurring during186

this postseismic phase of the earthquake deformation cycle. Over short time187

scales (up to a few months), the re-equilibration of ground water levels causes188

a poroelastic effect (e.g. Jónsson et al., 2003; Fialko, 2004). On longer time189

scales, aseismic creep on the fault plane (afterslip) and viscoelastic relaxation190

(VER) of the lower crust and mantle are the most significant processes.191

The postseismic phase of the earthquake cycle is probably the least well192

observed; we found only 49 studies in the literature in which postseismic193

observations have been made for at least two months after the event for con-194

tinental earthquakes. These studies analysed GPS and/or InSAR data from195

only 19 individual earthquakes and four groups of earthquakes. Furthermore,196

the lack of consensus on the appropriate methods for modelling postseismic197

deformation makes it hard to make a systematic comparison between the198

studies.199

Most studies of postseismic deformation after large (Mw & 7) earthquakes200

infer afterslip or viscoelastic relaxation as a deep process occurring beneath201

an upper layer that is modelled as a purely elastic layer. In some cases the202

thickness of this elastic lid is held fixed at the depth of earthquake rupture. In203

other studies, the elastic lid thickness is allowed to vary as a free parameter.204

Studies that invoke afterslip split into two camps: some carry out simple205

kinematic inversions to find the distribution of slip on an extended fault206

plane that matches the postseismic geodetic observations (e.g. Bürgmann207
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et al., 2002); more rarely, others calculate a prediction for the amount of208

afterslip expected based on an assumed friction law for the fault plane (e.g.209

Hearn et al., 2002; Johnson et al., 2009).210

Even investigations that agree that viscoelastic deformation is the dom-211

inant process occurring at depth have no consensus as to the appropriate212

rheology to ascribe to the viscoelastic material. Simple linear Maxwell rhe-213

ologies are often used in the first instance, but these are typically unable214

to explain both ‘early’ and ‘late’ postseismic deformation (definitions left215

deliberately vague): fitting the early part of the postseismic relaxation pe-216

riod usually requires a lower viscosity than fitting the later part (e.g. Pollitz,217

2003; Freed and Bürgmann, 2004; Ryder et al., 2007). Freed and Bürgmann218

(2004) showed that a non-linear power-law rheology (in which strain rate219

is proportional to (stress)n) could fit both early and late postseismic de-220

formation observed by GPS after the 1992 Landers and 1999 Hector Mine221

earthquakes, with n =3.5. For such models to be correct, the stress change222

during the earthquake must dominate over the background levels of stress223

in the crust. Alternatively, Pollitz (2003) and others have often applied a224

Burgers body rheology to explain postseismic deformation. This linear rhe-225

ology has two effective viscosities, which allow it to relax rapidly in the early226

period of postseismic relaxation and more slowly later on. Riva and Gov-227

ers (2009) and Yamasaki and Houseman (2012) point out that the expected228

temperature structure in the lower crust and mantle can result in multiple229

effective viscosities for the relaxing layers - colder shallower layers relax more230

slowly than deeper, hot layers. Therefore, power-law or Burgers rheologies231

may not be required by the observations, as has previously been argued.232
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Yet a further complication arises because most of these models assume lat-233

erally homogeneous (layered) structures. Geological evidence suggests that234

shear zones develop under major crustal faults due to processes including235

shear heating (e.g. Thatcher and England, 1998) and grain size reduction236

(Bürgmann and Dresen, 2008, and references therein). Shear zones may237

cause lateral variations in viscosity that can also explain the geodetic obser-238

vations of multiple relaxation times (Vaghri and Hearn, 2012; Takeuchi and239

Fialko, 2012; Yamasaki et al., 2013).240

The magnitude of the earthquake being studied and the duration of ob-241

servation are important factors to consider when interpreting models of post-242

seismic deformation. Other things being equal, small earthquakes will excite243

less viscous flow than larger earthquakes. One might therefore expect to have244

to make observations over a longer time period in order to see evidence at the245

surface for viscoelastic relaxation at depth. By a similar line of reasoning,246

viscous flow will be excited in deep viscoelastic layers to a lesser extent than247

in shallow viscoelastic layers, and very large earthquakes may be required248

to excite motions in deep layers. Again, one would expect to have to ob-249

serve for longer to detect a viscous flow signal. In summary, when it comes250

to inferring evidence for viscoelastic relaxation, the observational odds are251

stacked against small-magnitude earthquakes embedded in the top of a thick252

elastic upper layer. The optimum case for observing viscoelastic relaxation253

is a large earthquake occurring in a thin elastic layer.254

Despite the various difficulties discussed above, we argue that there is255

some value in attempting to compile and compare observations of postseis-256

mic deformation globally. In Figure 6, we summarise the results of studies257
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that collectively model postseismic geodetic data for 19 continental earth-258

quakes (including two earthquake sequences), plus a handful of groups of259

earthquakes, some of which occurred many decades ago. We are primar-260

ily interested in the depth ranges, or lithospheric layers (lower crust, upper261

mantle), in which different postseismic relaxation processes occur, since this262

gives valuable insight into the strength profile of the crust and upper mantle263

over the month to decadal time scale. The range of earthquake magnitudes264

is 5.6 to 7.9, and all case studies use data covering at least two months fol-265

lowing the earthquake. The majority of these investigations have modelled266

viscoelastic relaxation (VER) and/or afterslip. The studies that only model267

a single process, rather than testing for both processes, are indicated in the268

figure by asterisks. A few studies also model poroelastic rebound.269

The compilation of postseismic case studies highlights a number of key270

points. Firstly, even accounting for the large range of earthquake magnitudes271

and observation periods, there is considerable variation in inferred rheological272

structure between different regions around the globe (Figure 6). Afterslip is273

inferred to occur anywhere from the very top of the crust right down to the274

upper mantle in a few cases, though some authors acknowledge that this very275

deep apparent afterslip may in fact be a proxy for VER. VER is inferred to276

occur in the lower crust in some cases (e.g. Ryder et al., 2007; Riva et al.,277

2007; Ryder et al., 2011; Bruhat et al., 2011), the upper mantle in others (e.g.278

Freed and Bürgmann, 2004; Biggs et al., 2009; Johnson et al., 2009; Pollitz279

et al., 2012), and sometimes in both (e.g. Vergnolle et al., 2003; Hearn et al.,280

2009; Wang et al., 2009b). We note, however, that even if the spatial pattern281

of the data clearly indicates viscoelastic relaxation, actual viscosity values282
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for a particular layer are commonly poorly-resolved by the data, which leads283

to some uncertainty in how VER varies with depth. This issue of resolution284

for postseismic data has been explored in detail by Pollitz and Thatcher285

(2010). In Figure 6, the dashed yellow lines indicate depth ranges where286

(a) viscosities are poorly-constrained, and/or (b) viscosities are several times287

higher than in the other layer. Both cases go under the label of “possible288

VER”, as opposed to “dominant VER” (solid yellow lines).289

Since different studies use different data sets with different resolving ca-290

pabilities, it is important to consider the interpretations for a particular291

earthquake or region in aggregate. In some regions there is a clear signa-292

ture of viscoelastic relaxation in the upper mantle. In the Basin and Range293

province, mantle VER has been clearly inferred in five separate studies of294

individual earthquakes (Landers 1992, Hector Mine 1997 and Hebgen Lake295

1959), as well as for groups of historic earthquakes that occurred in the Cen-296

tral Nevada Seismic Belt. The four Basin and Range studies that infer only297

afterslip/poroelastic mechanisms (no VER) did not attempt to model VER298

(Massonnet et al., 1996; Savage and Svarc, 1997; Peltzer et al., 1998; Perfet-299

tini and Avouac, 2007). A fifth study (Fialko, 2004) does not model VER300

explicitly, but as a comment on far-field residuals resulting from afterslip-301

only modelling, mentions that mantle VER may also have occurred. Only302

one paper concludes VER in the lower crust (Deng et al., 1998), but Pollitz303

et al. (2000) and Pollitz (2003) suggest that VER may have occurred in the304

lower crust as well as the upper mantle, with viscosities at least a factor of305

two higher in the lower crust. The other earthquake that seems to offer clear306

evidence for upper mantle VER is the 2002 Denali earthquake in Alaska.307
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The four studies of this event all infer VER in the mantle, with no flow308

in the lower crust (e.g. Pollitz, 2005; Freed et al., 2006; Biggs et al., 2009;309

Johnson et al., 2009). Of those, the three studies that also model afterslip310

conclude that afterslip in the lower crust accompanied mantle VER. For the311

1999 Izmit earthquake on the North Anatolian Fault, short time-scale (a few312

months) observations lead to conclusions of afterslip only (Reilinger et al.,313

2000; Bürgmann et al., 2002; Hearn et al., 2002), but longer time-scale (a few314

years) observations lead to inferences of VER in the lower crust and upper315

mantle (Hearn et al., 2009; Wang et al., 2009b). For two Mw 6.5 earthquakes316

in Iceland in 2002, Jónsson (2008) infer from four years of geodetic data that317

VER took place in the upper mantle, although initial data only revealed318

poroelastic rebound (Jónsson et al., 2003).319

In some regions there is strong evidence for viscoelastic relaxation having320

occurred primarily in the lower crust, rather than the upper mantle. Along321

the San Andreas Fault system, multi-year observations following the 2004322

Parkfield, 1994 Northridge and 1989 Loma Prieta earthquakes indicate lower323

crustal VER. Again, there are also studies which only solve for afterslip.324

The study by Freed (2007), on the other hand, investigated both processes,325

but concluded that only afterslip occurred during the first two years after326

the Parkfield earthquake. A later study of the same event by Bruhat et al.327

(2011) used six years of postseismic data and suggested that VER in the328

lower crust accompanied afterslip in the upper crust, although the authors329

acknowledge that observations of localised tremor in the lower crust (Shelly330

and Johnson, 2011) support the occurrence of deep afterslip. Lower crustal331

VER has also been inferred in studies of earthquakes in Italy, Taiwan and332
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Tibet. In general, smaller earthquakes do not appear to excite flow in the333

upper mantle, but larger earthquakes at the same locations may be able to.334

One earthquake in Tibet where VER has not been inferred at any depth was335

the 2008 Nima-Gaize event (Ryder et al., 2010). This was a small (Mw 6.4)336

earthquake and the InSAR data used only covered the first nine postseismic337

months. Viscoelastic relaxation was not ruled out by these short time-scale338

data; rather, the lack of VER signature was used to place a lower bound on339

possible viscosities in the lower crust.340

Because of the wide variety of approaches used in modelling viscoelastic341

relaxation, we do not include viscosity values in our compilation in Figure 6.342

A detailed comparison of modelling efforts is beyond the scope of this pa-343

per. Nevertheless, it is helpful to consider the range of viscosities inferred in344

postseismic studies, and identify some general patterns. For the viscoelastic345

layers (lower crust or upper mantle) where viscosity is well-constrained, the346

range of Maxwell viscosities across all studies is 1 × 1017 – 7 × 1019 Pa s.347

Where other linear viscoelastic rheologies are used (standard linear solid,348

Burgers), the range is 1 × 1017 – 2 × 1020 Pa s. It should be noted that for349

poorly-constrained layers, several studies estimate a lower bound. For exam-350

ple, Gourmelen and Amelung (2005) can only constrain the viscosity of the351

lower crust in the CNSB to be > 1×1020 Pa s. The overall viscosity range for352

the well-constrained layers gives a range of relaxation times from one month353

up to 200 years. For the poorly-constrained layers, relaxation times may be354

longer than 200 years. Many short time scale (< 10 year) studies have con-355

cluded that apparent viscosity increases with time following an earthquake.356

However, the modern studies of ongoing relaxation around earthquakes that357
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occurred several decades ago do not consistently find higher viscosities than358

shorter postseismic studies of more recent earthquakes.359

To summarise the results from the entire postseismic compilation: of the360

∼20 individual earthquakes/sequences considered, 16 have VER inferred by361

at least one study. Of the four that do not, two (L’Aquila and Nima-Gaize)362

are small magnitude (Mw 6.3 and 6.4 respectively) and only have a short363

period of observation (6 and 9 months respectively), and so would not be364

expected to have excited observable deep viscous flow. The other two are the365

Zemmouri and Mozambique earthquakes in Africa. These are larger magni-366

tude (Mw 6.9 and 7) events and have been observed for longer (at least 2.5367

years). A broad-brush conclusion is that viscoelastic relaxation in the lower368

crust and/or upper mantle is to be expected after most large earthquakes369

(but may only be detected with very long periods of observations). This in370

turn implies that there is not much long-term strength beneath the elastic371

upper crust, at least in fault zones.372

6. Discussion373

6.1. Influence of the Moho depth and geothermal gradient on the earthquake374

cycle375

Our initial aim in this paper, in line with the theme of this special vol-376

ume, was to test whether crustal thickness had any appreciable influence on377

the deformation observed during the earthquake cycle. The most robust pa-378

rameter that we have been able to extract is the thickness of the seismogenic379

layer, which we find to be consistent between coseismic and interseismic in-380

vestigations. We find, in line with previous seismic studies (e.g. Maggi et al.,381
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2000; Jackson et al., 2008), that there is no simple global relationship be-382

tween seismogenic layer thickness and crustal thickness. In fact, seismogenic383

layer thickness is remarkably constant in the regions where we have sufficient384

data for robust analysis, whereas crustal thicknesses in the same regions vary385

by a factor of two or more.386

Ultimately, the seismogenic layer thickness is limited by the depth at387

which creep processes allow tectonic stresses to be relieved aseismically and388

this, in turn, is a function of lithology, grain-size, water content, strain rate389

and temperature. In the oceanic lithosphere, where lithology is fairly con-390

stant, temperature is the dominant factor, with earthquakes only occurring391

in the mantle at temperatures below ∼600 ◦C (e.g. McKenzie et al., 2005).392

We test whether temperature exerts a dominant control globally on seismo-393

genic layer thickness in continental lithosphere by using direct and indirect394

measures of crustal heat flow.395

Firstly, we use a global compilation of direct heat flow measurements by396

Hasterok and Chapman (2008), updated from Pollack et al. (1993). The heat397

flow data set is noisy and highly uneven in its distribution, with high sample398

densities in regions such as Europe and North America and lower sampling399

in Asia. To provide a continuous grid against which to compare average heat400

flows with the earthquake depths, we first take median samples of the data at401

0.5 degree spacing. We then interpolate (Smith and Wessel, 1990) to 1 degree402

spacing to cover regions in which no direct heat flow data are available. We403

do not recover an inverse relationship between the deepest extent of faulting404

and average heat flow (Figure 7).405

Secondly, we use lithospheric thickness, derived from surface wave tomog-406
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raphy (Priestley and McKenzie, 2006), as a proxy for geothermal gradient;407

areas with thick lithosphere should have relatively low geothermal gradient408

and hence have a relatively thick seismogenic layer. We also see no clear re-409

lationship between lithospheric thicknesses and our estimates of seismogenic410

thickness (Figure 7).411

On a local scale, there is a clear relationship between the geothermal gra-412

dient and the seismogenic layer thickness. This is clearly shown by microseis-413

micity studies in regions such as California (e.g. Sibson, 1982; Nazareth and414

Hauksson, 2004), and Iceland (e.g. Ágústsson and Flóvenz, 2005; Björnsson,415

2008). But there is no obvious global relationship between thermal structure416

and seismogenic layer thickness evident in our compilations. The effect of417

temperature, which is clear in oceanic lithosphere and in small regions, is418

masked in the continents by spatial variations in lithology, strain-rate, and419

grain size.420

6.2. Seismogenic and elastic thicknesses – implications for the rheology of421

continental lithosphere422

Starkly different estimates for elastic thickness (Te) have been at the core423

of the debate about the rheology of continental lithosphere (e.g. Burov and424

Watts, 2006; Jackson et al., 2008). Several different methods have been used425

to derive Te. One method, probably the most commonly applied, relies on426

the spectral coherence between the Bouguer gravity anomaly and topogra-427

phy (Forsyth, 1985). Audet and Bürgmann (2011) recently used this method428

to produce a global map of elastic thickness, giving values that are typically429

much larger than the seismogenic thicknesses estimated in this paper and430

elsewhere (Figure 5). For example, in Iran, Audet and Bürgmann (2011)431
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estimate Te at 35-65 km, but no earthquake occurs deeper than ∼20 km.432

McKenzie and Fairhead (1997) showed that estimates of Te obtained from433

Bouguer gravity anomalies are upper bounds, since short-wavelength topog-434

raphy has been removed or modified by surface processes. Instead, they435

advocate using either the admittance between topography and free-air grav-436

ity or direct flexural models of free-air gravity profiles. These typically yield437

much lower values for Te, which are always less than the seismogenic thickness438

(Figure 5; McKenzie and Fairhead, 1997; Maggi et al., 2000; Jackson et al.,439

2008; Sloan et al., 2011). However, Pérez-Gussinyé et al. (2004) suggest that440

the McKenzie and Fairhead (1997) estimates of Te may, in turn, be biased441

towards lower values due to differences in windowing between theoretical and442

observed admittances.443

No global grid exists for Te from free-air methods, so we compared the444

Audet and Bürgmann (2011) global grid with our geodetic estimates of seis-445

mogenic thickness, Ts (Figure 7), and find that these estimates of Te are446

almost always significantly greater than Ts. Furthermore, we find no correla-447

tion between Ts and Te derived in this way. By contrast, regional estimates of448

Te derived from free-air gravity (Figure 5) are consistently less than geodetic449

estimates of Ts, as is the case for seismic estimates of Ts. For the regions450

where there are sufficient geodetic data to estimate Ts, we found it to be451

fairly constant. Likewise, there is little variation in free-air Te in these areas.452

Maggi et al. (2000) found that in regions where deeper earthquakes do occur453

in the lower crust (Africa, the Tien Shan and North India), Te estimated454

from free-air methods is higher, although it is always significantly lower than455

estimates derived from Bouguer coherence.456
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We do not wish to use this manuscript to question the validity of either457

method for estimating elastic thickness for the crust, as extensive literature458

on this already exists (e.g. McKenzie and Fairhead, 1997; Pérez-Gussinyé459

et al., 2004; Crosby, 2007). Having said that, the widespread inferences460

of aseismic deformation in the lower crust and upper mantle, required to461

explain geodetic observations of postseismic motions, are hard to reconcile462

conceptually with these regions supporting significant topographic loads over463

geologic timescales: postseismic relaxation times are on the order of a few464

months to a few hundred years. Geodetic observations of the seismic cycle465

therefore appear to support the lower estimates of Te, and hence the concept466

that the strength of continental lithosphere is concentrated in the upper467

seismogenic layer (the “crème brûlée” model).468

Of course, sampling continental rheology through observations of the469

earthquake loading cycle is an inherently biased process. Earthquakes are470

not uniformly distributed throughout the continental lithosphere, and pref-471

erentially sample areas with lower Te estimated with from either Bouguer or472

Free-air gravity methods (e.g. Figure 1), presumably because earthquakes473

are occurring in the weakest regions (e.g. Tesauro et al., 2012). In addition,474

fault zones are capable of modifying their local rheology through processes475

such as shear heating and grain size reduction, which act to create local476

weak shear zones at depth (Bürgmann and Dresen, 2008). Observations of477

postseismic relaxation could therefore be sampling weak regions within an478

otherwise strong crust or mantle (the “banana split” model of Bürgmann479

and Dresen (2008)). This is consistent with studies of glacial isostatic ad-480

justment, which often suggest thick elastic lids (e.g. Watts et al., 2013). If481
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only fault zones are weak, topographic loads could still be supported over482

geologic timescales by stronger regions away from them and higher estimates483

of Te could be valid. Such a view would be consistent with the idea that484

the continents behave as a series of independent crustal blocks (e.g. Meade,485

2007a; Thatcher, 2007). Dense geodetic observations of deformation in re-486

gions including Greece, Tibet and the Basin and Range, however, suggest487

that such blocks are small, if they exist, with dimensions comparable to the488

thickness of the crust (e.g. Floyd et al., 2010; Hammond et al., 2011; Wang489

and Wright, 2012).490

7. Conclusions491

We have compiled geodetic estimates of seismogenic layer thickness from492

the coseismic and interseismic phases of the earthquake loading cycle, and493

find no significant relationship with the depth of the Moho. For the regions494

where there are sufficient geodetic data to obtain robust results, the seismo-495

genic layer thickness determined from both coseismic geodetic slip inversions496

and interseismic locking depth analyses are reasonably constant between re-497

gions, despite considerable variation in crustal thickness.498

We find rupture depths inferred from coseismic geodetic slip inversions499

to be consistent with depths from seismology bodywave inversions. In the500

regions where there are sufficient data, the interseismic “locking depth” es-501

timates are also consistent with the seismogenic layer thickness found co-502

seismically. This implies that interseismic geodetic observations are reliable503

indicators of earthquake potential.504

The transition from frictional controlled faulting to aseismic creeping pro-505
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cesses usually occurs in the mid crust and is thought to be dependent on506

lithology, strain-rate, grain-size, water content and temperature. We found507

no relationship between the seismogenic thickness and geothermal gradient508

(measured directly or inferred from lithospheric thickness models). This sug-509

gests that the effect of temperature, which is so clear in oceanic lithosphere,510

is masked in the continents by considerable variation in lithology, strain-rate511

and grain size.512

Elastic thicknesses derived from the coherence between Bouguer grav-513

ity and topography are systematically larger than the seismogenic thickness514

estimated geodetically, but there is no obvious correlation between them.515

By contrast, as has previously been shown, elastic thicknesses from free-air516

gravity methods are typically smaller than seismogenic layer thicknesses; al-517

though there are no geodetic results in regions where Maggi et al. (2000)518

found high Te and high Ts, the consistency of seismogenic thicknesses from519

geodesy and seismology suggests that this relationship will hold.520

The rapid relaxation of the lower crust and/or upper mantle observed in521

many places is hard to reconcile with the higher estimates of Te – relaxation522

times are typically observed to be a few months to a few centuries. Our523

analysis of the geodetic data therefore supports the “crème brûlée” model,524

in which the strength of the continental lithosphere is supported in the upper525

seismogenic layer.526

However, we note that geodetic observations of the earthquake cycle are527

inherently biased in their distribution. Furthermore, fault zones modify the528

rheology of the crust and mantle in which they sit through processes includ-529

ing grain-size reduction and shear heating. The weak material that responds530
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in the postseismic period may therefore not be representative of the bulk531

rheology of the continental lithosphere: Postseismic results could be sam-532

pling weak regions within an otherwise strong crust or mantle (the “banana533

split” model of Bürgmann and Dresen (2008)). Studies of glacial or lake534

loading/unloading may not suffer from this bias.535

Our compilation suffers from the relatively short time that satellite geode-536

tic methods have been available, a lack of truly global coverage (in compar-537

ison to seismology), and from the variations in modelling strategies applied538

by different groups. Specifically, we lack sufficient geodetic observations from539

areas where Maggi et al. (2000) and others have inferred thicker seismogenic540

layers. In addition, postseismic deformation results are too scarce, and mod-541

elling strategies too variable, to form a robust global picture. With the start542

of the 20-year Sentinel-1 SAR satellite program in 2013, systematic, dense543

geodetic observations will be made globally for the first time, dramatically544

increasing the availability and reliability of geodetic observations of the earth-545

quake loading cycle. We strongly recommend that the geodetic community546

follows the lead of the seismological community by measuring, modelling and547

cataloguing coseismic, interseismic and postseismic deformation in a routine,548

systematic fashion.549

8. Acknowledgments550

This work was supported in part by the Natural Environmental Research551

Council (NERC) through the National Centre of Earth Observation (NCEO)552

of which the Centre for the Observation and Modelling of Earthquakes, Vol-553

canoes & Tectonics (COMET, http://comet.nerc.ac.uk) is a part. Crust 2.0554

24



(Bassin et al., 2000) was downloaded from http://igppweb.ucsd.edu/g̃abi/rem.html.555

We are grateful to Pascal Audet and Roland Bürgmann for making their556

global Elastic Thickness dataset available, and to Dan McKenzie and Keith557

Priestley for sharing their lithospheric thickness data. Global heat flow data558

were taken from the Global Heat Flow Database of the International Heat559

Flow Commission (www.heatflow.und.edu). This manuscript was improved560

by constructive reviews from Roland Bürgmann and an anonymous reviewer,561

and we are grateful for additional comments from Tony Watts, Alex Cop-562

ley and Al Sloan. Most figures were made using the public domain Generic563

Mapping Tools (Wessel and Smith, 1998). TJW was funded by the Royal564

Society through a University Research Fellowship. HW is supported by the565

NSFC (41104016).566

25



Table 1: Compilation of continental strike-slip earthquakes studied with InSAR, updated from Weston et al. (2011, 2012)

to include the bottom depth of faulting (D) and more recent InSAR constrained source models. The type of model used is

denoted by uniform (U) or distributed (D) slip. Seismological source model depths (Z) are given where available as centroid

depths for points sources or bottom depths for finite fault planes, the latter denoted by an asterisk.

# Name Mw Date Lat. Lon. D (km) Slip Reference Z (km) Reference

1 Landers, CA., USA 7.3 1992/06/28 34.45 243.48 15 D Fialko (2004) 15* Wald and Heaton (1994)

2 Al Hoceima, Morocco 6.0 1994/05/26 35.20 355.94 12 U Biggs et al. (2006) 8 Biggs et al. (2006)

3 Double Spring Flat, NV., USA 6.0 1994/09/12 38.82 240.38 12 U Amelung and Bell (2003) 6 Ichinose et al. (1998)

4 Kobe, Japan 6.9 1995/01/17 34.62 135.06 15 U Ozawa et al. (1997) 20* Ide et al. (1996)

5 Neftegorsk, Sakhalin, Russia 7.2 1995/05/27 52.89 142.90 22 U Tobita et al. (1998) 9 Katsumata et al. (2004)

6 Nuweiba, Egypt 7.3 1995/11/22 28.88 34.75 20 D Baer et al. (2008) 15 Hofstetter et al. (2003)

7 Kagoshima-kenhokuseibu, Japan 6.1 1997/03/26 31.98 130.40 14 U Fujiwara et al. (1998) 11* Horikawa (2001)

8 Zirkuh, Iran 7.2 1997/05/10 33.40 59.96 18 D Sudhaus and Jónsson (2011) 13 Berberian et al. (1999)

9 Manyi, Tibet 7.5 1997/11/08 35.22 87.15 20 D Funning et al. (2007) 12 Velasco et al. (2000)

10 Fandoqa, Iran 6.6 1998/03/14 30.01 57.64 7 U Berberian et al. (2001) 5 Berberian et al. (2001)

11 Aiquile, Bolivia 6.6 1998/05/22 -17.89 294.85 14 D Funning et al. (2005a) - -

12 Izmit, Turkey 7.4 1999/08/17 40.72 30.07 20 D Çakir et al. (2003) 12* Li et al. (2002)

13 Hector Mine, CA., USA 7.1 1999/10/16 34.56 243.73 14 D Simons et al. (2002) 15* Ji et al. (2002)

14 Düzce, Turkey 7.1 1999/11/12 40.72 31.26 18 D Burgmann et al. (2002) 22* Umutlu et al. (2004)

15 South Seismic Zone, Iceland 6.5 2000/06/17 63.97 339.66 10 D Pedersen et al. (2001) - -

16 South Seismic Zone, Iceland 6.4 2000/06/21 63.98 339.30 10 D Pedersen et al. (2001) - -

17 Kokoxili, Tibet 7.8 2001/11/14 35.84 92.45 20 D Lasserre et al. (2005) 24* Antolik et al. (2004)

18 Nenana Mountain, AK, USA 6.7 2002/10/23 63.50 211.95 24 D Wright et al. (2003) - -

19 Denali, AK, USA 7.9 2002/11/03 63.22 214.85 20 D Wright et al. (2004a) 30* Oglesby et al. (2004)

20 Siberian Altai, Russia 7.2 2003/09/27 49.9 87.9 15 U Nissen et al. (2007) 18 Nissen et al. (2007)

21 Bam, Iran 6.6 2003/12/26 29.03 58.36 15 D Funning et al. (2005b) 7 Jackson et al. (2006)

22 Al Hoceima, Morocco 6.4 2004/02/24 35.14 356.00 18 D Biggs et al. (2006) 8 Biggs et al. (2006)

23 Parkfield, CA., USA 6.0 2004/09/28 35.8 239.6 15 D Johanson et al. (2006) 12* Langbein et al. (2005)

24 Chalan, Chulan, Iran 6.1 2006/03/31 33.67 48.88 9 D Peyret et al. (2008) 6 Peyret et al. (2008)

25 South-West Iceland 6.1 2008/05/29 63.9 338.9 6 D Decriem et al. (2010) - -

26 Port-au-Prince, Haiti 7.1 2010/01/12 18.5 287.4 20 D Calais et al. (2010) 22* Hayes et al. (2010)

27 El-Mayor Cucapah, Baja, Mexico 7.1 2010/04/04 32.2 244.7 16 D Wei et al. (2011) - -

28 Yushu, China 6.8 2010/04/13 33.10 96.70 18 D Li et al. (2011) 6 Li et al. (2011)

29 Darfield, New Zealand 7.1 2010/09/03 -43.58 172.19 14 D Elliott et al. (2012) 7 Elliott et al. (2012)

30 Rigan, Iran 6.5 2010/12/20 28.25 59.12 13 D Walker et al. (2013) 5 Walker et al. (2013)

31 Rigan, Iran 6.2 2011/01/27 28.15 59.04 17 D Walker et al. (2013) 9 Walker et al. (2013)

32 Shan, Burma 6.8 2011/03/24 99.99 20.67 13 D Feng et al. (2013) - -
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Table 2: Compilation of continental normal faulting earthquakes studied with InSAR. Rest of caption as for Table 1.

# Name Mw Date Lat. Lon. D (km) Slip Reference Z (km) Reference

1 Little Skull Mountain, CA, USA 5.6 1992/06/29 36.75 243.76 13 U Lohman et al. (2002) 8 Romanowicz et al. (1993)

2 Nyemo, Tibet 6.1 1992/07/30 29.7 90.2 12 U Elliott et al. (2010) 10 Elliott et al. (2010)

3 Ngamring County, Tibet 6.1 1993/03/20 29.06 87.48 9 U Funning (2005) - -

4 Eureka Valley, CA., USA. 6.1 1993/05/17 37.11 242.21 12 U Massonnet and Feigl (1995) - -

5 Grevena, Greece 6.6 1995/05/13 40.1 21.7 15 D Rigo et al. (2004) 11 Hatzfeld et al. (1997)

6 Aigion, Greece 6.2 1995/06/15 38.33 22.22 10 U Bernard et al. (1997) 7 Bernard et al. (1997)

7 Dinar, Turkey 6.3 1995/10/01 38.10 30.08 13 U Wright et al. (1999) 4 Wright et al. (1999)

8 Colfiorito, Italy 5.7 1997/09/26 43.0 12.9 7 D Stramondo et al. (1999) 7 Hernandez et al. (2004)

9 Colfiorito, Italy 6.0 1997/09/26 43.1 12.9 7 D Stramondo et al. (1999) 7 Hernandez et al. (2004)

10 Athens, Greece 6.0 1999/09/07 38.1 23.6 12 U Kontoes et al. (2000) 10 Louvari and Kiratzi (2001)

11 Cankiri, Turkey 6.0 2000/06/06 40.65 33.05 8 U Cakir and Akoglu (2008) 15* Utkucu et al. (2003)

12 Zhongba, Tibet 6.2 2004/07/11 30.7 83.75 17 D Elliott et al. (2010) 9 Elliott et al. (2010)

13 Zhongba, Tibet 6.2 2005/04/07 30.45 83.75 11 D Elliott et al. (2010) 5 Elliott et al. (2010)

14 Machaze, Mozambique 7.0 2006/02/22 -21.2 33.4 25 D Copley et al. (2012) 15 Yang and Chen (2008)

15 Gerze, Tibet 6.4 2008/01/09 32.4 85.3 12 D Elliott et al. (2010) 11 Elliott et al. (2010)

16 Gerze, Tibet 5.9 2008/01/16 32.45 85.25 6 D Elliott et al. (2010) 6 Elliott et al. (2010)

17 Yutian, Tibet 7.1 2008/03/20 35.4 81.5 14 D Elliott et al. (2010) 7 Elliott et al. (2010)

18 Zhongba, Tibet 6.7 2008/08/25 30.8 83.5 19 D Elliott et al. (2010) 8 Elliott et al. (2010)

19 Damxung, Tibet 6.3 2008/10/06 29.8 90.4 14 D Elliott et al. (2010) 7 Elliott et al. (2010)

20 L’Aquila, Italy 6.3 2009/04/06 42.33 13.45 13 D Walters et al. (2009) 17 Cirella et al. (2009)

21 Karonga, Malawi 6.0 2009/12/19 -10.0 34.9 6 D Biggs et al. (2010) 5 Biggs et al. (2010)
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Table 3: Compilation of continental reverse faulting earthquakes studied with InSAR. Rest of caption as for Table 1.

# Name Mw Date Lat. Lon. D (km) Slip Reference Z (km) Reference

1 Fawnskin, CA., USA 5.4 1992/12/04 34.35 243.09 4 U Feigl et al. (1995) 12 Jones and Hough (1995)

2 Killari, India 6.1 1993/09/29 18.0 76.5 6 U Satyabala (2006) 3 Seeber et al. (1996)

3 Northridge, CA., USA 6.7 1994/01/17 34.3 241.5 14 U Massonnet et al. (1996) 22* Dreger (1994)

4 Sefidabeh, Iran 6.1 1994/02/23 30.9 60.5 13 D Parsons et al. (2006) 7 Berberian et al. (2000)

5 Sefidabeh, Iran 6.2 1994/02/24 30.85 60.5 10 D Parsons et al. (2006) 10 Berberian et al. (2000)

6 Sefidabeh, Iran 6.0 1994/02/26 30.8 60.5 13 D Parsons et al. (2006) 5 Berberian et al. (2000)

7 Zhangbei-Shangyi, China 5.7 1998/01/10 41.14 114.44 8 D Li et al. (2008) - -

8 Mt Iwate, Japan 6.1 1998/09/03 39.80 140.90 5 D Nishimura et al. (2001) 6* Nakahara et al. (2002)

9 Chamoli, India 6.4 1999/03/28 30.44 79.39 13 U Satyabala and Bilham (2006) - -

10 Ain Temouchent, Algeria 5.7 1999/12/22 35.2 -1.3 8 D Belabbès et al. (2009a) 4 Yelles-Chaouche et al. (2004)

11 Bhuj, India 7.6 2001/01/26 23.51 70.27 25 D Schmidt and Bürgmann (2006) 26* Antolik and Dreger (2003)

12 Boumerdes-Zemmouri, Algeria 6.9 2003/05/21 36.8 3.7 20 D Belabbès et al. (2009b) 23* Semmane et al. (2005)

13 Miyagi, Japan 6.4 2003/07/26 38.45 141.19 6 U Nishimura et al. (2003) 9* Hikima and Koketsu (2004)

14 Niigata, Japan 6.8 2004/10/23 37.30 138.83 9 U Ozawa et al. (2005) 13* Asano and Iwata (2009)

15 Dahuiyeh (Zarand), Iran 6.4 2005/02/22 31.50 56.80 9 U Talebian et al. (2006) 7 Talebian et al. (2006)

16 Kashmir, Pakistan 7.6 2005/10/08 34.29 73.77 14 D Pathier et al. (2006) 17* Avouac et al. (2006)

17 Qeshm, Iran 6.0 2005/11/27 26.88 55.89 9 U Nissen et al. (2010) 9 Nissen et al. (2010)

18 Qeshm, Iran 6.0 2006/06/28 26.91 55.89 12 U Nissen et al. (2010) 11 Nissen et al. (2010)

19 Noto Hanto, Japan 6.9 2007/03/25 37.22 136.66 15 U Fukushima et al. (2008) 20* Horikawa (2008)

20 Sichuan, China 7.9 2008/05/12 31.77 104.23 31 D Hao et al. (2009) 35* Nakamura et al. (2010)

21 Qeshm, Iran 6.0 2008/09/10 26.88 55.89 8 U Nissen et al. (2010) 8 Nissen et al. (2010)

22 Qaidam, Tibet 6.3 2008/11/10 37.55 95.85 22 U Elliott et al. (2011) 18 Elliott et al. (2011)

23 Qaidam, Tibet 6.3 2009/08/28 37.55 95.85 12 U Elliott et al. (2011) 5 Elliott et al. (2011)

24 Christchurch, New Zealand 6.3 2011/02/21 -43.55 172.7 10 D Elliott et al. (2012) 9* Holden (2011)

25 Van, Turkey 7.1 2011/10/23 38.71 43.37 25 D Elliott et al. (2013) 20 Elliott et al. (2013)
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Table 4: Compilation of interseismic parameters studied with geodetic data. Double lines

separate regions of Tibet, Himalayas and Baikal-Mongolia.

# Fault Name Lon (◦E) Lat (◦N) Data Source D (km) Reference

1 Altyn Tagh 79.5 36 InSAR92-99 10* Wright et al. (2004b)

2 Altyn Tagh 85 37 InSAR93-00 15* Elliott et al. (2008)

3 Altyn Tagh 90 38.6 GPS94-98 8-36 Bendick et al. (2000)

4 Altyn Tagh 90 38.6 GPS94-02 20 Wallace et al. (2004)

5 Altyn Tagh 90 38.6 GPS98-04 15* Zhang et al. (2007)

6 Altyn Tagh 94 39.3 GPS98-04 15* Zhang et al. (2007)

7 Altyn Tagh 94 39 InSAR95-06 7-9 Jolivet et al. (2008)

8 Altyn Tagh 96 40 GPS98-04 15* Zhang et al. (2007)

9 Haiyuan 104 37 InSAR93-98 0-4.2 Cavalie et al. (2008)

10 Karakoram 78.8 33.5 InSAR92-99 10* Wright et al. (2004b)

11 Karakoram 78.0 34.0 InSAR92-10 15* Wang and Wright (2012)

12 Lamu Co 82.5 32.5 InSAR92-99 3-5.8 Taylor and Peltzer (2006)

13 Gyaring Co 87.5 31.5 InSAR92-99 23-27 Taylor and Peltzer (2006)

14 Riganpei Co 85.75 32.5 InSAR92-99 14.5 Taylor and Peltzer (2006)

15 Kunlun 94 35 GPS98-04 15* Kirby et al. (2007)

16 Kunlun 101.5 34 GPS98-04 15* Kirby et al. (2007)

17 Kunlun 102.5 34 GPS98-04 15* Kirby et al. (2007)

18 Manyi 87 35.2 InSAR92-97 22±15 Bell et al. (2011)

19 Xianshuihe 101.2 31 GPS -07 9.2±3.7 Meng et al. (2008)

20 Xianshuihe 101.8 30.3 GPS -07 1.0±0.6 Meng et al. (2008)

21 Xianshuihe 100.5 31.5 GPS98-04& 3-6 Wang et al. (2009a)

InSAR96-08

22 Block 84 30 GPS91-00 15* Chen et al. (2004)

23 Block 88 35 GPS98-04 17* Meade (2007b)

24 Block 91 35 GPS&Geology 16* Loveless and Meade (2011)

25 MHT 81-88 27.5-30 GPS91-94 20±4 Bilham et al. (1997)

26 W. MHT 79-84 28-30 GPS91-97 25.0 Larson et al. (1999)

27 W. MHT 84-92 27-28 GPS91-97 16.2 Larson et al. (1999)

28 W. MHT 76.0-80.3 29.2-33.0 GPS95-00 15 Banerjee and Bürgmann (2002)

29 W. MHT 80-84 28.2-30.0 GPS95-00 20-21 Jouanne et al. (2004)

30 W. MHT 84-90 26.5-28.2 GPS95-00 17-21 Jouanne et al. (2004)

31 W. MHT 76-83 28.5-31.5 GPS91-00 18.3 Chen et al. (2004)

32 W. MHT 83-89 27.5-28.5 GPS91-00 14.3 Chen et al. (2004)

33 W. MHT 79.5-83.5 28.0-30.0 GPS95-01 12.1 Bettinelli et al. (2006)

34 W. MHT 83.5-87.2 27.0-28.0 GPS95-01 20.4 Bettinelli et al. (2006)

35 W. MHT 79.0-89.6 27.1-28.3 GPS95-07 24.1 Banerjee et al. (2008)

36 W. MHT 78.4-84 28.5-31.5 GPS93-11 15-20 Ader et al. (2012)

37 W. MHT 84-88.1 27.5-28.5 GPS93-11 15-20 Ader et al. (2012)

38 E. MHT 89-94 27.0-27.6 GPS91-00 20.3 Chen et al. (2004)

39 E. MHT 90.0-99.8 26.9-28.5 GPS95-07 20.0 Banerjee et al. (2008)

40 Dauki 90.1-93.0 25.5-25.3 GPS95-07 37.7 Banerjee et al. (2008)

41 Bolnay 98 49.5 GPS94-02 35* Calais et al. (2003)

42 Gobi Altai 98 45.5 GPS94-02 35* Calais et al. (2003)

43 Tunka 101 52 GPS94-02 35* Calais et al. (2003)

44 Baikal rift 107 53 GPS94-02 35* Calais et al. (2003)
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Table 4: Compilation of interseismic parameters studied with geodetic data (continued).

Double lines separate regions of Iran, Mediterranean and New Zealand.

# Fault Name Lon (◦E) Lat (◦N) Data Source D (km) Reference

45 MZP 57.2 27 GPS00-02 10-15 Bayer et al. (2006)

46 MZP 57.2 27 GPS00-08 15 Peyret et al. (2009)

47 SKJ 58 27 GPS00-02 15* Bayer et al. (2006)

48 SKJ 57.7 27.7 GPS00-08 30 Peyret et al. (2009)

49 Khazar 51.5 36.7 GPS00-08 33 Djamour et al. (2010)

50 Khazar 52 36.5 GPS00-08 10 Djamour et al. (2010)

51 NTF 45 39 GPS99-09 15.5 Djamour et al. (2011)

52 NTF 47 37.5 GPS99-09 14 Djamour et al. (2011)

53 MRF 50 32 GPS97-03 10* Walpersdorf et al. (2006)

54 MRF 54 29.5 GPS97-03 10* Walpersdorf et al. (2006)

55 Doruneh 57 35 InSAR03-10 12* Pezzo et al. (2012)

56 N. MMF 27.5 40.8 InSAR92-03 9-17 Motagh et al. (2007)

57 N. MMF 28 40.8 GPS88-97 10.5 Le Pichon et al. (2003)

58 NAF 37 40.5 GPS06-08 12.8±3.9 Tatar et al. (2012)

59 NAF 38 40.25 GPS06-08 9.4±3.5 Tatar et al. (2012)

60 NAF 39.2 39.9 GPS06-08 8.1±3.3 Tatar et al. (2012)

61 NAF 38.8 39.9 InSAR92-99 5-33 Wright et al. (2001)

62 NAF 38.8 39.9 InSAR92-99 13.5-25 Walters et al. (2011)

63 NAF 32.5 40.8 InSAR92-02 14 Çakir et al. (2005)

64 Block 28 40.5 GPS88-97 6.5±1.1 Meade et al. (2002)

65 Block 29.8 40.6 GPS88-05 18-21* Reilinger et al. (2006)

66 Yammouneh 36 33-34.5 GPS02-05 13 Gomez et al. (2007)

67 S. DSF 36 29.5-33.5 GPS96-01 12 Wdowinski et al. (2004)

68 S. DSF 36 29.5-33.5 GPS99-05 11.5±10.2 Le Beon et al. (2008)

69 S. DSF (WAF) 36 29.5-31.5 GPS96-01 15±5 al Tarazi et al. (2011)

70 S. DSF (JVF) 36 31.5-33.5 GPS96-01 8±5 al Tarazi et al. (2011)

71 Messina 15.5 38.25 GPS94-09 7.6 Serpelloni et al. (2010)

72 S. Alps 13.2 46.5 GPS96-05 3 D’Agostino et al. (2005)

73 C. Apennines 13.5 42.5 GPS94-10 15* D’Agostino et al. (2011)

74 Block 35 30 GPS96-03 13* Mahmoud et al. (2005)

75 Block 36.5 35 GPS88-05 12* Reilinger et al. (2006)

76 Block 355 35 GPS99-09 15* Koulali et al. (2011)

77 Block 16 42 GPS 20* Battaglia et al. (2004)

78 Block 26 39 GPS88-01 10* Nyst and Thatcher (2004)

79 C. Alpine 170 -43.5 GPS94-98 18 Moore et al. (2002)

80 C. Alpine 170 -43.5 GPS94-98 22±1 Beavan et al. (1999)

81 C. Alpine 170 -43.5 GPS94-98 6±1 Beavan et al. (1999)

82 C. Alpine 170 -43.5 GPS01-10 13-18 Beavan et al. (2010)

83 S. Alpine 169 -44 GPS95-98 20±2 Pearson et al. (2000)

84 S. Alpine 169 -44 GPS95-98 10±2 Pearson et al. (2000)

85 Awatere 173.5 -42 GPS94-04 13 Wallace et al. (2007)

86 Clarence 173 -42.3 GPS94-04 13 Wallace et al. (2007)

87 Hope 169 -42.6 GPS94-04 20 Wallace et al. (2007)

88 Wairau 173.3 -41.7 GPS94-04 20 Wallace et al. (2007)

89 Apline 170 -43.5 GPS94-04 18 Wallace et al. (2007)
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Table 4: Compilation of interseismic parameters studied with geodetic data (continued).

Double lines separate regions of Iceland, Alaska and Western United States.

# Fault Name Lon (◦E) Lat (◦N) Data Source D (km) Reference

90 RR 336 63.5 GPS93-04 9.4 Árnadóttir et al. (2009)

91 RPW 337 63.7 GPS92-00 6.6 Árnadóttir et al. (2006)

92 RPW 337 63.7 GPS00-06 4 Keiding et al. (2008)

93 RPW 337 63.7 GPS93-04 7.1 Árnadóttir et al. (2009)

94 RP 338 63.8 GPS92-00 8.3 Árnadóttir et al. (2006)

95 RP 338 63.8 GPS92-00 7 Keiding et al. (2008)

96 RP 338 63.8 GPS93-04 5.3 Árnadóttir et al. (2009)

97 SISZ 339.5 63.8 GPS92-00 19.3 Árnadóttir et al. (2006)

98 SISZ 339.5 63.8 GPS00-06 6 Keiding et al. (2008)

99 SISZ 339.5 63.8 GPS93-04 6.5 Árnadóttir et al. (2009)

100 WVZ 339.5 64.3 GPS94-03 4 LaFemina et al. (2005)

101 WVZ 339.5 64.3 GPS00-06 3 Keiding et al. (2008)

102 WVZ 339.5 64.3 GPS93-04 5.2 Árnadóttir et al. (2009)

103 EVZ 341.5 64 GPS94-03 3 LaFemina et al. (2005)

104 EVZ 341.5 64 GPS93-04 8.9 Árnadóttir et al. (2009)

105 EVZ 341.5 64 GPS94-06 5/3/3 Scheiber-Enslin et al. (2011)

106 NVZ 343.5 65.5 GPS93-04 4.9 Árnadóttir et al. (2009)

107 GL 343 66.5 GPS93-04 13.8 Árnadóttir et al. (2009)

108 HFF 342.5 66.1 GPS93-04 4.7 Árnadóttir et al. (2009)

109 HFF 342.5 66.1 GPS06-10 6.3 Metzger et al. (2011)

110 KR 341.5 66.8 GPS93-04 14.5 Árnadóttir et al. (2009)

111 Queen Charlotte 227.5 53 GPS98-02 14* Mazzotti et al. (2003)

112 Queen Charlotte 227.5 53 GPS 10* Elliott et al. (2010b)

113 Malaspina Fairweather 221 60.2 GPS 5* Elliott et al. (2010b)

114 Upper Fairweather 221 60.3 GPS 7.6* Elliott et al. (2010b)

115 C. Fairweather 221 58.5 GPS 10* Elliott et al. (2010b)

116 Glacier Bay 224 59 GPS 10* Elliott et al. (2010b)

117 Boundary 223 59.7 GPS 8* Elliott et al. (2010b)

118 Foothills 222 58.8 GPS 4.98-12* Elliott et al. (2010b)

119 Fairweather 221 59.7 GPS92-02 9.0±0.8 Fletcher and Freymueller (2003)

120 Transition 220 58.5 GPS 8/26.5* Elliott et al. (2010b)

121 Denali 221.5 61 GPS92-02 10* Fletcher and Freymueller (2003)

122 Denali 221.5 61 GPS 10* Elliott et al. (2010b)

123 Denali 214 63.5 InSAR92-02 10* Biggs et al. (2007)

124 Wasatch 248 40 GPS96-08 7±3 Soledad Velasco et al. (2010)

125 Imperial 244.5 32.8 GPS99-00 10 Lyons et al. (2002)

126 Imperial 244.5 32.7 GPS 5.9±3 Smith-Konter et al. (2011)

127 SAF 244.2 33.5 InSAR92-00 17 Fialko (2006)

128 SM 244.2 32.8 GPS 10.8±1.1 Smith-Konter et al. (2011)

129 ETR 244 34.0 GPS94-09 15* Spinler et al. (2010)

130 Borrego 244 33.2 GPS 6.4±1.4 Smith-Konter et al. (2011)

131 DV-FC 244 35.5 GPS94-99 15* Gan et al. (2000)

132 DV 244 35.5 GPS99-03 12* Wernicke et al. (2004)

133 DV-FC 244 35.5 GPS 7.5±2.7 Hill and Blewitt (2006)
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Table 4: Compilation of interseismic parameters studied with geodetic data (continued).

Double lines separate regions of Western United States, Sumatran and Southeast Asia.

# Fault Name Lon (◦E) Lat (◦N) Data Source D (km) Reference

134 Coachella 244 33.7 GPS 11.5±0.5 Smith-Konter et al. (2011)

135 SJF 244 33.2 InSAR92-00 12 Fialko (2006)

136 Coyote Creek 243.7 33.2 GPS 6.3±2 Smith-Konter et al. (2011)

137 Anza 243.5 33.5 GPS 13.7±3.2 Smith-Konter et al. (2011)

138 YM 243.5 36.8 GPS 12.8±2.3 Hill and Blewitt (2006)

139 SP 243.5 36.7 GPS99-03 12* Wernicke et al. (2004)

140 Palm Springs 243.5 34 GPS 16.4±8 Smith-Konter et al. (2011)

141 SB 243 34 GPS 17.8±2 Smith-Konter et al. (2011)

142 PV-HM 243 36 GPS94-99 15* Gan et al. (2000)

143 PV-HM 243 36 GPS 8.6±3.7 Hill and Blewitt (2006)

144 SJV 243 34.8 GPS 21.5±6.3 Smith-Konter et al. (2011)

145 SJM 242.5 34 GPS 21.0±3.2 Smith-Konter et al. (2011)

146 LL-BW 242.5 35.5 InSAR92-00 5 Peltzer et al. (2001)

147 HM 242.2 36.6 InSAR92-00 2±0.4 Gourmelen et al. (2010)

148 OV 242 36 GPS 7.3±4.0 Hill and Blewitt (2006)

149 OV 242 36 GPS94-99 15* Gan et al. (2000)

150 Mojave 242 34.5 GPS 15* Johnson et al. (2007b)

151 Mojave 242 34.5 GPS 18-24 Johnson et al. (2007b)

152 Mojave 242 34.5 GPS 16.8±0.4 Smith-Konter et al. (2011)

153 Carrizo 240.5 35 GPS 18.7±2 Smith-Konter et al. (2011)

154 SA 240 35 GPS 10.2±3.8 Hill and Blewitt (2006)

155 GVF 237.7 38.4 GPS/InSAR 5 Jolivet et al. (2009)

156 RCF 237.5 38.2 GPS/InSAR 10 Jolivet et al. (2009)

157 SAF 237.2 38 GPS/InSAR 10±2 Jolivet et al. (2009)

158 Block 242 39 GPS 15* Hammond et al. (2011)

159 Block 241 40 GPS 15* Hammond and Thatcher (2007)

160 Sumatran 100 0 GPS89-93 15 Prawirodirdjo et al. (1997)

161 Sumatran 100.7 -0.8 GPS89-96 22±12 Genrich et al. (2000)

162 Sumatran 100.4 -0.4 GPS89-96 24±13 Genrich et al. (2000)

163 Sumatran 100 0.6 GPS89-96 56±35 Genrich et al. (2000)

164 Sumatran 99.4 1.3 GPS89-96 21±12 Genrich et al. (2000)

165 Sumatran 98.8 2.2 GPS89-96 9±3 Genrich et al. (2000)

166 Sumatran 98.4 2.7 GPS89-96 9±4 Genrich et al. (2000)

167 Sagaing 96 22 GPS98-00 15 Vigny et al. (2003); Socquet et al. (2006b)

168 Sagaing 96 26 GPS05-08 7.7 Maurin et al. (2010)

169 Sagaing 96 24 GPS05-08 6.3 Maurin et al. (2010)

170 Sagaing 96 22 GPS05-08 20.3 Maurin et al. (2010)

171 Palu-Koro 120 -1 GPS92-05 12 Socquet et al. (2006a)

172 Gorontalo 122.5 1 GPS92-05 10 Socquet et al. (2006a)

173 Lawanopo 122 -3 GPS92-05 15 Socquet et al. (2006a)

174 Tomini 122 -0.3 GPS92-05 15 Socquet et al. (2006a)
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Table 4: Compilation of interseismic parameters studied with geodetic data (continued).

Double lines separate regions of Central America and Taiwan.

# Fault Name1 Lon (◦E) Lat (◦N) Data Source D (km) Reference

175 El Pilar 296.5 10.5 GPS94-00 14±2 Pérez et al. (2001)

176 Septentrional 288 20 GPS86-95 15 Dixon et al. (1998)

177 Septentrional 288 20 GPS94-01 15* Calais et al. (2002)

178 Enriquillo 287 18.5 GPS86-95 15 Dixon et al. (1998)

179 Enriquillo 287 18.5 GPS94-01 15* Calais et al. (2002)

180 NH 288 20.4 GPS86-95 15 Dixon et al. (1998)

181 NH 288 20.4 GPS94-01 15* Calais et al. (2002)

182 PMFS 270.5 15 GPS99-03 21 Lyon-Caen et al. (2006)

183 PMFS 270.5 15 GPS99-06 20 Franco et al. (2012)

184 Block 282.5 18.3 GPS98-11 15* Benford et al. (2012)

185 Tainan 120.19 23 GPS/InSAR 4* Huang et al. (2009)

186 Houchiali 120.24 23 GPS/InSAR 4* Huang et al. (2009)

187 Chungchou 120.26 23 GPS/InSAR 4.1* Huang et al. (2009)

1 Block: block model with constant locking depth; CJFS: Central Jamaica Fault System; DSF: Dead

Sea fault; DV-FC: Death Valley-Furnace Creek; ETR: Eastern Transverse Ranges Province; EVZ:

Eastern Volcanic Zone; GL: Grimsey Lineament; HFF: Husavik-Flatey Fault; JVF: Jordan Valley

fault; KR: Kolbeinsey Ridge; LL-BW: Little Lake - Black Water Fault; MHT: Main Himalayan Thrust;

MRF: Main Recent Fault; MZP: Zendan-Minab-Palami fault; NAF: North Anatolian Fault; NH: North

Hispaniola; N. MMF: northern Marmara Fault; NTF: north Tabriz fault; NVZ: Northern Volcanic

Zone; OV: Owens Valley; PMFS: Polochic-Motagua Fault System; PV-HM: Panamint Valley-Hunter

Mountain; RP: Reykjanes Peninsula; RPW: Western Reykjanes Peninsula; RR: Reykjanes Ridge; SA:

San Andreas; SB: San Bernardino; SISZ: South Iceland Seismic Zone; SJF: San Jacinto Fault; SJM: San

Jacinto Mountain; SJV: San Jacinto Valley; SKJ: Sabzevaran-Kahnuj-Jirsoft fault; SM: Superstition

Mountain; SP: Satellite-Pahrump; WAF: Wadi Araba fault; WVZ: Western Volcanic Zone; YM: Yucca

Mountain; YZS: Yarlung-Zangbo Suture.

2 *: Fixed locking depth

3 Corresponding to three profiles in the literature

4 For single and two faults models respectively
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Figure 1: (a) Locations and focal mechanisms of the 78 continental Mw 5.5+ earthquakes modelled to

date with InSAR observations of surface deformation, updated from Weston et al. (2011, 2012) and listed

in Tables 1–3. The areas of four continental regions used to subdivide the plots in Figure 5 are delineated

by dashed lines. (b) Crustal thickness from Crust 2.0 (Bassin et al., 2000), linearly interpolated to one

degree spacing. Coloured stars indicate the bottom depth of faulting from coseismic studies (Tables 1–3).

Locations of interseismic studies listed in Table 4 are coloured by depth and denoted by triangles (fixed

locking depths) and circles (estimated locking depths).
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sources (circles). Events are coloured by mechanism: reverse (red), strike-slip (black) and

normal faulting (blue). Open symbols denoted Mw < 6.5, filled Mw > 6.5. The black line
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whilst the grey line is for the seismological centroid estimates. Inset figure shows the

distribution of 78 InSAR derived bottom fault depths.
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Figure 5: Histograms of earthquake rupture bottom depths (black bars) determined from

InSAR-constrained coseismic slip models based upon the data in Tables 1–3, grouped by

four continental regions shown in Figure 1. Blue bars are from the locking depths of

interseismic studies shown in Table 4, for fixed (light-blue) and estimated depths (dark-

blue). The mean (dashed line) Moho depths (Figure 1b) and one standard deviation

(light grey panel) within each region are from the CRUST2.0 model (Bassin et al., 2000).

The mean (dashed white line) elastic thicknesses (Te) from Audet and Bürgmann (2011)

and one standard deviation (dark grey panel) within each region are also shown. Elastic

thicknesses from individual studies using free-air gravity are also shown from McKenzie

and Fairhead (1997); Maggi et al. (2000); Fielding and McKenzie (2012). The inset red

histograms show the distribution of heat flow within the region from the database updated

by Hasterok and Chapman (2008). The inset green histograms show the distribution of

lithospheric thickness within the region from Priestley and McKenzie (2006). Note the

method used by Priestley and McKenzie (2006) cannot resolve lithospheric thicknesses less

than 100 km.
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Figure 6: Global compilation of rheological interpretations of postseismic geodetic data.

VER = viscoelastic relaxation. Each column represents a single case study, either for

an individual earthquake or a group of earthquakes. Grey background denotes crust and

green background denotes mantle. Where the crust is divided into upper and lower layers,

upper crustal thickness is either assumed to be the maximum rupture depth/seismogenic

thickness for the area, or is directly estimated from the geodetic data. The magnitude of

each earthquake is given at the bottom of each column (white text), along with the geodetic

observation period (black text). A white asterisk means that the study only investigated a

single relaxation process (either afterslip or viscoelastic relaxation). Minor/possible VER

implies that viscosities for a particular layer are poorly-constrained, and/or are within one

order of magnitude greater than for the layer where dominant VER occurs. Seismogenic

thickness is marked for reference (light blue dotted lines)
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Figure 7: Correlation between InSAR-derived bottom depths of faulting given in Tables 1–

3, or geodetically-determined locking depths given in Table 4, and elastic thickness (Te)

(Audet and Bürgmann, 2011), lithospheric thickness (Priestley and McKenzie, 2006) and

heat flow (Hasterok and Chapman, 2008). The method used by Priestley and McKenzie

(2006) cannot resolve lithospheric thicknesses less than 100 km. Coseismic events are

scaled by magnitude (Mw 5.5–7.8); interseismic locking depths are plotted as circles if

they were determined by free inversion, or triangles if they were held fixed.

40



References567

Ader, T., Avouac, J.P., Liu-Zeng, J., et al., 2012. Convergence rate across568

the Nepal Himalaya and interseismic coupling on the Main Himalayan569

Thrust: Implications for seismic hazard. Journal of Geophysical Research570

117, B04403, doi:10.1029/2011JB009071.571
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