

This is a repository copy of *Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80222/

Version: Accepted Version

Article:

Wright, TJ, Elliott, JR, Wang, H et al. (1 more author) (2013) Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere. Tectonophysics, 609. 504 - 523. ISSN 0040-1951

https://doi.org/10.1016/j.tecto.2013.07.029

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere.

Tim J. Wright^a, John Elliott^b, Hua Wang^c, Isabelle Ryder^d

^aCOMET+, School of Earth and Environment, University of Leeds, Leeds, UK, LS2 9JT

^bCOMET+, Department of Earth Sciences, University of Oxford, Oxford, UK, OX1 3PR ^cDepartment of Surveying Engineering, Guangdong University of Technology,

Guangzhou, China

^dSchool of Environmental Sciences, 4 Brownlow St, University of Liverpool, UK, L69 3GP

Abstract

The last 20 years has seen a dramatic improvement in the quantity and quality of geodetic measurements of the earthquake loading cycle. In this paper we compile and review these observations and test whether crustal thickness exerts any control. We found 78 earthquake source mechanisms for continental earthquakes derived from satellite geodesy, 187 estimates of interseismic "locking depth", and 23 earthquakes (or sequences) for which postseismic deformation has been observed. Globally we estimate seismogenic thickness to be 14 ± 5 and 14 ± 7 km from coseismic and interseismic observations respectively. We find that there is no global relationship between Moho depth and the seismogenic layer thickness determined geodetically. We also found no clear global relationship between seismogenic thickness and proxies for the temperature structure of the crust. This suggests that the effect of temperature, so clear in oceanic lithosphere, is masked in the continents by considerable variation in lithology, strain-rate, and/or grain size. Elastic thicknesses from Bouguer gravity are systematically larger than the geode-

Preprint submitted to Tectonophysics

July 20, 2013

tic seismogenic thicknesses but there is no correlation between them. By contrast, elastic thickness from free-air methods are typically smaller than the geodetic estimates of seismogenic layer thickness. Postseismic observations show considerable regional variations, but most long-term studies of large earthquakes infer viscoelastic relaxation in the lower crust and/or upper mantle with relaxation times of a few months to a few hundred years. These are in apparent contradiction with the higher estimates of elastic thickness. Our analysis of the geodetic data therefore supports the "crème brulée" model, in which the strength of the continental lithosphere is predominantly in the upper seismogenic layer. However, the distribution of geodetic observations is biased towards weaker areas, and faults can also modify the local rheology. Postseismic results could therefore be sampling weak regions within an otherwise strong crust or mantle.

Keywords: Moho, Crustal deformation, Geodesy, Continental Rheology, Elastic Thickness

1 1. Introduction

The earthquake deformation cycle is typically divided into three phases: 2 The deformation that occurs during an earthquake is referred to as *coseismic*; 3 it is followed by a period of transient *postseismic* deformation, which even-4 tually decays to a steady-state background *interseismic* deformation (e.g. 5 Thatcher and Rundle, 1979). Recent advances in satellite geodesy, and in 6 particular the rapid uptake of interferometric synthetic aperture radar (In-7 SAR), have led to a dramatic increase in the quantity and quality of defor-8 mation measurements of the earthquake cycle (e.g. Wright, 2002; Bürgmann 9

¹⁰ and Dresen, 2008; Weston et al., 2012).

Owing to the long inter-event time in many fault zones, typically hun-11 dreds to thousands of years, we do not have deformation observations with 12 modern instruments spanning a complete earthquake cycle for any single 13 fault. Nevertheless, by looking globally we can observe deformation around 14 faults at different stages of the cycle. InSAR is particularly suitable for 15 measuring the large and rapid coseismic displacements associated with con-16 tinental earthquakes, but has also been valuable in constraining postseismic 17 and interseismic deformation in several cases, particularly for remote faults 18 with minimal ground-based observations. At the same time, thousands of 19 Global Positioning System (GPS) measurements have been made in active 20 fault zones (e.g. Kreemer et al., 2003). These have been particularly valuable 21 for examining the slower, longer-wavelength deformation associated with the 22 interseismic and postseismic phases of the earthquake cycle. 23

In the past decade, the strength of continental lithosphere has been the 24 cause for considerable controversy (e.g. Jackson, 2002; Burov et al., 2006; 25 Jackson et al., 2008; Burov, 2010; Bürgmann and Dresen, 2008). The debate 26 has focused on whether strength resides in a single layer in the upper crust 27 (the "crème brûlée" model) or whether the upper mantle is also strong (the 28 "jelly sandwich" model). Most earthquakes occur in the upper crust; coseis-29 mic deformation can be used to infer the depth range of faulting and hence 30 the thickness of the seismogenic layer. During the interseismic and postseis-31 mic periods, deformation occurs in the lower crust and mantle. We can infer 32 the seismogenic thickness from simple elastic models of the interseismic pe-33 riod; the rates, location and mechanisms of postseismic deformation can be ³⁵ used to place bounds on the strength of the lower crust and upper mantle.

In this paper, we compile observations of earthquake cycle deformation 36 from the published literature made in tectonic areas across the planet, and 37 extract key parameters. In particular we examine the thickness of the upper 38 crustal layer that slips in earthquakes but is locked in the interseismic pe-39 riod, and examine the depth ranges and timescales over which postseismic 40 relaxation has been inferred to occur. We test whether these parameters are 41 related to estimates of Moho depth, elastic thickness, and geothermal gra-42 dient, estimated independently. Finally, we discuss the implications for the 43 strength of continental lithosphere. 44

45 2. Seismogenic thickness constraints from coseismic deformation

During coseismic deformation, the passage of seismic waves through the 46 entire crust and mantle is testament to their elastic behaviour on short time-47 scales. On longer timescales, elastic stresses are relaxed through temperature-48 dependent ductile processes such as viscous relaxation (e.g. Rundle and Jack-49 son, 1977; Pollitz, 1992) and aseismic afterslip (e.g. Scholz and Bilham, 1991; 50 Perfettini and Avouac, 2004). These processes restrict the vast majority of 51 continental earthquakes to the brittle upper crust. The thickness of this seis-52 mogenic layer (T_s) has previously been estimated by examining earthquake 53 centroid depths (e.g. Maggi et al., 2000; Jackson et al., 2008) determined by 54 inversions of seismic waves that assume a point source for the earthquake. 55 Geodetic methods allow for additional information about the depth distribu-56 tion of slip in earthquakes. For small events, most studies assume uniform 57 slip on a rectangular dislocation (Okada, 1985). For larger events, detailed 58

⁵⁹ slip distributions are often resolved. In most of these cases, information
⁶⁰ about the maximum depth extent of slip in the earthquake can be retrieved.
⁶¹ Although there are fewer geodetic earthquake solutions than seismic sources,
⁶² the depth range over which seismic slip occurs is arguably more robust.

⁶³ We have updated the list of 58 continental earthquakes ($M_w \gtrsim 5.5$) stud-⁶⁴ ied with InSAR from Weston et al. (2011, 2012), with 20 further earthquakes, ⁶⁵ to give a database of 78 events (Figure 1a). The list is spread slightly un-⁶⁶ evenly across strike-slip (Table 1), normal (Table 2) and reverse (Table 3) ⁶⁷ faulting mechanisms, with 32, 21 and 25 events respectively. For each earth-⁶⁸ quake we extract the bottom depth of faulting in the published geodetic ⁶⁹ model.

The majority of studies involve models in which slip is permitted to occur 70 over a distributed region of sub-fault patches. A limitation of surface geode-71 tic data is that the resolution of slip decreases with depth (e.g. Funning et al., 72 2005b; Atzori and Antonioli, 2011) and that, consequently, small deep earth-73 quakes are difficult to record. However, of the 78 continental earthquakes so 74 far measured, the depth extent of faulting is clustered in the depth range 5– 75 25 km, and slip much deeper than this has been shown to be recoverable for 76 subduction events (e.g. Pritchard et al., 2002). The spread of InSAR bottom 77 depths of faulting is normally distributed with a mean of 14 km and a stan-78 dard deviation of 5 km (Figure 2 inset). The depth distribution of smaller 79 events, which are unlikely to have ruptured the entire width of the seismo-80 genic crust, is biased towards the shallower range of depths in our database as 81 they are difficult to detect geodetically if they occur in the mid-lower crust. 82 We compare the depth estimates of faulting from InSAR with seismic 83

5

source models (Tables 1–3; Figure 2), where available (86% of events exam-84 ined here). To ensure the seismic solutions are robust and reliable, we only 85 use centroid depths from point-source body-wave modelling (typically for 86 smaller events) and distributed slip source models from body-wave/strong 87 motion (for the larger events). For the larger events, we take the bottom 88 depth of faulting in the slip model presented by the authors in each paper, 89 as was done for the InSAR solutions. For the earthquakes with distributed 90 seismic solutions, (circles in Figure 2), there is a one-to-one correlation be-91 tween the two estimates of bottom depth, with a small bias of 2–3 km towards 92 deeper seismological slip when compared to the bottom depth from InSAR. 93 This slight discrepancy may arise from the poorer depth resolution in the seis-94 mological solutions, or be because the InSAR models (which typically use 95 homogeneous elastic half-spaces) bias the slip slightly shallower compared 96 to the layered velocity models typically used in the seismology inversions. 97 When the InSAR depths are compared to the seismological centroid depths 98 (squares in Figure 2), the relationship follows a two-to-one ratio, as would gc be expected if the slip was symmetrically distributed about the centroid in 100 depth and approached the surface. 101

We compare the geodetically-determined bottom depth of rupture given in Tables 1–3 to the crustal thickness from Crust 2.0 (Bassin et al., 2000), for each type of fault mechanism (Figure 3). The maximum depth of slip for the earthquakes with geodetic solutions are mostly in the range 5–25 km, and occur in regions with crustal thickness in the range of 10–75 km. There is a large spread in the data, but we find no systematic relationship between a deeper Moho and the depth extent of faulting.

¹⁰⁹ 3. Seismogenic thickness constraints from interseismic deformation

Simple geodynamic models of the entire earthquake cycle, with an elastic 110 lid overlying a viscoelastic (Maxwell) substrate, suggest that the observed 111 deformation is a function of time since the last earthquake (e.g. Savage and 112 Prescott, 1978; Savage, 1990). Observations of focused strain late in the 113 earthquake cycle around many major fault structures and rapid postseismic 114 transients are cannot be explained by these simple models – the former re-115 quires a high viscosity in the substrate and the latter a low viscosity (e.g. 116 Hetland and Hager, 2006; Takeuchi and Fialko, 2012). 117

The observational data have led to the development of a new generation 118 of earthquake cycle models that are able to predict focused interseismic defor-119 mation alongside rapid postseismic deformation (Hetland and Hager, 2006; 120 Johnson et al., 2007a; Vaghri and Hearn, 2012; Takeuchi and Fialko, 2012; 121 Yamasaki et al., 2013). These studies suggest that, although the velocities 122 do change throughout the cycle, they are reasonably steady after the initial 123 postseismic transient deformation has decayed. The models partially explain 124 the ubiquity of the classic elastic dislocation model (Savage and Burford, 125 1973), in which interseismic deformation around strike-slip faults is mod-126 elled as steady creep on a narrow, infinitely-long and deep vertical fault in 127 an elastic half space beneath a locked lid (the other significant factor is its 128 simplicity). 129

We take a pragmatic approach to interseismic deformation, and have searched for all examples that have been modelled either using the simple deep dislocation formulation or an equivalent elastic block model approach. This allows us to examine spatial variations in the 'locking depth' parameter in a consistent manner, even if the model is undoubtedly an oversimplifica-tion.

We found 187 estimates of interseismic locking depth in ~ 100 publica-136 tions (Table 4; Figure 1). Of these, 131 were determined as free parameters 137 in inversions of the geodetic data. Regional variations do exist, with locking 138 depths in Iceland being 7 ± 4 km, compared with 20 ± 6 km in the Himalayas, 139 for example. However, in general the values are remarkably consistent, nor-140 mally distributed with a global mean of 14 ± 7 km (Figure 4). This is remark-141 ably similar to the global distribution found for the coseismic bottom depths 142 (Figure 2), with the same mean at 14 km. As was the case for earthquake 143 depths, we find no systematic global relationship between locking depth and 144 crustal thickness (Figures 4). 145

¹⁴⁶ 4. Regional variations in seismogenic thickness

To search for any systematic variations in seismogenic thickness, we examine the distribution of coseismic slip and interseismic locking depths in four continental areas for which we have a sufficient number of geodetic results: Iran, the Mediterranean, Tibet and the Western US (Figure 5).

For Iran, the 11 earthquakes so far studied are constrained to be shallower than 20 km and match the interseismic locking depths except for two deep outliers (Figure 5). The results indicate a large aseismic lower crust above the Moho, which is at a depth of 40–45 km.

The Mediterranean region, which we define broadly to include 16 earthquakes in Turkey, Greece, Italy and Algeria, has depths of faulting and locking down to 20–25 km, and a relatively narrow aseismic lower crust above a ¹⁵⁸ Moho at 30–40 km (Figure 5).

The 16 earthquakes with geodetic solutions in Tibet are largely in the upper 25 km of crust, with one event deeper at 31 km (Sichuan), and the interseismic locking depths, reviewed in depth in Searle et al. (2011), cover the same range (Figure 5). However, the Moho for this region is much deeper at 50–70 km, leaving a much thicker aseismic lower crust.

Finally, the Western US has a narrower seismogenic layer of 16 km based upon the 9 earthquakes studied in this small region, and similar interseismic locking depths, estimated from extensive geodetic analyses (Figure 5). The crust is 30–35 km thick, suggesting the aseismic lower crust is \sim 15–20 km thick.

Our seismogenic layer thicknesses for these regions are similar to those of Maggi et al. (2000), who used seismological constrained centroid depths. Maggi et al. (2000) also had sufficient earthquakes in Africa, the Tien Shan and North India to establish that seismogenic layer thicknesses are larger in these regions. We could not find enough geodetic studies in these regions to independently verify this result.

The consistency between interseismic locking depths and the depth ranges 175 of coseismic slip release (Figure 5), which both peak at around 10-20 km for 176 the regions where we have sufficient data, implies that it is reasonable to es-177 timate earthquake potential using interseismic geodetic measurements. The 178 geodetic data therefore confirm that, for the regions where most continental 179 earthquakes occur, the upper half of the crust is largely seismic and able to 180 accumulate stress elastically over the earthquake cycle. Deformation occurs 181 aseismically and continuously in the lower crust. 182

183 5. Rheological constraints from postseismic deformation

A period of accelerated deformation is observed after many large earth-184 quakes, in which instantaneous deformation rates are higher than those ob-185 served before the earthquake. Several mechanisms are likely occurring during 186 this postseismic phase of the earthquake deformation cycle. Over short time 187 scales (up to a few months), the re-equilibration of ground water levels causes 188 a poroelastic effect (e.g. Jónsson et al., 2003; Fialko, 2004). On longer time 189 scales, aseismic creep on the fault plane (afterslip) and viscoelastic relaxation 190 (VER) of the lower crust and mantle are the most significant processes. 191

The postseismic phase of the earthquake cycle is probably the least well 192 observed; we found only 49 studies in the literature in which postseismic 193 observations have been made for at least two months after the event for con-194 tinental earthquakes. These studies analysed GPS and/or InSAR data from 195 only 19 individual earthquakes and four groups of earthquakes. Furthermore, 196 the lack of consensus on the appropriate methods for modelling postseismic 197 deformation makes it hard to make a systematic comparison between the 198 studies. 199

Most studies of postseismic deformation after large ($M_w \gtrsim 7$) earthquakes 200 infer afterslip or viscoelastic relaxation as a deep process occurring beneath 201 an upper layer that is modelled as a purely elastic layer. In some cases the 202 thickness of this elastic lid is held fixed at the depth of earthquake rupture. In 203 other studies, the elastic lid thickness is allowed to vary as a free parameter. 204 Studies that invoke afterslip split into two camps: some carry out simple 205 kinematic inversions to find the distribution of slip on an extended fault 206 plane that matches the postseismic geodetic observations (e.g. Bürgmann 207

et al., 2002); more rarely, others calculate a prediction for the amount of afterslip expected based on an assumed friction law for the fault plane (e.g. Hearn et al., 2002; Johnson et al., 2009).

Even investigations that agree that viscoelastic deformation is the dom-211 inant process occurring at depth have no consensus as to the appropriate 212 rheology to ascribe to the viscoelastic material. Simple linear Maxwell rhe-213 ologies are often used in the first instance, but these are typically unable 214 to explain both 'early' and 'late' postseismic deformation (definitions left 215 deliberately vague): fitting the early part of the postseismic relaxation pe-216 riod usually requires a lower viscosity than fitting the later part (e.g. Pollitz, 217 2003; Freed and Bürgmann, 2004; Ryder et al., 2007). Freed and Bürgmann 218 (2004) showed that a non-linear power-law rheology (in which strain rate 219 is proportional to $(stress)^n$ could fit both early and late postseismic de-220 formation observed by GPS after the 1992 Landers and 1999 Hector Mine 221 earthquakes, with n = 3.5. For such models to be correct, the stress change 222 during the earthquake must dominate over the background levels of stress 223 in the crust. Alternatively, Pollitz (2003) and others have often applied a 224 Burgers body rheology to explain postseismic deformation. This linear rhe-225 ology has two effective viscosities, which allow it to relax rapidly in the early 226 period of postseismic relaxation and more slowly later on. Riva and Gov-227 ers (2009) and Yamasaki and Houseman (2012) point out that the expected 228 temperature structure in the lower crust and mantle can result in multiple 229 effective viscosities for the relaxing layers - colder shallower layers relax more 230 slowly than deeper, hot layers. Therefore, power-law or Burgers rheologies 231 may not be required by the observations, as has previously been argued. 232

Yet a further complication arises because most of these models assume lat-233 erally homogeneous (layered) structures. Geological evidence suggests that 234 shear zones develop under major crustal faults due to processes including 235 shear heating (e.g. Thatcher and England, 1998) and grain size reduction 236 (Bürgmann and Dresen, 2008, and references therein). Shear zones may 237 cause lateral variations in viscosity that can also explain the geodetic obser-238 vations of multiple relaxation times (Vaghri and Hearn, 2012; Takeuchi and 239 Fialko, 2012; Yamasaki et al., 2013). 240

The magnitude of the earthquake being studied and the duration of ob-241 servation are important factors to consider when interpreting models of post-242 seismic deformation. Other things being equal, small earthquakes will excite 243 less viscous flow than larger earthquakes. One might therefore expect to have 244 to make observations over a longer time period in order to see evidence at the 245 surface for viscoelastic relaxation at depth. By a similar line of reasoning, 246 viscous flow will be excited in deep viscoelastic layers to a lesser extent than 247 in shallow viscoelastic layers, and very large earthquakes may be required 248 to excite motions in deep layers. Again, one would expect to have to ob-240 serve for longer to detect a viscous flow signal. In summary, when it comes 250 to inferring evidence for viscoelastic relaxation, the observational odds are 251 stacked against small-magnitude earthquakes embedded in the top of a thick 252 elastic upper layer. The optimum case for observing viscoelastic relaxation 253 is a large earthquake occurring in a thin elastic layer. 254

Despite the various difficulties discussed above, we argue that there is some value in attempting to compile and compare observations of postseismic deformation globally. In Figure 6, we summarise the results of studies

that collectively model postseismic geodetic data for 19 continental earth-258 quakes (including two earthquake sequences), plus a handful of groups of 259 earthquakes, some of which occurred many decades ago. We are primar-260 ily interested in the depth ranges, or lithospheric layers (lower crust, upper 261 mantle), in which different postseismic relaxation processes occur, since this 262 gives valuable insight into the strength profile of the crust and upper mantle 263 over the month to decadal time scale. The range of earthquake magnitudes 264 is 5.6 to 7.9, and all case studies use data covering at least two months fol-265 lowing the earthquake. The majority of these investigations have modelled 266 viscoelastic relaxation (VER) and/or afterslip. The studies that only model 267 a single process, rather than testing for both processes, are indicated in the 268 figure by asterisks. A few studies also model poroelastic rebound. 269

The compilation of postseismic case studies highlights a number of key 270 points. Firstly, even accounting for the large range of earthquake magnitudes 271 and observation periods, there is considerable variation in inferred rheological 272 structure between different regions around the globe (Figure 6). Afterslip is 273 inferred to occur anywhere from the very top of the crust right down to the 274 upper mantle in a few cases, though some authors acknowledge that this very 275 deep apparent afterslip may in fact be a proxy for VER. VER is inferred to 276 occur in the lower crust in some cases (e.g. Ryder et al., 2007; Riva et al., 277 2007; Ryder et al., 2011; Bruhat et al., 2011), the upper mantle in others (e.g. 278 Freed and Bürgmann, 2004; Biggs et al., 2009; Johnson et al., 2009; Pollitz 279 et al., 2012), and sometimes in both (e.g. Vergnolle et al., 2003; Hearn et al., 280 2009; Wang et al., 2009b). We note, however, that even if the spatial pattern 281 of the data clearly indicates viscoelastic relaxation, actual viscosity values 282

for a particular layer are commonly poorly-resolved by the data, which leads to some uncertainty in how VER varies with depth. This issue of resolution for postseismic data has been explored in detail by Pollitz and Thatcher (2010). In Figure 6, the dashed yellow lines indicate depth ranges where (a) viscosities are poorly-constrained, and/or (b) viscosities are several times higher than in the other layer. Both cases go under the label of "possible VER", as opposed to "dominant VER" (solid yellow lines).

Since different studies use different data sets with different resolving ca-290 pabilities, it is important to consider the interpretations for a particular 291 earthquake or region in aggregate. In some regions there is a clear signa-292 ture of viscoelastic relaxation in the upper mantle. In the Basin and Range 293 province, mantle VER has been clearly inferred in five separate studies of 294 individual earthquakes (Landers 1992, Hector Mine 1997 and Hebgen Lake 295 1959), as well as for groups of historic earthquakes that occurred in the Cen-296 tral Nevada Seismic Belt. The four Basin and Range studies that infer only 297 afterslip/poroelastic mechanisms (no VER) did not attempt to model VER 298 (Massonnet et al., 1996; Savage and Svarc, 1997; Peltzer et al., 1998; Perfet-290 tini and Avouac, 2007). A fifth study (Fialko, 2004) does not model VER 300 explicitly, but as a comment on far-field residuals resulting from afterslip-301 only modelling, mentions that mantle VER may also have occurred. Only 302 one paper concludes VER in the lower crust (Deng et al., 1998), but Pollitz 303 et al. (2000) and Pollitz (2003) suggest that VER may have occurred in the 304 lower crust as well as the upper mantle, with viscosities at least a factor of 305 two higher in the lower crust. The other earthquake that seems to offer clear 306 evidence for upper mantle VER is the 2002 Denali earthquake in Alaska. 307

The four studies of this event all infer VER in the mantle, with no flow 308 in the lower crust (e.g. Pollitz, 2005; Freed et al., 2006; Biggs et al., 2009; 309 Johnson et al., 2009). Of those, the three studies that also model afterslip 310 conclude that afterslip in the lower crust accompanied mantle VER. For the 311 1999 Izmit earthquake on the North Anatolian Fault, short time-scale (a few 312 months) observations lead to conclusions of afterslip only (Reilinger et al., 313 2000; Bürgmann et al., 2002; Hearn et al., 2002), but longer time-scale (a few 314 years) observations lead to inferences of VER in the lower crust and upper 315 mantle (Hearn et al., 2009; Wang et al., 2009b). For two M_w 6.5 earthquakes 316 in Iceland in 2002, Jónsson (2008) infer from four years of geodetic data that 317 VER took place in the upper mantle, although initial data only revealed 318 poroelastic rebound (Jónsson et al., 2003). 319

In some regions there is strong evidence for viscoelastic relaxation having 320 occurred primarily in the lower crust, rather than the upper mantle. Along 321 the San Andreas Fault system, multi-year observations following the 2004 322 Parkfield, 1994 Northridge and 1989 Loma Prieta earthquakes indicate lower 323 crustal VER. Again, there are also studies which only solve for afterslip. 324 The study by Freed (2007), on the other hand, investigated both processes, 325 but concluded that only afterslip occurred during the first two years after 326 the Parkfield earthquake. A later study of the same event by Bruhat et al. 327 (2011) used six years of postseismic data and suggested that VER in the 328 lower crust accompanied afterslip in the upper crust, although the authors 329 acknowledge that observations of localised tremor in the lower crust (Shelly 330 and Johnson, 2011) support the occurrence of deep afterslip. Lower crustal 331 VER has also been inferred in studies of earthquakes in Italy, Taiwan and 332

Tibet. In general, smaller earthquakes do not appear to excite flow in the 333 upper mantle, but larger earthquakes at the same locations may be able to. 334 One earthquake in Tibet where VER has not been inferred at any depth was 335 the 2008 Nima-Gaize event (Ryder et al., 2010). This was a small (M_w 6.4) 336 earthquake and the InSAR data used only covered the first nine postseismic 337 months. Viscoelastic relaxation was not ruled out by these short time-scale 338 data; rather, the lack of VER signature was used to place a lower bound on 339 possible viscosities in the lower crust. 340

Because of the wide variety of approaches used in modelling viscoelastic 341 relaxation, we do not include viscosity values in our compilation in Figure 6. 342 A detailed comparison of modelling efforts is beyond the scope of this pa-343 per. Nevertheless, it is helpful to consider the range of viscosities inferred in 344 postseismic studies, and identify some general patterns. For the viscoelastic 345 layers (lower crust or upper mantle) where viscosity is well-constrained, the 346 range of Maxwell viscosities across all studies is $1 \times 10^{17} - 7 \times 10^{19}$ Pa s. 347 Where other linear viscoelastic rheologies are used (standard linear solid, 348 Burgers), the range is $1 \times 10^{17} - 2 \times 10^{20}$ Pa s. It should be noted that for 349 poorly-constrained layers, several studies estimate a lower bound. For exam-350 ple, Gourmelen and Amelung (2005) can only constrain the viscosity of the 351 lower crust in the CNSB to be $> 1 \times 10^{20}$ Pa s. The overall viscosity range for 352 the well-constrained layers gives a range of relaxation times from one month 353 up to 200 years. For the poorly-constrained layers, relaxation times may be 354 longer than 200 years. Many short time scale (< 10 year) studies have con-355 cluded that apparent viscosity increases with time following an earthquake. 356 However, the modern studies of ongoing relaxation around earthquakes that 357

occurred several decades ago do not consistently find higher viscosities than
 shorter postseismic studies of more recent earthquakes.

To summarise the results from the entire postseismic compilation: of the 360 ~ 20 individual earthquakes/sequences considered, 16 have VER inferred by 361 at least one study. Of the four that do not, two (L'Aquila and Nima-Gaize) 362 are small magnitude (M_w 6.3 and 6.4 respectively) and only have a short 363 period of observation (6 and 9 months respectively), and so would not be 364 expected to have excited observable deep viscous flow. The other two are the 365 Zemmouri and Mozambique earthquakes in Africa. These are larger magni-366 tude (M_w 6.9 and 7) events and have been observed for longer (at least 2.5 367 years). A broad-brush conclusion is that viscoelastic relaxation in the lower 368 crust and/or upper mantle is to be expected after most large earthquakes 369 (but may only be detected with very long periods of observations). This in 370 turn implies that there is not much long-term strength beneath the elastic 371 upper crust, at least in fault zones. 372

373 6. Discussion

6.1. Influence of the Moho depth and geothermal gradient on the earthquake cycle

Our initial aim in this paper, in line with the theme of this special volume, was to test whether crustal thickness had any appreciable influence on the deformation observed during the earthquake cycle. The most robust parameter that we have been able to extract is the thickness of the seismogenic layer, which we find to be consistent between coseismic and interseismic investigations. We find, in line with previous seismic studies (e.g. Maggi et al., 2000; Jackson et al., 2008), that there is no simple global relationship between seismogenic layer thickness and crustal thickness. In fact, seismogenic layer thickness is remarkably constant in the regions where we have sufficient data for robust analysis, whereas crustal thicknesses in the same regions vary by a factor of two or more.

Ultimately, the seismogenic layer thickness is limited by the depth at 387 which creep processes allow tectonic stresses to be relieved aseismically and 388 this, in turn, is a function of lithology, grain-size, water content, strain rate 389 and temperature. In the oceanic lithosphere, where lithology is fairly con-390 stant, temperature is the dominant factor, with earthquakes only occurring 391 in the mantle at temperatures below ~ 600 °C (e.g. McKenzie et al., 2005). 392 We test whether temperature exerts a dominant control globally on seismo-393 genic layer thickness in continental lithosphere by using direct and indirect 394 measures of crustal heat flow. 395

Firstly, we use a global compilation of direct heat flow measurements by 396 Hasterok and Chapman (2008), updated from Pollack et al. (1993). The heat 397 flow data set is noisy and highly uneven in its distribution, with high sample 398 densities in regions such as Europe and North America and lower sampling 399 in Asia. To provide a continuous grid against which to compare average heat 400 flows with the earthquake depths, we first take median samples of the data at 401 0.5 degree spacing. We then interpolate (Smith and Wessel, 1990) to 1 degree 402 spacing to cover regions in which no direct heat flow data are available. We 403 do not recover an inverse relationship between the deepest extent of faulting 404 and average heat flow (Figure 7). 405

406

Secondly, we use lithospheric thickness, derived from surface wave tomog-

raphy (Priestley and McKenzie, 2006), as a proxy for geothermal gradient;
areas with thick lithosphere should have relatively low geothermal gradient
and hence have a relatively thick seismogenic layer. We also see no clear relationship between lithospheric thicknesses and our estimates of seismogenic
thickness (Figure 7).

On a local scale, there is a clear relationship between the geothermal gra-412 dient and the seismogenic layer thickness. This is clearly shown by microseis-413 micity studies in regions such as California (e.g. Sibson, 1982; Nazareth and 414 Hauksson, 2004), and Iceland (e.g. Ágústsson and Flóvenz, 2005; Björnsson, 415 2008). But there is no obvious global relationship between thermal structure 416 and seismogenic layer thickness evident in our compilations. The effect of 417 temperature, which is clear in oceanic lithosphere and in small regions, is 418 masked in the continents by spatial variations in lithology, strain-rate, and 419 grain size. 420

6.2. Seismogenic and elastic thicknesses – implications for the rheology of continental lithosphere

Starkly different estimates for elastic thickness (T_e) have been at the core 423 of the debate about the rheology of continental lithosphere (e.g. Burov and 424 Watts, 2006; Jackson et al., 2008). Several different methods have been used 425 to derive T_e . One method, probably the most commonly applied, relies on 426 the spectral coherence between the Bouguer gravity anomaly and topogra-427 phy (Forsyth, 1985). Audet and Bürgmann (2011) recently used this method 428 to produce a global map of elastic thickness, giving values that are typically 429 much larger than the seismogenic thicknesses estimated in this paper and 430 elsewhere (Figure 5). For example, in Iran, Audet and Bürgmann (2011) 431

estimate T_e at 35-65 km, but no earthquake occurs deeper than ~ 20 km. 432 McKenzie and Fairhead (1997) showed that estimates of T_e obtained from 433 Bouguer gravity anomalies are upper bounds, since short-wavelength topog-434 raphy has been removed or modified by surface processes. Instead, they 435 advocate using either the admittance between topography and free-air grav-436 ity or direct flexural models of free-air gravity profiles. These typically yield 437 much lower values for T_e , which are always less than the seismogenic thickness 438 (Figure 5; McKenzie and Fairhead, 1997; Maggi et al., 2000; Jackson et al., 439 2008; Sloan et al., 2011). However, Pérez-Gussinyé et al. (2004) suggest that 440 the McKenzie and Fairhead (1997) estimates of T_e may, in turn, be biased 441 towards lower values due to differences in windowing between theoretical and 442 observed admittances. 443

No global grid exists for T_e from free-air methods, so we compared the 444 Audet and Bürgmann (2011) global grid with our geodetic estimates of seis-445 mogenic thickness, T_s (Figure 7), and find that these estimates of T_e are 446 almost always significantly greater than T_s . Furthermore, we find no correla-447 tion between T_s and T_e derived in this way. By contrast, regional estimates of 448 T_e derived from free-air gravity (Figure 5) are consistently less than geodetic 449 estimates of T_s , as is the case for seismic estimates of T_s . For the regions 450 where there are sufficient geodetic data to estimate T_s , we found it to be 451 fairly constant. Likewise, there is little variation in free-air T_e in these areas. 452 Maggi et al. (2000) found that in regions where deeper earthquakes do occur 453 in the lower crust (Africa, the Tien Shan and North India), T_e estimated 454 from free-air methods is higher, although it is always significantly lower than 455 estimates derived from Bouguer coherence. 456

We do not wish to use this manuscript to question the validity of either 457 method for estimating elastic thickness for the crust, as extensive literature 458 on this already exists (e.g. McKenzie and Fairhead, 1997; Pérez-Gussinyé 459 et al., 2004; Crosby, 2007). Having said that, the widespread inferences 460 of aseismic deformation in the lower crust and upper mantle, required to 461 explain geodetic observations of postseismic motions, are hard to reconcile 462 conceptually with these regions supporting significant topographic loads over 463 geologic timescales: postseismic relaxation times are on the order of a few 464 months to a few hundred years. Geodetic observations of the seismic cycle 465 therefore appear to support the lower estimates of T_e , and hence the concept 466 that the strength of continental lithosphere is concentrated in the upper 467 seismogenic layer (the "crème brûlée" model). 468

Of course, sampling continental rheology through observations of the 469 earthquake loading cycle is an inherently biased process. Earthquakes are 470 not uniformly distributed throughout the continental lithosphere, and pref-471 erentially sample areas with lower T_e estimated with from either Bouguer or 472 Free-air gravity methods (e.g. Figure 1), presumably because earthquakes 473 are occurring in the weakest regions (e.g. Tesauro et al., 2012). In addition, 474 fault zones are capable of modifying their local rheology through processes 475 such as shear heating and grain size reduction, which act to create local 476 weak shear zones at depth (Bürgmann and Dresen, 2008). Observations of 477 postseismic relaxation could therefore be sampling weak regions within an 478 otherwise strong crust or mantle (the "banana split" model of Bürgmann 479 and Dresen (2008)). This is consistent with studies of glacial isostatic ad-480 justment, which often suggest thick elastic lids (e.g. Watts et al., 2013). If 481

only fault zones are weak, topographic loads could still be supported over 482 geologic timescales by stronger regions away from them and higher estimates 483 of T_e could be valid. Such a view would be consistent with the idea that 484 the continents behave as a series of independent crustal blocks (e.g. Meade, 485 2007a; Thatcher, 2007). Dense geodetic observations of deformation in re-486 gions including Greece, Tibet and the Basin and Range, however, suggest 487 that such blocks are small, if they exist, with dimensions comparable to the 488 thickness of the crust (e.g. Floyd et al., 2010; Hammond et al., 2011; Wang 489 and Wright, 2012). 490

491 7. Conclusions

We have compiled geodetic estimates of seismogenic layer thickness from the coseismic and interseismic phases of the earthquake loading cycle, and find no significant relationship with the depth of the Moho. For the regions where there are sufficient geodetic data to obtain robust results, the seismogenic layer thickness determined from both coseismic geodetic slip inversions and interseismic locking depth analyses are reasonably constant between regions, despite considerable variation in crustal thickness.

We find rupture depths inferred from coseismic geodetic slip inversions to be consistent with depths from seismology bodywave inversions. In the regions where there are sufficient data, the interseismic "locking depth" estimates are also consistent with the seismogenic layer thickness found coseismically. This implies that interseismic geodetic observations are reliable indicators of earthquake potential.

⁵⁰⁵ The transition from frictional controlled faulting to aseismic creeping pro-

cesses usually occurs in the mid crust and is thought to be dependent on lithology, strain-rate, grain-size, water content and temperature. We found no relationship between the seismogenic thickness and geothermal gradient (measured directly or inferred from lithospheric thickness models). This suggests that the effect of temperature, which is so clear in oceanic lithosphere, is masked in the continents by considerable variation in lithology, strain-rate and grain size.

Elastic thicknesses derived from the coherence between Bouguer grav-513 ity and topography are systematically larger than the seismogenic thickness 514 estimated geodetically, but there is no obvious correlation between them. 515 By contrast, as has previously been shown, elastic thicknesses from free-air 516 gravity methods are typically smaller than seismogenic layer thicknesses; al-517 though there are no geodetic results in regions where Maggi et al. (2000) 518 found high T_e and high T_s , the consistency of seismogenic thicknesses from 519 geodesy and seismology suggests that this relationship will hold. 520

The rapid relaxation of the lower crust and/or upper mantle observed in many places is hard to reconcile with the higher estimates of T_e – relaxation times are typically observed to be a few months to a few centuries. Our analysis of the geodetic data therefore supports the "crème brûlée" model, in which the strength of the continental lithosphere is supported in the upper seismogenic layer.

However, we note that geodetic observations of the earthquake cycle are inherently biased in their distribution. Furthermore, fault zones modify the rheology of the crust and mantle in which they sit through processes including grain-size reduction and shear heating. The weak material that responds ⁵³¹ in the postseismic period may therefore not be representative of the bulk ⁵³² rheology of the continental lithosphere: Postseismic results could be sam-⁵³³ pling weak regions within an otherwise strong crust or mantle (the "banana ⁵³⁴ split" model of Bürgmann and Dresen (2008)). Studies of glacial or lake ⁵³⁵ loading/unloading may not suffer from this bias.

Our compilation suffers from the relatively short time that satellite geode-536 tic methods have been available, a lack of truly global coverage (in compar-537 ison to seismology), and from the variations in modelling strategies applied 538 by different groups. Specifically, we lack sufficient geodetic observations from 539 areas where Maggi et al. (2000) and others have inferred thicker seismogenic 540 layers. In addition, postseismic deformation results are too scarce, and mod-541 elling strategies too variable, to form a robust global picture. With the start 542 of the 20-year Sentinel-1 SAR satellite program in 2013, systematic, dense 543 geodetic observations will be made globally for the first time, dramatically 544 increasing the availability and reliability of geodetic observations of the earth-545 quake loading cycle. We strongly recommend that the geodetic community 546 follows the lead of the seismological community by measuring, modelling and 547 cataloguing coseismic, interseismic and postseismic deformation in a routine, 548 systematic fashion. 549

550 8. Acknowledgments

This work was supported in part by the Natural Environmental Research Council (NERC) through the National Centre of Earth Observation (NCEO) of which the Centre for the Observation and Modelling of Earthquakes, Volcanoes & Tectonics (COMET, http://comet.nerc.ac.uk) is a part. Crust 2.0

(Bassin et al., 2000) was downloaded from http://igppweb.ucsd.edu/gabi/rem.html. 555 We are grateful to Pascal Audet and Roland Bürgmann for making their 556 global Elastic Thickness dataset available, and to Dan McKenzie and Keith 557 Priestley for sharing their lithospheric thickness data. Global heat flow data 558 were taken from the Global Heat Flow Database of the International Heat 559 Flow Commission (www.heatflow.und.edu). This manuscript was improved 560 by constructive reviews from Roland Bürgmann and an anonymous reviewer, 561 and we are grateful for additional comments from Tony Watts, Alex Cop-562 ley and Al Sloan. Most figures were made using the public domain Generic 563 Mapping Tools (Wessel and Smith, 1998). TJW was funded by the Royal 564 Society through a University Research Fellowship. HW is supported by the 565 NSFC (41104016). 566

Table 1: Compilation of continental strike-slip earthquakes studied with InSAR, updated from Weston et al. (2011, 2012) to include the bottom depth of faulting (D) and more recent InSAR constrained source models. The type of model used is denoted by uniform (U) or distributed (D) slip. Seismological source model depths (Z) are given where available as centroid depths for points sources or bottom depths for finite fault planes, the latter denoted by an asterisk.

#	Name	M_w	Date	Lat.	Lon.	D (km)	Slip	Reference	Z (km)	Reference
1	Landers, CA., USA	7.3	1992/06/28	34.45	243.48	15	D	Fialko (2004)	15*	Wald and Heaton (1994)
2	Al Hoceima, Morocco	6.0	1994/05/26	35.20	355.94	12	U	Biggs et al. (2006)	8	Biggs et al. (2006)
3	Double Spring Flat, NV., USA	6.0	1994/09/12	38.82	240.38	12	\mathbf{U}	Amelung and Bell (2003)	6	Ichinose et al. (1998)
4	Kobe, Japan	6.9	1995/01/17	34.62	135.06	15	\mathbf{U}	Ozawa et al. (1997)	20*	Ide et al. (1996)
5	Neftegorsk, Sakhalin, Russia	7.2	1995/05/27	52.89	142.90	22	U	Tobita et al. (1998)	9	Katsumata et al. (2004)
6	Nuweiba, Egypt	7.3	1995/11/22	28.88	34.75	20	D	Baer et al. (2008)	15	Hofstetter et al. (2003)
7	Kagoshima-kenhokuseibu, Japan	6.1	1997/03/26	31.98	130.40	14	\mathbf{U}	Fujiwara et al. (1998)	11*	Horikawa (2001)
8	Zirkuh, Iran	7.2	1997/05/10	33.40	59.96	18	D	Sudhaus and Jónsson (2011)	13	Berberian et al. (1999)
9	Manyi, Tibet	7.5	1997/11/08	35.22	87.15	20	D	Funning et al. (2007)	12	Velasco et al. (2000)
10	Fandoqa, Iran	6.6	1998/03/14	30.01	57.64	7	\mathbf{U}	Berberian et al. (2001)	5	Berberian et al. (2001)
11	Aiquile, Bolivia	6.6	1998/05/22	-17.89	294.85	14	D	Funning et al. (2005a)	-	-
12	Izmit, Turkey	7.4	1999/08/17	40.72	30.07	20	D	Çakir et al. (2003)	12^{*}	Li et al. (2002)
13	Hector Mine, CA., USA	7.1	1999/10/16	34.56	243.73	14	D	Simons et al. (2002)	15^{*}	Ji et al. (2002)
14	Düzce, Turkey	7.1	1999/11/12	40.72	31.26	18	D	Burgmann et al. (2002)	22^{*}	Umutlu et al. (2004)
15	South Seismic Zone, Iceland	6.5	2000/06/17	63.97	339.66	10	D	Pedersen et al. (2001)	-	-
16	South Seismic Zone, Iceland	6.4	2000/06/21	63.98	339.30	10	D	Pedersen et al. (2001)	-	-
17	Kokoxili, Tibet	7.8	2001/11/14	35.84	92.45	20	D	Lasserre et al. (2005)	24^{*}	Antolik et al. (2004)
18	Nenana Mountain, AK, USA	6.7	2002/10/23	63.50	211.95	24	D	Wright et al. (2003)	-	-
19	Denali, AK, USA	7.9	2002/11/03	63.22	214.85	20	D	Wright et al. (2004a)	30*	Oglesby et al. (2004)
20	Siberian Altai, Russia	7.2	2003/09/27	49.9	87.9	15	U	Nissen et al. (2007)	18	Nissen et al. (2007)
21	Bam, Iran	6.6	2003/12/26	29.03	58.36	15	D	Funning et al. (2005b)	7	Jackson et al. (2006)
22	Al Hoceima, Morocco	6.4	2004/02/24	35.14	356.00	18	D	Biggs et al. (2006)	8	Biggs et al. (2006)
23	Parkfield, CA., USA	6.0	2004/09/28	35.8	239.6	15	D	Johanson et al. (2006)	12^{*}	Langbein et al. (2005)
24	Chalan, Chulan, Iran	6.1	2006/03/31	33.67	48.88	9	D	Peyret et al. (2008)	6	Peyret et al. (2008)
25	South-West Iceland	6.1	2008/05/29	63.9	338.9	6	D	Decriem et al. (2010)	-	-
26	Port-au-Prince, Haiti	7.1	2010/01/12	18.5	287.4	20	D	Calais et al. (2010)	22^{*}	Hayes et al. (2010)
27	El-Mayor Cucapah, Baja, Mexico	7.1	2010/04/04	32.2	244.7	16	D	Wei et al. (2011)	-	-
28	Yushu, China	6.8	2010/04/13	33.10	96.70	18	D	Li et al. (2011)	6	Li et al. (2011)
29	Darfield, New Zealand	7.1	2010/09/03	-43.58	172.19	14	D	Elliott et al. (2012)	7	Elliott et al. (2012)
30	Rigan, Iran	6.5	2010/12/20	28.25	59.12	13	D	Walker et al. (2013)	5	Walker et al. (2013)
31	Rigan, Iran	6.2	2011/01/27	28.15	59.04	17	D	Walker et al. (2013)	9	Walker et al. (2013)
32	Shan, Burma	6.8	2011/03/24	99.99	20.67	13	D	Feng et al. (2013)	-	-

#	Name	M_w	Date	Lat.	Lon.	D (km)	Slip	Reference	$Z \ (km)$	Reference
1	Little Skull Mountain, CA, USA	5.6	1992/06/29	36.75	243.76	13	U	Lohman et al. (2002)	8	Romanowicz et al. (1993)
2	Nyemo, Tibet	6.1	1992/07/30	29.7	90.2	12	U	Elliott et al. (2010)	10	Elliott et al. (2010)
3	Ngamring County, Tibet	6.1	1993/03/20	29.06	87.48	9	U	Funning (2005)	-	-
4	Eureka Valley, CA., USA.	6.1	1993/05/17	37.11	242.21	12	U	Massonnet and Feigl (1995)	-	-
5	Grevena, Greece	6.6	1995/05/13	40.1	21.7	15	D	Rigo et al. (2004)	11	Hatzfeld et al. (1997)
6	Aigion, Greece	6.2	1995/06/15	38.33	22.22	10	U	Bernard et al. (1997)	7	Bernard et al. (1997)
7	Dinar, Turkey	6.3	1995/10/01	38.10	30.08	13	U	Wright et al. (1999)	4	Wright et al. (1999)
8	Colfiorito, Italy	5.7	1997/09/26	43.0	12.9	7	D	Stramondo et al. (1999)	7	Hernandez et al. (2004)
9	Colfiorito, Italy	6.0	1997/09/26	43.1	12.9	7	D	Stramondo et al. (1999)	7	Hernandez et al. (2004)
10	Athens, Greece	6.0	1999/09/07	38.1	23.6	12	U	Kontoes et al. (2000)	10	Louvari and Kiratzi (2001)
11	Cankiri, Turkey	6.0	2000/06/06	40.65	33.05	8	U	Cakir and Akoglu (2008)	15*	Utkucu et al. (2003)
12	Zhongba, Tibet	6.2	2004/07/11	30.7	83.75	17	D	Elliott et al. (2010)	9	Elliott et al. (2010)
13	Zhongba, Tibet	6.2	2005/04/07	30.45	83.75	11	D	Elliott et al. (2010)	5	Elliott et al. (2010)
14	Machaze, Mozambique	7.0	2006/02/22	-21.2	33.4	25	D	Copley et al. (2012)	15	Yang and Chen (2008)
15	Gerze, Tibet	6.4	2008/01/09	32.4	85.3	12	D	Elliott et al. (2010)	11	Elliott et al. (2010)
16	Gerze, Tibet	5.9	2008/01/16	32.45	85.25	6	D	Elliott et al. (2010)	6	Elliott et al. (2010)
17	Yutian, Tibet	7.1	2008/03/20	35.4	81.5	14	D	Elliott et al. (2010)	7	Elliott et al. (2010)
18	Zhongba, Tibet	6.7	2008/08/25	30.8	83.5	19	D	Elliott et al. (2010)	8	Elliott et al. (2010)
19	Damxung, Tibet	6.3	2008/10/06	29.8	90.4	14	D	Elliott et al. (2010)	7	Elliott et al. (2010)
20	L'Aquila, Italy	6.3	2009/04/06	42.33	13.45	13	D	Walters et al. (2009)	17	Cirella et al. (2009)
21	Karonga, Malawi	6.0	2009/12/19	-10.0	34.9	6	D	Biggs et al. (2010)	5	Biggs et al. (2010)

Table 2: Compilation of continental normal faulting earthquakes studied with InSAR. Rest of caption as for Table 1.

#	Name	\mathbf{M}_{W}	Date	Lat.	Lon.	D (km)	Slip	Reference	Z (km)	Reference
1	Fawnskin, CA., USA	5.4	1992/12/04	34.35	243.09	4	U	Feigl et al. (1995)	12	Jones and Hough (1995)
2	Killari, India	6.1	1993/09/29	18.0	76.5	6	U	Satyabala (2006)	3	Seeber et al. (1996)
3	Northridge, CA., USA	6.7	1994/01/17	34.3	241.5	14	U	Massonnet et al. (1996)	22^{*}	Dreger (1994)
4	Sefidabeh, Iran	6.1	1994/02/23	30.9	60.5	13	D	Parsons et al. (2006)	7	Berberian et al. (2000)
5	Sefidabeh, Iran	6.2	1994/02/24	30.85	60.5	10	D	Parsons et al. (2006)	10	Berberian et al. (2000)
6	Sefidabeh, Iran	6.0	1994/02/26	30.8	60.5	13	D	Parsons et al. (2006)	5	Berberian et al. (2000)
7	Zhangbei-Shangyi, China	5.7	1998/01/10	41.14	114.44	8	D	Li et al. (2008)	-	-
8	Mt Iwate, Japan	6.1	1998/09/03	39.80	140.90	5	D	Nishimura et al. (2001)	6*	Nakahara et al. (2002)
9	Chamoli, India	6.4	1999/03/28	30.44	79.39	13	U	Satyabala and Bilham (2006)	-	-
10	Ain Temouchent, Algeria	5.7	1999/12/22	35.2	-1.3	8	D	Belabbès et al. $(2009a)$	4	Yelles-Chaouche et al. (2004)
11	Bhuj, India	7.6	2001/01/26	23.51	70.27	25	D	Schmidt and Bürgmann (2006)	26*	Antolik and Dreger (2003)
12	Boumerdes-Zemmouri, Algeria	6.9	2003/05/21	36.8	3.7	20	D	Belabbès et al. $(2009b)$	23*	Semmane et al. (2005)
13	Miyagi, Japan	6.4	2003/07/26	38.45	141.19	6	U	Nishimura et al. (2003)	9*	Hikima and Koketsu (2004)
14	Niigata, Japan	6.8	2004/10/23	37.30	138.83	9	U	Ozawa et al. (2005)	13*	Asano and Iwata (2009)
15	Dahuiyeh (Zarand), Iran	6.4	2005/02/22	31.50	56.80	9	U	Talebian et al. (2006)	7	Talebian et al. (2006)
16	Kashmir, Pakistan	7.6	2005/10/08	34.29	73.77	14	D	Pathier et al. (2006)	17^{*}	Avouac et al. (2006)
17	Qeshm, Iran	6.0	2005/11/27	26.88	55.89	9	U	Nissen et al. (2010)	9	Nissen et al. (2010)
18	Qeshm, Iran	6.0	2006/06/28	26.91	55.89	12	U	Nissen et al. (2010)	11	Nissen et al. (2010)
19	Noto Hanto, Japan	6.9	2007/03/25	37.22	136.66	15	U	Fukushima et al. (2008)	20*	Horikawa (2008)
20	Sichuan, China	7.9	2008/05/12	31.77	104.23	31	D	Hao et al. (2009)	35^{*}	Nakamura et al. (2010)
21	Qeshm, Iran	6.0	2008/09/10	26.88	55.89	8	U	Nissen et al. (2010)	8	Nissen et al. (2010)
22	Qaidam, Tibet	6.3	2008/11/10	37.55	95.85	22	U	Elliott et al. (2011)	18	Elliott et al. (2011)
23	Qaidam, Tibet	6.3	2009/08/28	37.55	95.85	12	U	Elliott et al. (2011)	5	Elliott et al. (2011)
24	Christchurch, New Zealand	6.3	2011/02/21	-43.55	172.7	10	D	Elliott et al. (2012)	9*	Holden (2011)
25	Van, Turkey	7.1	2011/10/23	38.71	43.37	25	D	Elliott et al. (2013)	20	Elliott et al. (2013)

Table 3: Compilation of continental reverse faulting earthquakes studied with InSAR. Rest of caption as for Table 1.

28

Table 4: Compilation of interseismic parameters studied with geodetic data. Double lines separate regions of Tibet, Himalayas and Baikal-Mongolia.

#	Fault Name	Lon (°E)	Lat (°N)	Data Source	D (km)	Reference
1	Altvn Tagh	79.5	36	InSAR92-99	10*	Wright et al. (2004b)
2	Altyn Tagh	85	37	InSAR93-00	15*	Elliott et al. (2008)
3	Altyn Tagh	90	38.6	GPS94-98	8-36	Bendick et al. (2000)
4	Altyn Tagh	90	38.6	GPS94-02	20	Wallace et al. (2004)
5	Altyn Tagh	90	38.6	GPS98-04	15*	Zhang et al. (2007)
6	Altyn Tagh	94	39.3	GPS98-04	15*	Zhang et al. (2007)
7	Altyn Tagh	94	39	InSAR95-06	7-9	Jolivet et al. (2008)
8	Altyn Tagh	96	40	GPS98-04	15*	Zhang et al. (2007)
9	Haiyuan	104	37	InSAR93-98	0-4.2	Cavalie et al. (2008)
10	Karakoram	78.8	33.5	InSAR92-99	10*	Wright et al. (2004b)
11	Karakoram	78.0	34.0	InSAR92-10	15*	Wang and Wright (2012)
12	Lamu Co	82.5	32.5	InSAR92-99	3-5.8	Taylor and Peltzer (2006)
13	Gyaring Co	87.5	31.5	InSAR92-99	23-27	Taylor and Peltzer (2006)
14	Riganpei Co	85.75	32.5	InSAR92-99	14.5	Taylor and Peltzer (2006)
15	Kunlun	94	35	GPS98-04	15*	Kirby et al. (2007)
16	Kunlun	101.5	34	GPS98-04	15*	Kirby et al. (2007)
17	Kunlun	102.5	34	GPS98-04	15*	Kirby et al. (2007)
18	Manyi	87	35.2	InSAR92-97	22 ± 15	Bell et al. (2011)
19	Xianshuihe	101.2	31	GPS -07	$9.2 {\pm} 3.7$	Meng et al. (2008)
20	Xianshuihe	101.8	30.3	GPS - 07	$1.0 {\pm} 0.6$	Meng et al. (2008)
21	Xianshuihe	100.5	31.5	GPS98-04&	3-6	Wang et al. (2009a)
				InSAR96-08		
22	Block	84	30	GPS91-00	15*	Chen et al. (2004)
23	Block	88	35	GPS98-04	17^{*}	Meade $(2007b)$
24	Block	91	35	GPS&Geology	16*	Loveless and Meade (2011)
25	MHT	81-88	27.5-30	GPS91-94	20 ± 4	Bilham et al. (1997)
26	W. MHT	79-84	28-30	GPS91-97	25.0	Larson et al. (1999)
27	W. MHT	84-92	27-28	GPS91-97	16.2	Larson et al. (1999)
28	W. MHT	76.0-80.3	29.2 - 33.0	GPS95-00	15	Banerjee and Bürgmann (2002)
29	W. MHT	80-84	28.2 - 30.0	GPS95-00	20-21	Jouanne et al. (2004)
30	W. MHT	84-90	26.5 - 28.2	GPS95-00	17-21	Jouanne et al. (2004)
31	W. MHT	76-83	28.5 - 31.5	GPS91-00	18.3	Chen et al. (2004)
32	W. MHT	83-89	27.5 - 28.5	GPS91-00	14.3	Chen et al. (2004)
33	W. MHT	79.5 - 83.5	28.0-30.0	GPS95-01	12.1	Bettinelli et al. (2006)
34	W. MHT	83.5 - 87.2	27.0-28.0	GPS95-01	20.4	Bettinelli et al. (2006)
35	W. MHT	79.0 - 89.6	27.1 - 28.3	GPS95-07	24.1	Banerjee et al. (2008)
36	W. MHT	78.4-84	28.5 - 31.5	GPS93-11	15 - 20	Ader et al. (2012)
37	W. MHT	84-88.1	27.5 - 28.5	GPS93-11	15-20	Ader et al. (2012)
38	E. MHT	89-94	27.0-27.6	GPS91-00	20.3	Chen et al. (2004)
39	E. MHT	90.0-99.8	26.9 - 28.5	GPS95-07	20.0	Banerjee et al. (2008)
40	Dauki	90.1-93.0	25.5-25.3	GPS95-07	37.7	Banerjee et al. (2008)
41	Bolnay	98	49.5	GPS94-02	35*	Calais et al. (2003)
42	Gobi Altai	98	45.5	GPS94-02	35*	Calais et al. (2003)
43	Tunka	101	52	GPS94-02	35*	Calais et al. (2003)
	Deiler Leift	107	53	GPS94-02	35*	Calais et al. (2003)

Table 4: Compilation of interseismic parameters studied with geodetic data (continued).Double lines separate regions of Iran, Mediterranean and New Zealand.

#	Fault Name	Lon $(^{\circ}E)$	Lat $(^{\circ}N)$	Data Source	D (km)	Reference
45	MZP	57.2	27	GPS00-02	10-15	Bayer et al. (2006)
46	MZP	57.2	27	GPS00-08	15	Peyret et al. (2009)
47	SKJ	58	27	GPS00-02	15*	Bayer et al. (2006)
48	SKJ	57.7	27.7	GPS00-08	30	Peyret et al. (2009)
49	Khazar	51.5	36.7	GPS00-08	33	Djamour et al. (2010)
50	Khazar	52	36.5	GPS00-08	10	Djamour et al. (2010)
51	NTF	45	39	GPS99-09	15.5	Djamour et al. (2011)
52	NTF	47	37.5	GPS99-09	14	Djamour et al. (2011)
53	MRF	50	32	GPS97-03	10*	Walpersdorf et al. (2006)
54	MRF	54	29.5	GPS97-03	10*	Walpersdorf et al. (2006)
55	Doruneh	57	35	InSAR03-10	12*	Pezzo et al. (2012)
56	N. MMF	27.5	40.8	InSAR92-03	9-17	Motagh et al. (2007)
57	N. MMF	28	40.8	GPS88-97	10.5	Le Pichon et al. (2003)
58	NAF	37	40.5	GPS06-08	$12.8 {\pm} 3.9$	Tatar et al. (2012)
59	NAF	38	40.25	GPS06-08	$9.4 {\pm} 3.5$	Tatar et al. (2012)
60	NAF	39.2	39.9	GPS06-08	8.1 ± 3.3	Tatar et al. (2012)
61	NAF	38.8	39.9	InSAR92-99	5-33	Wright et al. (2001)
62	NAF	38.8	39.9	InSAR92-99	13.5 - 25	Walters et al. (2011)
63	NAF	32.5	40.8	InSAR92-02	14	Çakir et al. (2005)
64	Block	28	40.5	GPS88-97	$6.5 {\pm} 1.1$	Meade et al. (2002)
65	Block	29.8	40.6	GPS88-05	18-21*	Reilinger et al. (2006)
66	Yammouneh	36	33 - 34.5	GPS02-05	13	Gomez et al. (2007)
67	S. DSF	36	29.5 - 33.5	GPS96-01	12	Wdowinski et al. (2004)
68	S. DSF	36	29.5 - 33.5	GPS99-05	$11.5 {\pm} 10.2$	Le Beon et al. (2008)
69	S. DSF (WAF)	36	29.5 - 31.5	GPS96-01	15 ± 5	al Tarazi et al. (2011)
70	S. DSF (JVF)	36	31.5 - 33.5	GPS96-01	8 ± 5	al Tarazi et al. (2011)
71	Messina	15.5	38.25	GPS94-09	7.6	Serpelloni et al. (2010)
72	S. Alps	13.2	46.5	GPS96-05	3	D'Agostino et al. (2005)
73	C. Apennines	13.5	42.5	GPS94-10	15*	D'Agostino et al. (2011)
74	Block	35	30	GPS96-03	13*	Mahmoud et al. (2005)
75	Block	36.5	35	GPS88-05	12*	Reilinger et al. (2006)
76	Block	355	35	GPS99-09	15^{*}	Koulali et al. (2011)
77	Block	16	42	GPS	20*	Battaglia et al. (2004)
78	Block	26	39	GPS88-01	10*	Nyst and Thatcher (2004)
79	C. Alpine	170	-43.5	GPS94-98	18	Moore et al. (2002)
80	C. Alpine	170	-43.5	GPS94-98	22 ± 1	Beavan et al. (1999)
81	C. Alpine	170	-43.5	GPS94-98	6 ± 1	Beavan et al. (1999)
82	C. Alpine	170	-43.5	GPS01-10	13-18	Beavan et al. (2010)
83	S. Alpine	169	-44	GPS95-98	20 ± 2	Pearson et al. (2000)
84	S. Alpine	169	-44	GPS95-98	10 ± 2	Pearson et al. (2000)
85	Awatere	173.5	-42	GPS94-04	13	Wallace et al. (2007)
86	Clarence	173	-42.3	GPS94-04	13	Wallace et al. (2007)
87	Hope	169	-42.6	GPS94-04	20	Wallace et al. (2007)
88	Wairau	173.3	-41.7	GPS94-04	20	Wallace et al. (2007)
89	Apline	170	-43.5	GPS94-04	18	Wallace et al. (2007)

#	Fault Name	${\rm Lon}~(^\circ E)$	Lat ($^{\circ}N$)	Data Source	D (km)	Reference
90	RR	336	63.5	GPS93-04	9.4	Árnadóttir et al. (2009)
91	RPW	337	63.7	GPS92-00	6.6	Árnadóttir et al. (2006)
92	RPW	337	63.7	GPS00-06	4	Keiding et al. (2008)
93	RPW	337	63.7	GPS93-04	7.1	Árnadóttir et al. (2009)
94	RP	338	63.8	GPS92-00	8.3	Árnadóttir et al. (2006)
95	RP	338	63.8	GPS92-00	7	Keiding et al. (2008)
96	RP	338	63.8	GPS93-04	5.3	Árnadóttir et al. (2009)
97	SISZ	339.5	63.8	GPS92-00	19.3	Árnadóttir et al. (2006)
98	SISZ	339.5	63.8	GPS00-06	6	Keiding et al. (2008)
99	SISZ	339.5	63.8	GPS93-04	6.5	Árnadóttir et al. (2009)
100	WVZ	339.5	64.3	GPS94-03	4	LaFemina et al. (2005)
101	WVZ	339.5	64.3	GPS00-06	3	Keiding et al. (2008)
102	WVZ	339.5	64.3	GPS93-04	5.2	Árnadóttir et al. (2009)
103	EVZ	341.5	64	GPS94-03	3	LaFemina et al. (2005)
104	EVZ	341.5	64	GPS93-04	8.9	Árnadóttir et al. (2009)
105	EVZ	341.5	64	GPS94-06	5/3/3	Scheiber-Enslin et al. (2011)
106	NVZ	343.5	65.5	GPS93-04	4.9	Árnadóttir et al. (2009)
107	GL	343	66.5	GPS93-04	13.8	Árnadóttir et al. (2009)
108	HFF	342.5	66.1	GPS93-04	4.7	Árnadóttir et al. (2009)
109	HFF	342.5	66.1	GPS06-10	6.3	Metzger et al. (2011)
110	KR	341.5	66.8	GPS93-04	14.5	Árnadóttir et al. (2009)
111	Queen Charlotte	227.5	53	GPS98-02	14*	Mazzotti et al. (2003)
112	Queen Charlotte	227.5	53	GPS	10*	Elliott et al. (2010b)
113	Malaspina Fairweather	221	60.2	GPS	5*	Elliott et al. (2010b)
114	Upper Fairweather	221	60.3	GPS	7.6*	Elliott et al. (2010b)
115	C. Fairweather	221	58.5	GPS	10*	Elliott et al. (2010b)
116	Glacier Bay	224	59	GPS	10*	Elliott et al. (2010b)
117	Boundary	223	59.7	GPS	8*	Elliott et al. (2010b)
118	Foothills	222	58.8	GPS	4.98-12*	Elliott et al. (2010b)
119	Fairweather	221	59.7	GPS92-02	$9.0{\pm}0.8$	Fletcher and Freymueller (2003)
120	Transition	220	58.5	GPS	$8/26.5^{*}$	Elliott et al. (2010b)
121	Denali	221.5	61	GPS92-02	10*	Fletcher and Freymueller (2003)
122	Denali	221.5	61	GPS	10*	Elliott et al. (2010b)
123	Denali	214	63.5	InSAR92-02	10*	Biggs et al. (2007)
124	Wasatch	248	40	GPS96-08	7±3	Soledad Velasco et al. (2010)
125	Imperial	244.5	32.8	GPS99-00	10	Lyons et al. (2002)
126	Imperial	244.5	32.7	GPS	5.9 ± 3	Smith-Konter et al. (2011)
127	SAF	244.2	33.5	InSAR92-00	17	Fialko (2006)
128	SM	244.2	32.8	GPS	10.8 ± 1.1	Smith-Konter et al. (2011)
129	ETR	244	34.0	GPS94-09	15*	Spinler et al. (2010)
130	Borrego	244	33.2	GPS	$6.4 {\pm} 1.4$	Smith-Konter et al. (2011)
131	DV-FC	244	35.5	GPS94-99	15*	Gan et al. (2000)
132	DV	244	35.5	GPS99-03	12*	Wernicke et al. (2004)
133	DV-FC	244	35.5	GPS	$7.5 {\pm} 2.7$	Hill and Blewitt (2006)

Table 4: Compilation of interseismic parameters studied with geodetic data (continued).Double lines separate regions of Iceland, Alaska and Western United States.

#	Fault Name	${\rm Lon}~(^\circ E)$	Lat $(^{\circ}N)$	Data Source	D (km)	Reference
134	Coachella	244	33.7	GPS	$11.5 {\pm} 0.5$	Smith-Konter et al. (2011)
135	SJF	244	33.2	InSAR92-00	12	Fialko (2006)
136	Coyote Creek	243.7	33.2	GPS	6.3 ± 2	Smith-Konter et al. (2011)
137	Anza	243.5	33.5	GPS	13.7 ± 3.2	Smith-Konter et al. (2011)
138	YM	243.5	36.8	GPS	$12.8 {\pm} 2.3$	Hill and Blewitt (2006)
139	SP	243.5	36.7	GPS99-03	12*	Wernicke et al. (2004)
140	Palm Springs	243.5	34	GPS	16.4 ± 8	Smith-Konter et al. (2011)
141	SB	243	34	GPS	17.8 ± 2	Smith-Konter et al. (2011)
142	PV-HM	243	36	GPS94-99	15^{*}	Gan et al. (2000)
143	PV-HM	243	36	GPS	$8.6 {\pm} 3.7$	Hill and Blewitt (2006)
144	SJV	243	34.8	GPS	$21.5 {\pm} 6.3$	Smith-Konter et al. (2011)
145	SJM	242.5	34	GPS	21.0 ± 3.2	Smith-Konter et al. (2011)
146	LL-BW	242.5	35.5	InSAR92-00	5	Peltzer et al. (2001)
147	HM	242.2	36.6	InSAR92-00	2 ± 0.4	Gourmelen et al. (2010)
148	OV	242	36	GPS	$7.3 {\pm} 4.0$	Hill and Blewitt (2006)
149	OV	242	36	GPS94-99	15^{*}	Gan et al. (2000)
150	Mojave	242	34.5	GPS	15^{*}	Johnson et al. (2007b)
151	Mojave	242	34.5	GPS	18-24	Johnson et al. (2007b)
152	Mojave	242	34.5	GPS	$16.8 {\pm} 0.4$	Smith-Konter et al. (2011)
153	Carrizo	240.5	35	GPS	18.7 ± 2	Smith-Konter et al. (2011)
154	SA	240	35	GPS	10.2 ± 3.8	Hill and Blewitt (2006)
155	GVF	237.7	38.4	GPS/InSAR	5	Jolivet et al. (2009)
156	RCF	237.5	38.2	GPS/InSAR	10	Jolivet et al. (2009)
157	SAF	237.2	38	GPS/InSAR	10 ± 2	Jolivet et al. (2009)
158	Block	242	39	GPS	15^{*}	Hammond et al. (2011)
159	Block	241	40	GPS	15^{*}	Hammond and Thatcher (2007)
160	Sumatran	100	0	GPS89-93	15	Prawirodirdjo et al. (1997)
161	Sumatran	100.7	-0.8	GPS89-96	22 ± 12	Genrich et al. (2000)
162	Sumatran	100.4	-0.4	GPS89-96	24 ± 13	Genrich et al. (2000)
163	Sumatran	100	0.6	GPS89-96	56 ± 35	Genrich et al. (2000)
164	Sumatran	99.4	1.3	GPS89-96	$21{\pm}12$	Genrich et al. (2000)
165	Sumatran	98.8	2.2	GPS89-96	9 ± 3	Genrich et al. (2000)
166	Sumatran	98.4	2.7	GPS89-96	9 ± 4	Genrich et al. (2000)
167	Sagaing	96	22	GPS98-00	15	Vigny et al. (2003); Socquet et al. (2006b)
168	Sagaing	96	26	GPS05-08	7.7	Maurin et al. (2010)
169	Sagaing	96	24	GPS05-08	6.3	Maurin et al. (2010)
170	Sagaing	96	22	GPS05-08	20.3	Maurin et al. (2010)
171	Palu-Koro	120	-1	GPS92-05	12	Socquet et al. (2006a)
172	Gorontalo	122.5	1	GPS92-05	10	Socquet et al. (2006a)
173	Lawanopo	122	-3	GPS92-05	15	Socquet et al. (2006a)
174	Tomini	122	-0.3	GPS92-05	15	Socquet et al. (2006a)

Table 4: Compilation of interseismic parameters studied with geodetic data (continued).Double lines separate regions of Western United States, Sumatran and Southeast Asia.

#	Fault $Name^1$	Lon $(^{\circ}E)$	Lat $(^{\circ}N)$	Data Source	D (km)	Reference
175	El Pilar	296.5	10.5	GPS94-00	14 ± 2	Pérez et al. (2001)
176	Septentrional	288	20	GPS86-95	15	Dixon et al. (1998)
177	Septentrional	288	20	GPS94-01	15*	Calais et al. (2002)
178	Enriquillo	287	18.5	GPS86-95	15	Dixon et al. (1998)
179	Enriquillo	287	18.5	GPS94-01	15^{*}	Calais et al. (2002)
180	NH	288	20.4	GPS86-95	15	Dixon et al. (1998)
181	NH	288	20.4	GPS94-01	15*	Calais et al. (2002)
182	PMFS	270.5	15	GPS99-03	21	Lyon-Caen et al. (2006)
183	PMFS	270.5	15	GPS99-06	20	Franco et al. (2012)
184	Block	282.5	18.3	GPS98-11	15^{*}	Benford et al. (2012)
195	Tainan	120.10	22	CPS/InSAP	1*	Huang at al (2000)
165	Taman	120.19	23	GFS/IIISAR	4.	Huang et al. (2009)
186	Houchiali	120.24	23	GPS/InSAR	4*	Huang et al. (2009)
187	Chungchou	120.26	23	GPS/InSAR	4.1*	Huang et al. (2009)

Table 4: Compilation of interseismic parameters studied with geodetic data (continued).Double lines separate regions of Central America and Taiwan.

¹ Block: block model with constant locking depth; CJFS: Central Jamaica Fault System; DSF: Dead Sea fault; DV-FC: Death Valley-Furnace Creek; ETR: Eastern Transverse Ranges Province; EVZ: Eastern Volcanic Zone; GL: Grimsey Lineament; HFF: Husavik-Flatey Fault; JVF: Jordan Valley fault; KR: Kolbeinsey Ridge; LL-BW: Little Lake - Black Water Fault; MHT: Main Himalayan Thrust; MRF: Main Recent Fault; MZP: Zendan-Minab-Palami fault; NAF: North Anatolian Fault; NH: North Hispaniola; N. MMF: northern Marmara Fault; NTF: north Tabriz fault; NVZ: Northern Volcanic Zone; OV: Owens Valley; PMFS: Polochic-Motagua Fault System; PV-HM: Panamint Valley-Hunter Mountain; RP: Reykjanes Peninsula; RPW: Western Reykjanes Peninsula; RR: Reykjanes Ridge; SA: San Andreas; SB: San Bernardino; SISZ: South Iceland Seismic Zone; SJF: San Jacinto Fault; SJM: San Jacinto Mountain; SJV: San Jacinto Valley; SKJ: Sabzevaran-Kahnuj-Jirsoft fault; SM: Superstition Mountain; YZS: Yarlung-Zangbo Suture.

² *: Fixed locking depth

 3 Corresponding to three profiles in the literature

 4 For single and two faults models respectively

Figure 1: (a) Locations and focal mechanisms of the 78 continental M_w 5.5+ earthquakes modelled to date with InSAR observations of surface deformation, updated from Weston et al. (2011, 2012) and listed in Tables 1–3. The areas of four continental regions used to subdivide the plots in Figure 5 are delineated by dashed lines. (b) Crustal thickness from Crust 2.0 (Bassin et al., 2000), linearly interpolated to one degree spacing. Coloured stars indicate the bottom depth of faulting from coseismic studies (Tables 1–3). Locations of interseismic studies listed in Table 4 are coloured by depth and denoted by triangles (fixed locking depths) and circles (estimated locking depths).

Figure 2: Correlation between InSAR derived bottom depths of faulting given in Tables 1– 3 and seismological depths from centroid estimates (squares) or bottom of distributed sources (circles). Events are coloured by mechanism: reverse (red), strike-slip (black) and normal faulting (blue). Open symbols denoted $M_w < 6.5$, filled $M_w > 6.5$. The black line is the linear regression of the InSAR depths against the seismological bottom estimates, whilst the grey line is for the seismological centroid estimates. Inset figure shows the distribution of 78 InSAR derived bottom fault depths.

Figure 3: Correlation between InSAR derived bottom depths of faulting given in Tables 1–3 and Crust 2.0 thickness (Bassin et al., 2000) for reverse (red), strike-slip (black), normal faulting (blue) and all events combined (grey), scaled by magnitude (M_w 5.5–7.8).

Figure 4: Correlation between interseismic locking depth (Table 4) and Crust 2.0 thickness (Bassin et al., 2000). Symbols indicate whether the locking depth was fixed (triangles) or free to vary (circles) in the respective study. Inset figure shows the distribution of 187 geodetically derived locking depths separated by free (black) and fixed (grey).

Figure 5: Histograms of earthquake rupture bottom depths (black bars) determined from InSAR-constrained coseismic slip models based upon the data in Tables 1–3, grouped by four continental regions shown in Figure 1. Blue bars are from the locking depths of interseismic studies shown in Table 4, for fixed (light-blue) and estimated depths (darkblue). The mean (dashed line) Moho depths (Figure 1b) and one standard deviation (light grey panel) within each region are from the CRUST2.0 model (Bassin et al., 2000). The mean (dashed white line) elastic thicknesses (T_e) from Audet and Bürgmann (2011) and one standard deviation (dark grey panel) within each region are also shown. Elastic thicknesses from individual studies using free-air gravity are also shown from McKenzie and Fairhead (1997); Maggi et al. (2000); Fielding and McKenzie (2012). The inset red histograms show the distribution of heat flow within the region from the database updated by Hasterok and Chapman (2008). The inset green histograms show the distribution of lithospheric thickness within the region from Priestley and McKenzie (2006). Note the method used by Priestley and McKenzie (2006) cannot resolve lithospheric thicknesses less than 100 km.

Figure 6: Global compilation of rheological interpretations of postseismic geodetic data. VER = viscoelastic relaxation. Each column represents a single case study, either for an individual earthquake or a group of earthquakes. Grey background denotes crust and green background denotes mantle. Where the crust is divided into upper and lower layers, upper crustal thickness is either assumed to be the maximum rupture depth/seismogenic thickness for the area, or is directly estimated from the geodetic data. The magnitude of each earthquake is given at the bottom of each column (white text), along with the geodetic observation period (black text). A white asterisk means that the study only investigated a single relaxation process (either afterslip or viscoelastic relaxation). Minor/possible VER implies that viscosities for a particular layer are poorly-constrained, and/or are within one order of magnitude greater than for the layer where dominant VER occurs. Seismogenic thickness is marked for reference (light blue dotted lines)

Figure 7: Correlation between InSAR-derived bottom depths of faulting given in Tables 1– 3, or geodetically-determined locking depths given in Table 4, and elastic thickness (Te) (Audet and Bürgmann, 2011), lithospheric thickness (Priestley and McKenzie, 2006) and heat flow (Hasterok and Chapman, 2008). The method used by Priestley and McKenzie (2006) cannot resolve lithospheric thicknesses less than 100 km. Coseismic events are scaled by magnitude (M_w 5.5–7.8); interseismic locking depths are plotted as circles if they were determined by free inversion, or triangles if they were held fixed.

567 References

Ader, T., Avouac, J.P., Liu-Zeng, J., et al., 2012. Convergence rate across
the Nepal Himalaya and interseismic coupling on the Main Himalayan
Thrust: Implications for seismic hazard. Journal of Geophysical Research
117, B04403, doi:10.1029/2011JB009071.

- Ágústsson, K., Flóvenz, Ó.G., 2005. The thickness of the seismogenic crust
 in Iceland and its implications for geothermal systems, in: Proceedings of
 the World Geothermal Congress, pp. 24–29.
- Amelung, F., Bell, J.W., 2003. Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9):
 Main shock accompanied by triggered slip on a conjugate fault. Journal
 of Geophysical Research 108.
- Amoruso, A., Crescentini, L., D'Anastasio, E., De Martini, P., 2005. Clues
 of postseismic relaxation for the 1915 Fucino earthquake (central Italy)
 from modeling of leveling data. Geophysical Research Letters 32, L22307,
 doi:10.1029/2005GL024139.
- Antolik, M., Abercrombie, R.E., Ekstrom, G., 2004. The 14 November 2001
 Kokoxili (Kunlunshan), Tibet, Earthquake: Rupture Transfer through a
 Large Extensional Step-Over. The Bulletin of the Seismological Society of
 America 94, 1173–1194.
- Antolik, M., Dreger, D.S., 2003. Rupture Process of the 26 January
 2001 Mw 7.6 Bhuj, India, Earthquake from Teleseismic Broadband

- Data. Bulletin of the Seismological Society of America 93, 1235-1248.
 http://www.bssaonline.org/cgi/reprint/93/3/1235.pdf.
- Arnadóttir, T., Jiang, W., Feigl, K.L., et al., 2006. Kinematic models of plate boundary deformation in southwest Iceland derived from
 GPS observations. Journal of Geophysical Research 111, B07402,
 doi:10.1029/2005JB003907.
- ⁵⁹⁵ Arnadóttir, T., Lund, B., Jiang, W., et al., 2009. Glacial rebound and plate
 ⁵⁹⁶ spreading: results from the first countrywide GPS observations in Iceland.
 ⁵⁹⁷ Geophysical Journal International 177, 691–716.
- Asano, K., Iwata, T., 2009. Source Rupture Process of the 2004 Chuetsu,
 Mid-Niigata Prefecture, Japan, Earthquake Inferred from Waveform Inversion with Dense Strong-Motion Data. Bulletin of the Seismological Society of America 99, 123–140.
- Atzori, S., Antonioli, A., 2011. Optimal fault resolution in geodetic inversion
 of coseismic data. Geophysics Journal International 185, 529–538.
- Audet, P., Bürgmann, R., 2011. Dominant role of tectonic inheritance in
 supercontinent cycles. Nature Geoscience 4, 184–187.
- Avouac, J.P., Ayoub, F., Leprince, S., Konca, O., Helmberger, D.V., 2006. The 2005, M_w 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters 249, 514–528.
- ⁶¹⁰ Baer, G., Funning, G.J., Shamir, G., Wright, T.J., 2008. The 1995 November

- ⁶¹¹ 22, M_w 7.2 Gulf of Elat earthquake cycle revisited. Geophysics Journal ⁶¹² International 175, 1040–1054.
- ⁶¹³ Banerjee, P., Bürgmann, R., 2002. Convergence across the northwest
 ⁶¹⁴ Himalaya from GPS measurements. Geophysical Research Letters 29,
 ⁶¹⁵ doi:10.1029/2002GL015184.
- ⁶¹⁶ Banerjee, P., Bürgmann, R., Nagarajan, B., Apel, E., 2008. Intraplate de⁶¹⁷ formation of the Indian subcontinent. Geophysical Research Letters 35,
 ⁶¹⁸ L09605, doi:10.1029/2004GL019723.
- Bassin, C., Laske, G., Masters, G., 2000. The Current Limits of Resolution
 for Surface Wave Tomography in North America. EOS Transactions AGU
 81, S12A–03.
- Battaglia, M., Murray, M.H., Serpelloni, E., Bürgmann, R., 2004.
 The Adriatic region: An independent microplate within the AfricaEurasia collision zone. Geophysical Research Letters 31, L18301,
 doi:10.1029/2008GL035468.
- Bayer, R., Chery, J., Tatar, M., et al., 2006. Active deformation in ZagrosMakran transition zone inferred from GPS measurements. Geophysical
 Journal International 165, 373–381.
- Beavan, J., Denys, P., Denham, M., et al., 2010. Distribution of presentday vertical deformation across the Southern Alps, New Zealand, from
 10 years of GPS data. Geophysical Research Letters 37, L16305,
 doi:10.1029/2010GL044165.

- Beavan, J., Moore, M.A., Pearson, C.H., et al., 1999. Crustal deformation
 during 1994-1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine
 fault. Journal of Geophysical Research 104, 25233–25255.
- Belabbès, S., Meghraoui, M., Çakir, Z., Bouhadad, Y., 2009a. InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (M_w 5.7, Algeria) case study. Journal of Seismology 13, 421–432.
- Belabbès, S., Wicks, C., Çakir, Z., Meghraoui, M., 2009b. Rupture parameters of the 2003 Zemmouri (M_w 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS. Journal of Geophysical Research 114.
- Bell, M.A., Elliott, J.R., Parsons, B.E., 2011. Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake.
 Geophysical Research Letters 38, L24302, doi:10.1029/2011GL049762.
- Bendick, R., Bilham, R., Freymueller, J., et al., 2000. Geodetic evidence for
 a low slip rate in the Altyn Tagh fault system. Nature 404, 69–72.
- Benford, B., DeMets, C., Tikoff, B., et al., 2012. Seismic hazard along the
 southern boundary of the Gônave microplate: block modelling of GPS velocities from Jamaica and nearby islands, northern Caribbean. Geophysical
 Journal International 190, 59–74.
- Berberian, M., Jackson, J.A., Fielding, E., Parsons, B.E., Priestley, K., Qorashi, M., Talebian, M., Walker, R., Wright, T.J., Baker, C., 2001. The

- ⁶⁵⁶ 1998 March 14 Fandoqa earthquake (M_w 6.6) in Kerman province, south-⁶⁵⁷ east Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip ⁶⁵⁸ on adjacent thrusts and the active tectonics of the Gowk fault zone. Geo-⁶⁵⁹ physics Journal International 146, 371–398.
- Berberian, M., Jackson, J.A., Qorashi, M., Khatib, M.M., Priestley, K., Talebian, M., Ghafuri-Ashtiani, M., 1999. The 1997 May 10 Zirkuh (Qa'enat) earthquake (M_w 7.2):faulting along the Sistan suture zone of eastern Iran. Geophysics Journal International 136, 671–694.
- Berberian, M., Jackson, J.A., Qorashi, M., Talebian, M., Khatib, M., Priestley, K., 2000. The 1994 Sefidabeh earthquakes in eastern Iran: blind
 thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone. Geophysics Journal International 142,
 283–299.
- Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, J.M., Tiberi, C., 669 Berge, C., R., C., Hatzfeld, D., Lachet, C., Lebrun, B., Deschamps, A., 670 Courboulex, F., Larroque, C., Rigo, A., Massonnet, D., Papadimitriou, P., 671 Kassaras, J., Diagourtas, D., Makropoulos, K., Veis, G., Papazisi, E., Mit-672 sakaki, C., Karakostas, V., Papadimitriou, E., Papanastassiou, D., Chou-673 liaras, M., Stavrakakis, G., 1997. The Ms = 6.2, June 15, 1995 Aigion 674 earthquake (Greece): evidence for low angle normal faulting in the Corinth 675 rift. Journal of Seismology 1, 131–150. 676
- Bettinelli, P., Avouac, J.P., Flouzat, M., et al., 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS
 measurements. Journal of Geodesy 80, 567–589.

- Biggs, J., Bergman, E., Emmerson, B., Funning, G.J., Jackson, J., Parsons,
 B., Wright, T.J., 2006. Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophysics Journal International 166, 1347–1362.
- ⁶⁶⁴ Biggs, J., Burgmann, R., Freymueller, J., Lu, Z., Parsons, B., Ryder, I.,
 ⁶⁸⁵ Schmalzle, G., Wright, T., 2009. The postseismic response to the 2002
 ⁶⁸⁶ M 7.9 Denali Fault earthquake: constraints from InSAR 2003-2005. Geo⁶⁸⁷ physical Journal International 176, 353–367.
- Biggs, J., Nissen, E., Craig, T., Jackson, J., Robinson, D.P., 2010. Breaking
 up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes,
 Malawi. Geophysical Research Letters 37.
- ⁶⁹¹ Biggs, J., Wright, T., Lu, Z., et al., 2007. Multi-interferogram method for
 ⁶⁹² measuring interseismic deformation: Denali Fault, Alaska. Geophysical
 ⁶⁹³ Journal International 170, 1165–1179.
- Bilham, R., Larson, K., Freymueller, J., et al., 1997. GPS measurements of
 present-day convergence across the Nepal Himalaya. Nature 386, 61–64.
- Björnsson, A., 2008. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of
 earthquakes. Tectonophysics 447, 136–141.
- Bruhat, L., Barbot, S., Avouac, J.P., 2011. Evidence for postseismic deformation of the lower crust following the 2004 Mw6.0 Parkfield earthquake.
- ⁷⁰¹ Journal of Geophysical Research 116, B08401, doi:10.1029/2010JB008073.

- 702 Burgmann, R., Ayhan, M.E., Fielding, E.J., Wright, T.J., McClusky, S.,
- Aktug, B., Demir, C., Lenk, O., Turkezer, A., 2002. Deformation during
- the 12 November 1999 Duzce, Turkey, Earthquake, from GPS and In-
- ⁷⁰⁵ SAR Data. Bulletin of the Seismological Society of America 92, 161–171.
- not http://www.bssaonline.org/cgi/reprint/92/1/161.pdf.
- ⁷⁰⁷ Bürgmann, R., Dresen, G., 2008. Rheology of the lower crust and upper
 ⁷⁰⁸ mantle: Evidence from rock mechanics, geodesy, and field observations.
 ⁷⁰⁹ Annu. Rev. Earth Planet. Sci. 36, 531–567.
- Bürgmann, R., Ergintav, S., Segall, P., et al., 2002. Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture. Bulletin
 of the Seismological Society of America 92, 126–137.
- ⁷¹³ Burov, E., 2010. The equivalent elastic thickness (T_e) , seismicity and the ⁷¹⁴ long-term rheology of continental lithosphere: Time to burn-out "crème ⁷¹⁵ brûlée": Insights from large-scale geodynamic modeling. Tectonophysics ⁷¹⁶ 484, 4–26.
- ⁷¹⁷ Burov, E., Watts, A., et al., 2006. The long-term strength of continental
 ⁷¹⁸ lithosphere: "jelly sandwich" or "crème brûlée"? GSA Today 16, 4.
- Burov, E.B., Watts, A.B., 2006. The long-term strength of continental lithosphere: 'jelly sandwich' or 'créme brûlée'? GSA Today 16, 4–10.
- ⁷²¹ Çakir, Z., de Chabalier, J.B., Armijo, R., Meyer, B., Barka, A., Peltzer,
 ⁷²² G., 2003. Coseismic and early post-seismic slip associated with the 1999
 ⁷²³ Izmit earthquake (Turkey), from SAR interferometry and tectonic field
 ⁷²⁴ observations. Geophysics Journal International 155, 93–110.

- Cakir, Z., Akoglu, A.M., 2008. Synthetic aperture radar interferometry observations of the M = 6.0 Orta earthquake of 6 June 2000 (NW Turkey):
 Reactivation of a listric fault. Geochemistry, Geophysics, and Geosystems
 9.
- ⁷²⁹ Çakir, Z., Akoglu, A.M., Belabbes, S., et al., 2005. Creeping along the
 ⁷³⁰ Ismetpasa section of the North Anatolian fault (Western Turkey): Rate
 ⁷³¹ and extent from InSAR. Earth and Planetary Science Letters 238, 225–
 ⁷³² 234.
- Calais, E., Freed, A., Mattioli, G., Amelung, F., Jónsson, S., Jansma, P.,
 Hong, S.H., Dixon, T., Prépetit, C., Momplaisir, R., 2010. Transpressional
 rupture of an unmapped fault during the 2010 Haiti earthquake. Nature
 Geoscience 3, 794–799.
- Calais, E., Mazabraud, Y., Mercier de Lépinay, B., et al., 2002.
 Strain partitioning and fault slip rates in the northeastern Caribbean
 from GPS measurements. Geophysical Research Letters 29, 1856,
 doi:10.1029/2002GL015397.
- Calais, E., Vergnolle, M., Sankov, V., et al., 2003. GPS measurements of
 crustal deformation in the Baikal-Mongolia area (1994-2002): Implications
 for current kinematics of Asia. Journal of Geophysical Research 108, B10,
 2501, doi:10.1029/2002JB002373.
- Cavalie, O., Lasserre, C., Doin, M.P., Peltzer, G., Sun, J., Xu, X., Shen,
 Z.K., 2008. Measurement of interseismic strain across the Haiyuan fault

(Gansu, China), by InSAR. Earth and Planetary Science Letters 275, 246
- 257.

- Cetin, E., Meghraoui, M., Cakir, Z., et al., 2012. Seven years of postseismic
 deformation following the 2003 Mw = 6.8 Zemmouri earthquake (Algeria) from InSAR time series. Geophysical Research Letters 39, L10307, doi:10.1029/2012GL051344.
- ⁷⁵³ Chen, Q., Freymueller, J.T., Yang, Z., et al., 2004. Spatially variable exten⁷⁵⁴ sion in southern Tibet based on GPS measurements. Journal of Geophys⁷⁵⁵ ical Research 109, B09401, doi:10.1029/2002JB002350.
- Cirella, A., Piatanesi, A., Cocco, M., Tinti, E., Scognamiglio, L., Michelini,
 A., Lomax, A., Boschi, E., 2009. Rupture history of the 2009 L'Aquila
 (Italy) earthquake from non-linear joint inversion of strong motion and
 GPS data. Geophysical Research Letters 36.
- Copley, A., Hollingsworth, J., Bergman, E., 2012. Constraints on fault and
 lithosphere rheology from the coseismic slip and postseismic afterslip of
 the 2006 Mw7.0 Mozambique earthquake. Journal of Geophysical Research
 117.
- ⁷⁶⁴ Crosby, A., 2007. An assessment of the accuracy of admittance and coherence
 ⁷⁶⁵ estimates using synthetic data. Geophysical Journal International 171, 25–
 ⁷⁶⁶ 54.
- D'Agostino, N., Cheloni, D., Fornaro, G., Giuliani, R., Reale, D., 2012.
 Space-time distribution of afterslip following the 2009 L'Aquila earthquake.
 Journal of Geophysical Research 117, B02402, doi:10.1029/2011JB008523.

- D'Agostino, N., Cheloni, D., Mantenuto, S., et al., 2005. Strain accumulation in the southern Alps (NE Italy) and deformation at the northeastern
 boundary of Adria observed by CGPS measurements. Geophysical Research Letters 32, L19306, doi:10.1029/2005GL024266.
- D'Agostino, N., Mantenuto, S., D'Anastasio, E., et al., 2011. Evidence for
 localized active extension in the central Apennines (Italy) from global positioning system observations. Geology 39, 291–294.
- Dalla Via, G., Sabadini, R., De Natale, G., Pingue, F., 2005. Lithospheric
 rheology in southern Italy inferred from postseismic viscoelastic relaxation
 following the 1980 Irpinia earthquake. Journal of Geophysical Research
 110, B06311, doi:10.1029/2004JB003539.
- Decriem, J., Árnadóttir, T., Hooper, A., Geirsson, H., Sigmundsson, F.,
 Keiding, M., Ófeigsson, B.G., Hreinsdóttir, S., Einarsson, P., Lafemina,
 P., Bennett, R.A., 2010. The 2008 May 29 earthquake doublet in SW
 Iceland. Geophysics Journal International 181, 1128–1146.
- Deng, J., Gurnis, M., Kanamori, H., et al., 1998. Viscoelastic flow in the
 lower crust after the 1992 Landers, California, Earthquake. Science 282,
 1689–1693.
- Deng, J., Hudnut, K., Gurnis, M., Hauksson, E., 1999. Stress loading from
 viscous flow in the lower crust and triggering of aftershocks following the
 1994 Northridge, California, Earthquake. Geophysical Research Letters
 26, 32093212.

- Diao, F., Xiong, X., Wang, R., 2011. Mechanisms of Transient Postseismic
 Deformation Following the 2001 Mw 7.8 Kunlun (China) Earthquake. Pure
 and Applied Geophysics 168, 767–779.
- Dixon, T.H., Farina, F., DeMets, C., et al., 1998. Relative motion between
 the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations. Journal of Geophysical
 Research 103, 15,157–15,182.
- Djamour, Y., Vernant, P., Bayer, R., et al., 2010. GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran.
 Geophysical Journal International 183, 1287–1301.
- ⁸⁰² Djamour, Y., Vernant, P., Nankali, H.R., et al., 2011. NW Iran-eastern
 ⁸⁰³ Turkey present-day kinematics: Results from the Iranian permanent GPS
 ⁸⁰⁴ network. Earth and Planetary Science Letters 307, 27–34.
- ⁸⁰⁵ Donnellan, A., Parker, J.W., Peltzer, G., 2002. Combined GPS and InSAR
 ⁸⁰⁶ models of postseismic deformation from the Northridge earthquake. Pure
 ⁸⁰⁷ and Applied Geophysics 159, 2261–2270.
- ⁸⁰⁸ Dreger, D.S., 1994. Empirical Green's function study of the January 17,
 ⁸⁰⁹ 1994 Northridge, California earthquake. Geophysical Research Letters 21,
 ⁸¹⁰ 2633–2636.
- Elliott, J., Copley, A., Holley, R., Scharer, K., Parsons, B., 2013. The 2011
 Mw 7.1 Van (Eastern Turkey) Earthquake. Journal of Geophysical Research 118.

- Elliott, J.L., Larsen, C.F., Freymueller, J.T., Motyka, R.J., 2010b. Tectonic
 block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements. Journal of Geophysical
 Research 115, B09407, doi:10.1029/2009JB007139.
- Elliott, J.R., Biggs, J., Parsons, B., et al., 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters 35, L12309, doi:10.1029/2008GL033659.
- Elliott, J.R., Nissen, E.K., England, P.C., Jackson, J.A., Lamb, S., li, Z.,
 Oehlers, M., Parsons, B., 2012. Slip in the 201020132011 Canterbury
 earthquakes, New Zealand. Journal of Geophysical Research 117.
- Elliott, J.R., Parsons, B., Jackson, J.A., Shan, X., Sloan, R.A., Walker, R.T.,
 2011. Depth segmentation of the seismogenic continental crust: The 2008
 and 2009 Qaidam earthquakes. Geophysical Research Letters 38, L06305.
- Elliott, J.R., Walters, R.J., England, P.C., Jackson, J.A., Li, Z., Parsons, B.,
 2010. Extension on the Tibetan plateau: recent normal faulting measured
 by InSAR and body wave seismology. Geophysics Journal International
 183, 503–535.
- Ergintav, S., McClusky, S., Hearn, E., et al., 2009. Seven years of postseismic
 deformation following the 1999, M=7.4 and M=7.2, Izmit-Duzce, Turkey
 earthquake sequence. Journal of Geophysical Research 114.
- Feigl, K.L., Sergent, A., Jacq, D., 1995. Estimation of an earthquake focal
 mechanism from a satellite radar interferogram: Application to the Decem-

ber 4, 1992 Landers aftershock. Geophysical Research Letters 22, 1037–
1040.

- Feng, W., Li, Z., Elliott, J.R., Fukushima, Y., Hoey, T., Singleton, A., Cook,
 R., Xu, Z., 2013. The 2011 Mw 6.8 Burma earthquake: Fault constraints
 provided by multiple SAR techniques. Geophysics Journal International .
- Fialko, Y., 2004. Evidence of fluid-filled upper crust from observations of
 postseismic deformation due to the 1992 Mw7. 3 Landers earthquake. Journal of Geophysical Research 109, B03307, doi:10.1029/2003JB002985.
- Fialko, Y., 2004. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 $M_w 7.3$ Landers (southern California) earthquake. Journal of Geophysical Research 109, B03307.
- Fialko, Y., 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441, 968–971.
- Fielding, E., McKenzie, D., 2012. Lithospheric flexure in the sichuan basin
 and longmen shan at the eastern edge of tibet. Geophysical Research
 Letters 39, L09311.
- Fletcher, H.J., Freymueller, J.T., 2003. New constraints on the motion of the
 Fairweather fault, Alaska, from GPS observations. Geophysical Research
 Letters 30, 1139, doi:10.1029/2002GL016476.
- Floyd, M., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P.,
 McClusky, S., Nocquet, J., Palamartchouk, K., Parsons, B., et al., 2010. A

- new velocity field for Greece: Implications for the kinematics and dynamics
 of the Aegean. J. Geophys. Res 115, B10403.
- Forsyth, D., 1985. Subsurface loading and estimates of the flexural rigidity
 of continental lithosphere. Journal of Geophysical Research 90, 12623–12.
- Franco, A., Lasserre, C., Lyon-Caen, H., et al., 2012. Fault kinematics in
 northern Central America and coupling along the subduction interface of
 the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El
 Salvador. Geophysical Journal International 189, 1223–1236.
- Freed, A., Bürgmann, R., 2004. Evidence of power-law flow in the Mojave
 desert mantle. Nature 430, 548–551.
- Freed, A., Bürgmann, R., Calais, E., Freymueller, J., Hreinsdóttir, S., 2006.
 Implications of deformation following the 2002 Denali, Alaska, earthquake
 for postseismic relaxation processes and lithospheric rheology. Journal of
 Geophysical Research 111, B01401.
- Freed, A.M., 2007. Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake. Geophysical Research Letters 34, L06312,
 doi:10.1029/2006GL029155.
- Fujiwara, S., Rosen, P.A., Tobita, M., Murakami, M., 1998. Crustal deformation measurements using repeat-pass JERS 1 synthetic aperture radar
 interferometry near the Izu Peninsula, Japan. Journal of Geophysical Research 103, 2411–2426.
- ⁸⁸⁰ Fukushima, Y., Ozawa, T., Hashimoto, M., 2008. Fault model of the 2007

- Noto Hanto earthquake estimated from PALSAR radar interferometry and
 GPS data. Earth, Planets, and Space 60, 99–104.
- Funning, G.J., 2005. Source parameters of large shallow earthquakes in the
 Alpine-Himalayan belt from InSAR and waveform modelling. Ph.D. thesis.
 Department of Earth Sciences, University of Oxford. Oxford, U.K.
- Funning, G.J., Barke, R.M.D., Lamb, S.H., Minaya, E., Parsons, B., Wright,
 T.J., 2005a. The 1998 Aiquile, Bolivia earthquake: A seismically active
 fault revealed with InSAR. Earth and Planetary Science Letters 232, 39–
 49.
- ⁸⁹⁰ Funning, G.J., Parsons, B., Wright, T.J., 2007. Fault slip in the 1997 Manyi,
 ⁸⁹¹ Tibet earthquake from linear elastic modelling of InSAR displacements.
 ⁸⁹² Geophysics Journal International 169, 988–1008.
- Funning, G.J., Parsons, B., Wright, T.J., Jackson, J.A., Fielding, E.J., 2005b.
 Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal
 of Geophysical Research 110, B09406.
- Gan, W., Svarc, J.L., Savage, J.C., Prescott, W.H., 2000. Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N. Journal
 of Geophysical Research 105, 16,229–16,236.
- Genrich, J., Bock, Y., McCaffrey, R., et al., 2000. Distribution of slip at the
 northern Sumatran fault system. Journal of Geophysical Research 105,
 28327–28341.

- Gomez, F., Karam, G., Khawlie, M., et al., 2007. Global Positioning System measurements of strain accumulation and slip transfer through the
 restraining bend along the Dead Sea fault system in Lebanon. Geophysical Journal International 168, 1021–1028.
- Gourmelen, N., Amelung, F., 2005. Postseismic mantle relaxation in the
 central Nevada seismic belt. Science 310, 1473–1476.
- Gourmelen, N., Amelung, F., Lanari, R., 2010. Interferometric synthetic
 aperture radarGPS integration: Interseismic strain accumulation across
 the Hunter Mountain fault in the eastern California shear zone. Journal
 of Geophysical Research 115, B09408, doi:10.1029/2009JB007064.
- ⁹¹³ Hammond, W., Blewitt, G., Kreemer, C., 2011. Block modeling of crustal
 ⁹¹⁴ deformation of the northern Walker Lane and Basin and Range from GPS
 ⁹¹⁵ velocities. Journal of Geophysical Research 116, B04402.
- Hammond, W.C., Blewitt, G., Kreemer, C., 2011. Block modeling of
 crustal deformation of the northern Walker Lane and Basin and Range
 from GPS velocities. Journal of Geophysical Research 116, B04402,
 doi:10.1029/2010JB007817.
- Hammond, W.C., Kreemer, C., Blewitt, G., 2009. Geodetic constraints on
 contemporary deformation in the northern Walker Lane: 3. Central Nevada
 seismic belt postseismic relaxation, in: Oldow, J.S., Cashman, P.H. (Eds.),
- ⁹²³ Late Cenozoic Structure and Evolution of the Great BasinSierra Nevada
- Transition: Geological Society of America Special Paper, pp. 33–54.

- Hammond, W.C., Thatcher, W., 2007. Crustal deformation across the
 Sierra Nevada, northern Walker Lane, Basin and Range transition, western United States measured with GPS, 20002004. Journal of Geophysical
 Research 112, B05411, doi:10.1029/2006JB004625.
- Hao, K.X., Si, H., Fujiwara, H., Ozawa, T., 2009. Coseismic surface-ruptures
 and crustal deformations of the 2008 wenchuan earthquake mw7.9, china.
 Geophysical Research Letters 36.
- Hasterok, D., Chapman, D.S., 2008. Global Heat Flow: A New Database
 and a New Approach, in: AGU Fall Meeting Abstracts.
- Hatzfeld, D., Karakostas, V., Ziazia, M., Selvaggi, G., Leborgne, S., Berge,
 C., Guiguet, R., Paul, A., Voidomatis, P., Diagnourtas, D., Kassaras,
 I., Koutsikos, I., Makropoulos, K., Azzara, R., Di Bona, M., Baccheschi, S., Bernard, P., Papaioannou, C., 1997. The Kozani-Grevena
 (Greece) earthquake of 13 May 1995 revisited from a detailed seismological study. Bulletin of the Seismological Society of America 87, 463–473.
 http://www.bssaonline.org/cgi/reprint/87/2/463.pdf.
- Hayes, G.P., Briggs, R.W., Sladen, A., Fielding, E.J., Prentice, C., Hudnut,
 K., Mann, P., Taylor, F.W., Crone, A.J., Gold, R., Ito, T., Simons, M.,
 2010. Complex rupture during the 12 January 2010 Haiti earthquake.
 Nature Geoscience 3, 800–805.
- Hearn, E., Bürgmann, R., Reilinger, R., 2002. Dynamics of Izmit earthquake
 postseismic deformation and loading of the Duzce earthquake hypocenter.
 Bulletin of the Seismological Society of America 92, 172–193.

- Hearn, E.H., McClusky, S., Ergintav, S., Reilinger, R.E., 2009. Izmit
 earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. Journal of Geophysical Research 114, B08405,
 doi:10.1029/2008JB006026.
- Hernandez, B., Cocco, M., Cotton, F., Stramondo, S., Scotti, O., Courboulex, F., Campillo, M., 2004. Rupture history of the 1997 UmbriaMarche (Central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data. Annals of Geophysics 47, 1355–1376.
- ⁹⁵⁶ Hetland, E., Hager, B., 2003. Postseismic relaxation across the Cen⁹⁵⁷ tral Nevada Seismic Belt. Journal of Geophysical Research 108, 2394,
 ⁹⁵⁸ doi:10.1029/2002JB002257.
- Hetland, E., Hager, B., 2006. The effects of rheological layering on postseismic deformation. Geophysical Journal International 166, 277–292.
- Hikima, K., Koketsu, K., 2004. Source processes of the foreshock, mainshock
 and largest aftershock in the 2003 Miyagi-ken Hokubu, Japan, earthquake
 sequence. Earth, Planets, and Space 56, 87–93.
- Hill, E.M., Blewitt, G., 2006. Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network.
 Geophysical Research Letters 33, L14302, doi:10.1029/2006GL026140.
- ⁹⁶⁷ Hofstetter, A., Thio, H.K., Shamir, G., 2003. Source mechanism of the
 ⁹⁶⁸ 22/11/1995 Gulf of Aqaba earthquake and its aftershock sequence. Journal
 ⁹⁶⁹ of Seismology 7, 99–114.

⁹⁷⁰ Holden, C., 2011. Kinematic Source Model of the 22 February 2011 Mw
⁹⁷¹ 6.2 Christchurch Earthquake Using Strong Motion Data. Seismological
⁹⁷² Research Letters , 783–788.

- Horikawa, Н., 2001.Earthquake Doublet inKagoshima, 973 Japan: Rupture of Asperities in \mathbf{a} Stress Shadow. Bul-974 of the Seismological Society of America 91, 112 - 127.letin 975 http://www.bssaonline.org/cgi/reprint/91/1/112.pdf. 976
- ⁹⁷⁷ Horikawa, H., 2008. Characterization of the 2007 Noto Hanto, Japan, earth⁹⁷⁸ quake. Earth, Planets, and Space 60, 1017–1022.
- ⁹⁷⁹ Hsu, Y.J., Bechor, N., Segall, P., 2002. Rapid afterslip following the 1999
 ⁹⁸⁰ Chi-Chi, Taiwan Earthquake. Geophysical Research Letters 19, 1754,
 ⁹⁸¹ doi:10.1029/2002GL014967.
- ⁹⁸² Huang, M.H., Hu, J.C., Ching, K.E., et al., 2009. Active deformation of
 ⁹⁸³ Tainan tableland of southwestern Taiwan based on geodetic measurements
 ⁹⁸⁴ and SAR interferometry. Tectonophysics 466, 322 334.
- Ichinose, G.A., Smith, K.D., Anderson, J.G., 1998. Moment tensor solutions of the 1994 to 1996 Double Spring Flat, Nevada,
 earthquake sequence and implications for local tectonic models.
 Bulletin of the Seismological Society of America 88, 1363-1378.
 http://www.bssaonline.org/cgi/reprint/88/6/1363.pdf.
- Ide, S., Takeo, M., Yoshida, Y., 1996. Source process of the 1995 Kobe earth quake: Determination of spatio-temporal slip distribution by Bayesian

- modeling. Bulletin of the Seismological Society of America 86, 547-566.
 http://www.bssaonline.org/cgi/reprint/86/3/547.pdf.
- Jackson, J., Bouchon, M., Fielding, E., Funning, G., Ghorashi, M., Hatzfeld,
 D., Nazari, H., Parsons, B., Priestley, K., Talebian, M., Tatar, M., Walker,
 R., Wright, T., 2006. Seismotectonic, rupture process, and earthquakehazard aspects of the 2003 December 26 Bam, Iran, earthquake. Geophysics Journal International 166, 1270–1292.
- Jackson, J., McKenzie, D., Priestley, K., Emmerson, B., 2008. New views on
 the structure and rheology of the lithosphere. Journal of the Geological
 Society 165, 453–465.
- Jackson, J.A., 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today 12, 4–10.
- Ji, C., Wald, D.J., Helmberger, D.V., 2002. Source Description of the 1999
 Hector Mine, California, Earthquake, Part II: Complexity of Slip History.
 Bulletin of the Seismological Society of America 92, 1208–1226.
- Johanson, I.A., Fielding, E.J., Rolandone, F., Burgmann, R., 2006. Coseis mic and Postseismic Slip of the 2004 Parkfield Earthquake from Space Geodetic Data. Bulletin of the Seismological Society of America 96, S269–
 282. http://www.bssaonline.org/cgi/reprint/96/4B/S269.pdf.
- Johnson, K., Hilley, G., Bürgmann, R., 2007a. Influence of lithosphere viscosity structure on estimates of fault slip rate in the Mojave region of the
 San Andreas fault system. Journal of Geophysical Research 112, B07408,
 doi:10.1029/2006JB004842.

- Johnson, K.M., Bürgmann, R., Freymueller, J.T., 2009. Coupled afterslip
 and viscoelastic flow following the 2002 Denali Fault, Alaska earthquake.
 Geophysical Journal International 176, 670–682.
- Johnson, K.M., Hilley, G.E., Bürgmann, R., 2007b. Influence of lithosphere
 viscosity structure on estimates of fault slip rate in the Mojave region of the
 San Andreas fault system. Journal of Geophysical Research 112, B07408,
 doi:10.1029/2006JB004842.
- Jolivet, R., Bürgmann, R., Houlié, N., 2009. Geodetic exploration of the
 elastic properties across and within the northern San Andreas Fault zone.
 Earth and Planetary Science Letters 288, 126–131.
- Jolivet, R., Cattin, R., Chamot-Rooke, N., et al., 2008. Thin-plate
 modeling of interseismic deformation and asymmetry across the Altyn Tagh fault zone. Geophysical Research Letters 35, L02309,
 doi:10.1029/2007GL031511.
- Jones, L.E., Hough, S.E., 1995. Analysis of broadband records from
 the 28 June 1992 Big Bear earthquake: Evidence of a multiple-event
 source. Bulletin of the Seismological Society of America 85, 688-704.
 http://www.bssaonline.org/cgi/reprint/85/3/688.pdf.
- Jónsson, S., 2008. Importance of post-seismic viscous relaxation in southern
 Iceland. Nature Geoscience 1, 136–139.
- Jónsson, S., Segall, P., Pedersen, R., Björnsson, G., 2003. Post-earthquake
 ground movements correlated to pore-pressure transients. Nature 424,
 179–183.

- Jouanne, F., Mugnier, J.L., Gamond, J.F., Le Fort, P., Pandey, M.R.,
 Bollinger, L., Flouzat, M., Avouac, J.P., 2004. Current shortening across
 the Himalayas of Nepal. Geophysical Journal International 157, 1–14.
- Katsumata, K., Kasahara, M., Ichiyanagi, M., Kikuchi, M., Sen, R.S., Kim,
 C.U., Ivaschenko, A., Tatevossian, R., 2004. The 27 May 1995 Ms 7.6
 Northern Sakhalin Earthquake: An Earthquake on an Uncertain Plate
 Boundary. Bulletin of the Seismological Society of America 94, 117–130.
 http://www.bssaonline.org/cgi/reprint/94/1/117.pdf.
- Keiding, M., Árnadóttir, T., Sturkell, E., Geirsson, H., Lund, B., 2008. Strain
 accumulation along an oblique plate boundary: the Reykjanes Peninsula,
 southwest Iceland. Geophysical Journal International 172, 861–872.
- Kirby, E., Harkins, N., Wang, E., et al., 2007. Slip rate gradients along the
 eastern Kunlun fault. Tectonics 26, TC2010, doi:10.1029/2006TC002033.
- Kontoes, C., Elias, P., Sykioti, O., Briole, P., Remy, D., Sachpazi, M., Veis,
 G., Kotsis, I., 2000. Displacement field and fault model for the September
 7, 1999 Athens earthquake inferred from ERS2 satellite radar interferometry. Geophysical Research Letters 27, 3989–3992.
- Koulali, A., Ouazar, D., Tahayt, A., et al., 2011. New GPS constraints
 on active deformation along the AfricaIberia plate boundary. Earth and
 Planetary Science Letters 308, 211–217.
- Kreemer, C., Holt, W., Haines, A., 2003. An integrated global model of
 present-day plate motions and plate boundary deformation. Geophysical
 Journal International 154, 8–34.

LaFemina, P.C., Dixon, T.H., Malservisi, R., Arnadóttir, T., Sturkell,
E., Sigmundsson, F., Einarsson, P., 2005. Geodetic GPS measurements in south Iceland: Strain accumulation and partitioning in a propagating ridge system. Journal of Geophysical Research 110, B11405,
doi:10.1029/2005JB003675.

Langbein, J., Borcherdt, R., Dreger, D., Fletcher, J., Hardebeck, J.L., Hellweg, M., Ji, C., Johnston, M., Murray, J.R., Nadeau, R., Rymer, M.J.,
Treiman, J.A., 2005. Preliminary Report on the 28 September 2004, M
6.0 Parkfield, California Earthquake. Seismological Research Letters 76,
10-26. http://srl.geoscienceworld.org/cgi/reprint/76/1/10.pdf.

Larson, K.M., Rurgmann, R., Bilham, R., Freymueller, J.T., 1999. Kinematics of the India-Eurasia collision zone from GPS measurements. Journal
of Geophysical Research 104, 1077–1093.

Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Van der Woerd, J., Tapponnier, P., 2005. Coseismic deformation of the 2001 $M_{\rm W} = 7.8$ Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry. Journal of Geophysical Research 110.

- Le Beon, M., Amrat, A.Q., Agnon, A., et al., 2008. Slip rate and locking
 depth from GPS profiles across the southern Dead Sea Transform. Journal
 of Geophysical Research 113, B11403, doi:10.1029/2007JB005280.
- Le Pichon, X., Chamot-Rooke, N., Rangin, C., et al., 2003. The North
 Anatolian fault in the Sea of Marmara. Journal of Geophysical Research
 108, 2179, doi:10.1029/2002JB001862.

- Li, X., Cormier, V.F., Toksoz, M.N., 2002. Complex Source Pro-1084 cess of the 17 August 1999 Izmit, Bul-Turkey, Earthquake. 1085 of the Seismological Society of 267 - 277.letin America 92,1086 http://www.bssaonline.org/cgi/reprint/92/1/267.pdf. 1087
- Li, Z., Elliott, J.R., Feng, W., Jackson, J.A., Parsons, B., Walters, R.J.,
 2011. The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake: Constraints
 provided by InSAR and body wave seismology. Journal of Geophysical
 Research 116.
- ¹⁰⁹² Li, Z., Feng, W., Xu, Z., Cross, P., Zhang, J., 2008. The 1998 M_w 5.7 ¹⁰⁹³ Zhangbei-Shangyi (China) earthquake revisited: A buried thrust fault re-¹⁰⁹⁴ vealed with interferometric synthetic aperture radar. Geochemistry, Geo-¹⁰⁹⁵ physics, and Geosystems 9.
- Lohman, R.B., Simons, M., Savage, B., 2002. Location and mechanism of
 the Little Skull Mountain earthquake as constrained by satellite radar
 interferometry and seismic waveform modeling. Journal of Geophysical
 Research 107, 2118.
- Louvari, E., Kiratzi, A., 2001. Source parameters of the 7 September 1999
 Athens (Greece) earthquake based on teleseismic data. Journal of the
 Balkan Geophysical Society 4, 51–60.
- Loveless, J., Meade, B., 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic
 observations. Earth and Planetary Science Letters 303, 11 24.

- Lyon-Caen, H., Barrier, E., Lasserre, C., et al., 2006. Kinematics of the
 North AmericanCaribbean-Cocos plates in Central America from new GPS
 measurements across the Polochic-Motagua fault system. Geophysical Research Letters 33, L19309, doi:10.1029/2006GL027694.
- Lyons, S.N., Bock, Y., Sandwell, D.T., 2002. Creep along the Imperial Fault,
 southern California, from GPS measurements. Journal of Geophysical Research 107, 2249, doi:10.1029/2001JB000763.
- Maggi, A., Jackson, J., Mckenzie, D., Priestley, K., 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental
 lithosphere. Geology 28, 495–498.
- Maggi, A., Jackson, J.A., McKenzie, D., Priestley, K., 2000. Earthquake
 focal depths, effective elastic thickness, and the strength of the continental
 lithosphere. Geology 28, 495–498.
- Mahmoud, S., Reilinger, R., Mcclusky, S., Vernant, P., Tealeb, A., 2005.
 GPS evidence for northward motion of the Sinai Block: Implications for
 E. Mediterranean tectonics. Earth and Planetary Science Letters 238, 217–224.
- Mahsas, A., Lammali, K., Yelles, K., et al., 2008. Shallow afterslip following
 the 2003 May 21, Mw = 6.9 Boumerdes earthquake, Algeria. Geophysical
 Journal International 172, 155–166.
- Massonnet, D., Feigl, K.L., 1995. Discrimination of geophysical phenomena
 in satellite radar interferograms. Geophysical Research Letters 22, 1537–
 1540.

- Massonnet, D., Feigl, K.L., Vadon, H., Rossi, M., 1996. Coseismic deformation field of the M=6.7 Northridge, California earthquake of January 17,
 1994 recorded by two radar satellites using interferometry. Geophysical
 Research Letters 23, 969–972.
- Massonnet, D., Thatcher, W., Vadon, H., 1996. Detection of postseismic
 fault-zone collapse following the Landers earthquake. Nature 382, 612–
 616.
- Maurin, T., Masson, F., Rangin, C., et al., 2010. First global positioning
 system results in northern Myanmar: Constant and localized slip rate
 along the Sagaing fault. Geology 38, 591–594.
- Mazzotti, S., Hyndman, R., Flück, P., Smith, A.J., Schmidt, M., 2003. Distribution of the Pacific/North America motion in the Queen Charlotte
 Islands-S. Alaska plate boundary zone. Geophysical Research Letters 30, 1762, doi:10.1029/2003GL017586.
- McKenzie, D., Fairhead, D., 1997. Estimates of the effective elastic thickness
 of the continental lithosphere from Bouguer and free air gravity anomalies.
 Journal of Geophysical Research 102, 27523–27.
- McKenzie, D., Fairhead, D., 1997. Estimates of the effective elastic thickness
 of the continental lithosphere from Bouguer and free air gravity anomalies.
 Journal of Geophysical Research 102, 27523–27552.
- McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic
 and continental lithosphere. Earth and Planetary Science Letters 233,
 337–349.

- Meade, B., 2007a. Present-day kinematics at the India-Asia collision zone.
 Geology 35, 81–84.
- Meade, B.J., 2007b. Present-day kinematics at the India-Asia collision zone.
 Geology 35, 81–84.
- Meade, B.J., Hager, B.H., Mcclusky, S.C., Reilinger, R.E., 2002. Estimates
 of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements.
 Bulletin of the Seismological Society of America 92, 208–215.
- Meng, G., Ren, J., Wang, M., et al., 2008. Crustal deformation
 in western Sichuan region and implications for 12 May 2008 Ms
 8.0 earthquake. Geochemistry, Geophysics, Geosystems 9, Q11007,
 doi:10.1029/2008GC002144.
- Metzger, S., Jónsson, S., Geirsson, H., 2011. Locking depth and slip-rate
 of the Húsavík Flatey fault, North Iceland, derived from continuous GPS
 data 2006-2010. Geophysical Journal International 187, 564–576.
- Moore, M., England, P., Parsons, B., 2002. Relation between surface velocity
 field and shear wave splitting in the South Island of New Zealand. Journal
 of Geophysical Research 107, 2198, doi:10.1029/2000JB000093.
- Motagh, M., Hoffmann, J., Kampes, B., et al., 2007. Strain accumulation
 across the Gazikoy-Saros segment of the North Anatolian Fault inferred
 from Persistent Scatterer Interferometry and GPS measurements. Earth
 and Planetary Science Letters 255, 432–444.

- Nakahara, H., Nishimura, T., Sato, H., Ohtake, M., Kinoshita, S., Hamaguchi, H., 2002. Broadband Source Process of the 1998 Iwate Prefecture, Japan, Earthquake as Revealed from Inversion Analyses of Seismic Waveforms and Envelopes. Bulletin of the Seismological Society of America 92, 1778 1708–1720.
- Nakamura, T., Tsuboi, S., Kaneda, Y., Yamanaka, Y., 2010. Rupture process of the 2008 Wenchuan, China earthquake inferred from teleseismic
 waveform inversion and forward modeling of broadband seismic waves.
 Tectonophysics 491, 72–84.
- Nazareth, J.J., Hauksson, E., 2004. The seismogenic thickness of the southern
 California crust. Bulletin of the Seismological Society of America 94, 940–
 960.
- Nishimura, T., Fujiwara, S., Murakami, M., Tobita, M., Nakagawa, H.,
 Sagiya, T., Tada, T., 2001. The M6.1 Earthquake triggered by volcanic
 inflation of Iwate volcano, northern Japan, observed by satellite radar interferometry. Geophysical Research Letters 28, 635–638.
- Nishimura, T., Imakiire, T., Yarai, H., Ozawa, T., Murakami, M., Kaidzu,
 M., 2003. A preliminary fault model of the 2003 July 26, M6.4 northern
 Miyagi earthquake, northeastern Japan, estimated from joint inversion of
 GPS, leveling, and InSAR data. Earth, Planets, and Space 55, 751–757.
- Nishimura, T., Thatcher, W., 2003. Rheology of the lithosphere inferred from
 postseismic uplift following the 1959 Hebgen Lake earthquake. Journal of
 Geophysical Research 108, 2389, doi:10.1029/2002JB002191.

- Nissen, E., Emmerson, B., Funning, G.J., Mistrukov, A., Parsons, B., Robinson, D.P., Rogozhin, E., Wright, T.J., 2007. Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes-dextral strike-slip
 and anticlockwise rotations in the northern India-Eurasia collision zone.
 Geophysics Journal International 169, 216–232.
- Nissen, E., Yamini-Fard, F., Tatar, M., Gholamzadeh, A., Bergman, E.,
 Elliott, J.R., Jackson, J.A., Parsons, B., 2010. The vertical separation
 of mainshock rupture and microseismicity at Qeshm island in the Zagros
 fold-and-thrust belt, Iran. Earth and Planetary Science Letters 296, 181–
 194.
- Nyst, M., Thatcher, W., 2004. New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research 109, B11406,
 doi:10.1029/2003JB002830.
- Oglesby, D.D., Dreger, D.S., Harris, R.A., Ratchkovski, N., Hansen, R., 2004.
 Inverse Kinematic and Forward Dynamic Models of the 2002 Denali Fault
 Earthquake, Alaska. Bulletin of the Seismological Society of America 94.
- ¹²¹³ Okada, Y., 1985. Surface deformation due to shear and tensile faults in a
 ¹²¹⁴ half-space. Bulletin of the Seismological Society of America 75, 1135–1154.
- Ozawa, S., Murakami, M., Fujiwara, S., Tobita, M., 1997. Synthetic aperture
 radar interferogram of the 1995 Kobe earthquake and its geodetic inversion.
 Geophysical Research Letters 24, 2327–2330.
- 1218 Ozawa, T., Nishimura, S., Wada, Y., Ohkura, H., 2005. Coseismic defor-

mation of the Mid Niigata prefecture Earthquake in 2004 detected by
RADARSAT/InSAR. Earth, Planets, and Space 57, 423–428.

Parsons, B., Wright, T., Rowe, P., Andrews, J., Jackson, J., Walker, R.,
Khatib, M., Talebian, M., Bergman, E., Engdahl, E.R., 2006. The 1994
Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite
radar interferometry and carbonate dating about the growth of an active
fold above a blind thrust fault. Geophysics Journal International 164,
202–217.

- Pathier, E., Fielding, E.J., Wright, T.J., Walker, R., Parsons, B.E., Hensley,
 S., 2006. Displacement field and slip distribution of the 2005 Kashmir
 earthquake from SAR imagery. Geophysical Research Letters 33.
- Pearson, C., Denys, P., Hodgkinson, K., 2000. Geodetic constraints on the
 kinematics of the alpine fault in the southern south island of New Zealand,
 using results from the Hawea-Haast GPS transect. Geophysical Research
 Letters 27, 1319–1322.
- Pedersen, R., Sigmundsson, F., Feigl, K.L., Árnadóttir, T., 2001. Coseismic interferograms of two $M_S=6.6$ earthquakes in the South Iceland Seismic Zone, June 2000. Geophysical Research Letters 28, 3341–3344.
- Peltzer, G., Crampé, F., Hensley, S., et al., 2001. Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology
 29, 975–978.
- Peltzer, G., Rosen, P., Rogez, F., et al., 1998. Poroelastic rebound along the

Landers 1992 earthquake surface rupture. J. Geophys. Res. 103, 30131–
30145.

- Pérez, O., Bilham, R., Bendick, R., et al., 2001. Velocity field across the
 southern Caribbean plate boundary and estimates of Caribbean/SouthAmerican plate motion using GPS geodesy 1994-2000. Geophysical Research Letters 28, 2987–2990.
- Pérez-Gussinyé, M., Lowry, A., Watts, A., Velicogna, I., 2004. On the recovery of effective elastic thickness using spectral methods: examples from
 synthetic data and from the Fennoscandian Shield. J. Geophys. Res 109.
- Perfettini, H., Avouac, J., 2004. Postseismic relaxation driven by brittle
 creep: A possible mechanism to reconcile geodetic measurements and the
 decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan.
 Journal of Geophysical Research 109, B02304, doi:10.1029/2003JB002488.
- Perfettini, H., Avouac, J., 2007. Modeling afterslip and aftershocks following the 1992 Landers earthquake. Journal of Geophysical Research 112,
 B07409, doi:10.1029/2006JB004399.
- Peyret, M., Djamour, Y., Hessami, K., et al., 2009. Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS
 transects. Geophysical Journal International 179, 751–762.
- Peyret, M., Rolandone, F., Dominguez, S., Djamour, Y., Meyer, B., 2008.
 Source model for the Mw 6.1, 31 March 2006, Chalan-Chulan Earthquake
 (Iran) from InSAR. Terra Nova 20, 126–133.
- Pezzo, G., Tolomei, C., Atzori, S., et al., 2012. New kinematic constraints of
 the western Doruneh fault, northeastern Iran, from interseismic deformation analysis. Geophysical Journal International 190, 622–628.
- Pollack, H.N., Hurter, S.J., Johnson, J.R., 1993. Heat flow from the earth's
 interior Analysis of the global data set. Reviews of Geophysics 31, 267–
 280.
- Pollitz, F., 1992. Postseismic relaxation theory on the spherical earth. Bulletin of the Seismological Society of America 82, 422–453.
- Pollitz, F., 2003. Transient rheology of the uppermost mantle beneath the
 Mojave Desert, California. Earth and Planetary Science Letters 215, 89–
 104.
- Pollitz, F., 2005. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002
 Denali earthquake. Journal of Geophysical Research 110, B08407, doi:
 10.1029/2005JB003672.
- Pollitz, F., Bürgmann, R., Segall, P., 1998. Joint estimation of afterslip rate
 and postseismic relaxation following the 1989 Loma Prieta earthquake.
 Journal of Geophysical Research 103, 26975–26992.
- Pollitz, F., Bürgmann, R., Thatcher, W., 2012. Illumination
 of rheological mantle heterogeneity by the M7.2 2010 El MayorCucapah earthquake. Geochemitry Geophysics Geosystems 13, Q06002,
 doi:10.1029/2012GC004139.

- Pollitz, F., Thatcher, W., 2010. On the resolution of shallow mantle viscosity
 structure using postearthquake relaxation data: Application to the 1999
 Hector Mine, California, earthquake. Journal of Geophysical Research 115,
 B10412, doi:10.1029/2010JB007405.
- Pollitz, F.F., Peltzer, G., Bürgmann, R., 2000. Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992
 Landers earthquake. Journal of Geophysical Research 105, 8035–8054.
- Prawirodirdjo, L., Bock, Y., McCaffrey, R., et al., 1997. Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone.
 Geophysical Research Letters 24, 2601–2604.
- Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere
 from shear wave velocities. Earth and Planetary Science Letters 244, 285–
 301.
- Pritchard, M.E., Simons, M., Rosen, P.A., Hensley, S., Webb, F.H., 2002. Co-seismic slip from the 1995 July 30 $M_w = 8.1$ Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophysics Journal International 150, 362–376.
- Reilinger, R., 2006. Evidence for postseismic viscoelastic relaxation following the 1959 M = 7.5 Hebgen Lake, Montana, earthquake. Journal of Geophysical Research 91, 9488–9494.
- Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS constraints on
 continental deformation in the Africa-Arabia-Eurasia continental collision

- zone and implications for the dynamics of plate interactions. Journal of
 Geophysical Research 111, B05411, doi:10.1029/2005JB004051.
- Reilinger, R.E., Ergintav, S., Bürgmann, R., et al., 2000. Coseismic and
 postseismic fault slip for the 17 August 1999, M=7.5, Izmit, Turkey earthquake. Science 289, 1519–1524.
- Rigo, A., de Chabalier, J.B., Meyer, B., Armijo, R., 2004. The 1995 KozaniGrevena (northern Greece) earthquake revisited: an improved faulting
 model from synthetic aperture radar interferometry. Geophysics Journal
 International 157, 727–736.
- Riva, R., Govers, R., 2009. Relating viscosities from postseismic relaxation
 to a realistic viscosity structure for the lithosphere. Geophysical Journal
 International 176, 614–624.
- Riva, R.E.M., Borghi, A., Aoudia, A., et al., 2007. Viscoelastic relaxation and
 long-lasting after-slip following the 1997 Umbria-Marche (Central Italy)
 earthquakes. Geophysical Journal International 169, 534–546.
- Romanowicz, B., Dreger, D., Pasyanos, M., Uhrhammer, R., 1993. Monitoring of strain release in central and northern California using broadband
 data. Geophysical Research Letters 20, 1643–1646.
- Rundle, J., Jackson, D., 1977. A three-dimensional viscoelastic model of a
 strike slip fault. Geophysical Journal of the Royal Astronomical Society
 49, 575–591.

- Ryder, I., Bürgmann, R., Pollitz, F., 2011. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili
 earthquake. Geophysical Journal International 187, 613–630.
- Ryder, I., Bürgmann, R., Sun, J., 2010. Tandem afterslip on connected
 fault planes following the 2008 Nima-Gaize (Tibet) earthquake. Journal
 of Geophysical Research 115, B03404, doi:10.1029/2009JB006423.
- Ryder, I., Parsons, B., Wright, T., Funning, G., 2007. Post-seismic motion
 following the 1997 Manyi (Tibet) earthquake: InSAR observations and
 modelling. Geophysical Journal International 169, 1009–1027.
- ¹³³⁷ Satyabala, S.P., 2006. Coseismic ground deformation due to an intraplate ¹³³⁸ earthquake using synthetic aperture radar interferometry: The M_w 6.1 ¹³³⁹ Killari, India, earthquake of 29 September 1993. Journal of Geophysical ¹³⁴⁰ Research 111, B02302.
- Satyabala, S.P., Bilham, R., 2006. Surface deformation and subsurface slip
 of the 28 March 1999 Mw = 6.4 west Himalayan Chamoli earthquake from
 InSAR analysis. Geophysical Research Letters 33, L23305.
- Savage, J., 1990. Equivalent strike-slip earthquake cycles in half-space and
 lithosphere-asthenosphere earth models. Journal of Geophysical Research
 95, 4873–4879.
- Savage, J., Burford, R., 1973. Geodetic determination of relative plate motion
 in central California. Journal of Geophysical Research 78, 832–845.

- Savage, J., Prescott, W., 1978. Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research 83, 3369–3376.
- ¹³⁵¹ Savage, J.C., Svarc, J.L., 1997. Postseismic deformation associated with ¹³⁵² the 1992 M_w =7.3 Landers earthquake, southern California. Journal of ¹³⁵³ Geophysical Research 102, 7565–7578.
- Scheiber-Enslin, S.E., LaFemina, P.C., Sturkell, E., Hooper, A.J., Webb, S.J.,
 2011. Geodetic investigation of plate spreading along a propagating ridge:
 the Eastern Volcanic Zone, Iceland. Geophysical Journal International 187,
 1175–1194.
- Schmidt, D.A., Bürgmann, R., 2006. InSAR constraints on the source parameters of the 2001 Bhuj earthquake. Geophysical Research Letters 33, L02315.
- Scholz, C., Bilham, R., 1991. On the mechanics of earthquake afterslip.
 Journal of Geophysical Research 96, 8441–8452.
- Searle, M.P., Elliott, J.R., Phillips, R.J., Chung, S.L., 2011. Crustallithospheric and continental extrusion of tibet. Journal of the Geological
 Society of London 168, 633–672.
- Seeber, L., Ekström, G., Jain, S.K., Murty, C.V.R., Chandak, N., Armbruster, J.G., 1996. The 1993 Killari earthquake in central India: A new
 fault in Mesozoic basalt flows? Journal of Geophysical Research 101,
 8543–8560.
- 1370 Semmane, F., Campillo, M., Cotton, F., 2005. Fault location and source

- process of the Boumerdes, Algeria, earthquake inferred from geodetic and
 strong motion data. Geophysical Research Letters 32.
- Serpelloni, E., Bürgmann, R., Anzidei, M., et al., 2010. Strain accumulation
 across the Messina Straits and kinematics of Sicily and Calabria from GPS
 data and dislocation modeling. Earth and Planetary Science Letters 298,
 347–360.
- Shelly, D.R., Johnson, K.M., 2011. Tremor reveals stress shadowing, deep
 postseismic creep, and depth-dependent slip recurrence on the lowercrustal San Andreas fault near Parkfield. Geophysical Research Letters
 38.
- Sheu, S.Y., Shieh, C.F., 2004. Viscoelasticafterslip concurrence: a possible
 mechanism in the early post-seismic deformation of the Mw 7.6, 1999 ChiChi (Taiwan) earthquake. Geophysical Journal International 159, 1112–
 1124.
- Sibson, R.H., 1982. Fault zone models, heat flow, and the depth distribution
 of earthquakes in the continental crust of the United States. Bulletin of
 the Seismological Society of America 72, 151–163.
- Simons, M., Fialko, Y., Rivera, L., 2002. Coseismic Deformation from the
 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR
 and GPS Observations. Bulletin of the Seismological Society of America 92,
- 1391 1390-1402. http://www.bssaonline.org/cgi/reprint/92/4/1390.pdf.
- ¹³⁹² Sloan, R.A., Jackson, J.A., McKenzie, D., Priestley, K., 2011. Earthquake
 ¹³⁹³ depth distributions in central Asia, and their relations with lithosphere

thickness, shortening and extension. Geophysics Journal International 185,
1-29.

- Smith, W.H.F., Wessel, P., 1990. Gridding with continuous curvature splines
 in tension. Geophysics 55, 293.
- Smith-Konter, B.R., Sandwell, D.T., Shearer, P., 2011. Locking depths estimated from geodesy and seismology along the San Andreas Fault System:
 Implications for seismic moment release. Journal of Geophysical Research
 1401 116, B06401, doi:10.1029/2010JB008117.
- Socquet, A., Simons, W., Vigny, C., et al., 2006a. Microblock rotations and
 fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS
 and earthquake slip vector data. Journal of Geophysical Research 111,
 B08409, doi:10.1029/2005JB003963.
- Socquet, A., Vigny, C., Chamotrooke, N., et al., 2006b. India and
 Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. Journal of Geophysical Research 111, B05406,
 doi:10.1029/2005JB003877.
- Soledad Velasco, M., Bennett, R.A., Johnson, R.A., et al., 2010. Subsurface
 fault geometries and crustal extension in the eastern Basin and Range
 Province, western U.S. Tectonophysics 488, 131 142.
- Spinler, J.C., Bennett, R.A., Anderson, M.L., 2010. Presentday strain accumulation and slip rates associated with southern San Andreas and eastern
 California shear zone faults. Journal of Geophysical Research 115, B11407,
 doi:10.1029/2010JB007424.

Stramondo, S., Tesauro, M., Briole, P., Sansosti, E., Salvi, S., Lanari, R.,
Anzidei, M., Baldi, P., Fornaro, G., Avallone, A., Buongiorno, M.F.,
Franceschetti, G., Boschi, E., 1999. The September 26, 1997 Colfiorito,
Italy, earthquakes: modeled coseismic surface displacement from SAR interferometry and GPS. Geophysical Research Letters 26, 883–886.

¹⁴²² Sudhaus, H., Jónsson, S., 2011. Source model for the 1997 Zirkuh earthquake ¹⁴²³ $(M_W = 7.2)$ in Iran derived from JERS and ERS InSAR observations. Geo-¹⁴²⁴ physics Journal International 185, 676–692.

Takeuchi, C., Fialko, Y., 2012. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults.
Journal of Geophysical Research 117, B05403, doi:10.1029/2011JB009056.

- Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi,
 M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B., Parsons, B.,
 Priestley, K., Saiidi, A., 2006. The Dahuiyeh (Zarand) earthquake of 2005
 February 22 in central Iran: reactivation of an intramountain reverse fault.
 Geophysics Journal International 164, 137–148.
- al Tarazi, Е., Abu Rajab, J., Gomez, F., 2011.GPS mea-1433 surements of nearfield deformation along the southern Dead Sea 1434 Geochemistry, Geophysics, Geosystems 12, Q12021, Fault System. 1435 doi:10.1029/2011GC003736. 1436
- Tatar, O., Poyraz, F., Gürsoy, H., et al., 2012. Crustal deformation and
 kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey)
 from GPS measurements. Tectonophysics 518–521, 55–62.

- Taylor, M., Peltzer, G., 2006. Current slip rates on conjugate strike-slip faults
 in central Tibet using synthetic aperture radar interferometry. Journal of
 Geophysical Research 111, B12402, 10.1029/2005JB004014.
- Tesauro, M., Kaban, M., Cloetingh, S., 2012. Global strength and elastic
 thickness of the lithosphere. Global and Planetary Change 90–91, 51–57.
- Thatcher, W., 2007. Microplate model for the present-day deformation of
 Tibet. J. geophys. Res 112, 1–13.
- Thatcher, W., England, P., 1998. Ductile shear zones beneath strike-slip
 faults: Implications for the thermomechanics of the San Andreas fault
 zone. Journal of Geophysical Research 103, 891–905.
- Thatcher, W., Rundle, J., 1979. A model for the earthquake cycle in underthrust zones. Journal of Geophysical Research 84, 5540–5556.
- Tobita, M., Fujiwara, S., Ozawa, S., Rosen, P.A., Fielding, E.J., Werner,
 C.L., Murakami, M., Nakagawa, H., Nitta, K., Murakami, M., 1998. Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR
 interferometry. Earth, Planets, and Space 50, 313–325.
- ¹⁴⁵⁶ Umutlu, N., Koketsu, K., Milkereit, C., 2004. The rupture process during
 the 1999 Düzce, Turkey, earthquake from joint inversion of teleseismic and
 strong-motion data. Tectonophysics 391, 315–324.
- Utkucu, M., Alptekin, Ö., Pınar, A., 2003. A detailed source study of the Orta (Çankırı) earthquake of June 6, 2000 (MS = 6.1): An intraplate earthquake in central Anatolia. Journal of Seismology 7, 193–202.

- Vaghri, A., Hearn, E., 2012. Can lateral viscosity contrasts explain asymmetric interseismic deformation around strike-slip faults? Bulletin of the
 Seismological Society of America 102, 490–503.
- ¹⁴⁶⁵ Velasco, A.A., Ammon, C.J., Beck, S.L., 2000. Broadband source modeling ¹⁴⁶⁶ of the November 8, 1997, Tibet ($M_w = 7.5$) earthquake and its tectonic ¹⁴⁶⁷ implications. Journal of Geophysical Research 105, 28065–28080.
- Vergnolle, M., Pollitz, F., Calais, E., et al., 2003. Constraints on the viscosity
 of the continental crust and mantle from gps measurements and postseismic
 deformation models in western mongolia. J. Geophys. Res. 108, 2502.
- ¹⁴⁷¹ Vigny, C., Socquet, A., Rangin, C., et al., 2003. Present-day crustal defor¹⁴⁷² mation around Sagaing fault, Myanmar. Journal of Geophysical Research
 ¹⁴⁷³ 108, 2533, doi:10.1029/2002JB001999.
- Wald, D.J., Heaton, T.H., 1994. Spatial and temporal dis-1474 slip for the 1992 Landers, California, earthquake. tribution of 1475 of the Seismological Society of America 84, 668-691. Bulletin 1476 http://www.bssaonline.org/cgi/reprint/84/3/668.pdf. 1477
- Walker, R.T., Bergman, E.A., Elliott, J.R., Fielding, E.J., Ghods, A.R.,
 Ghoraishi, M., Jackson, J., Nemati, M., Oviesi, B., Talebian, M., Walters,
 R., 2013. The 2010–2011 South Rigan (Baluchestan) earthquake sequence
 and its implications for distributed deformation and earthquake hazard in
 southeast Iran. Geophysics Journal International 193, 349–374.
- 1483 Wallace, K., Yin, G., Bilham, R., 2004. Inescapable slow slip on

- the Altyn Tagh fault. Geophysical Research Letters 31, L09613,
 doi:10.1029/2004GL019724.
- Wallace, L.M., Beavan, J., McCaffrey, R., Berryman, K., Denys, P., 2007.
 Balancing the plate motion budget in the South Island, New Zealand using
 GPS, geological and seismological data. Geophysical Journal International
 168, 332–352.
- Walpersdorf, A., Hatzfeld, D., Nankali, H., et al., 2006. Difference in the
 GPS deformation pattern of North and Central Zagros (Iran). Geophysical
 Journal International 167, 1077–1088.
- Walters, R.J., Elliott, J.R., D'Agostino, N., England, P.C., Hunstad, I., Jackson, J.A., Parsons, B., Phillips, R., Roberts, G., 2009. The 2009 L'Aquila
 Earthquke (Central Italy): a source mechanism and implications for seismic hazard. Geophysical Research Letters 36.
- Walters, R.J., Holley, R.J., Parsons, B., Wright, T.J., 2011. New signatures
 of underground nuclear tests revealed by satellite radar interferometry.
 Geophysical Research Letters 38, L05303, doi:10.1029/2010GL046443.
- Wang, H., Wright, T.J., 2012. Satellite geodetic imaging reveals internal
 deformation of western Tibet. Geophysical Research Letters 39, L07303,
 doi:10.1029/2012GL051222.
- Wang, H., Wright, T.J., Biggs, J., 2009a. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters
 36, L03302, doi:10.1029/2008GL036560.

- Wang, L., Wang, R., Roth, F., Enescu, B., Hainzl, S., Ergintav, S., 2009b.
 Afterslip and viscoelastic relaxation following the 1999 M 7.4 Ízmit earthquake from GPS measurements. Geophysical Journal International 178, 1220–1237.
- Watts, A., Zhong, S., Hunter, J., 2013. The behavior of the lithosphere on
 seismic to geologic timescales. Annual Review of Earth and Planetary
 Sciences 41.
- Wdowinski, S., Bock, Y., Baer, G., et al., 2004. GPS measurements of current crustal movements along the Dead Sea Fault. Journal of Geophysical
 Research 109, B05403, doi:10.1029/2003JB002640.
- Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J.P., Helmberger, D.,
 Hauksson, E., Chu, R., Simons, M., Hudnut, K., Herring, T., Briggs, R.,
 2011. Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of
 Baja California in Mexico. Nature Geoscience 4, 615–618.
- Wernicke, B., Davis, J.L., A, B.R., et al., 2004. Tectonic implications of a
 dense continuous GPS velocity field at Yucca Mountain, Nevada. Journal
 of Geophysical Research 109, B12404, doi:10.1029/2003JB002832.
- ¹⁵²³ Wessel, P., Smith, W.H.F., 1998. New, improved version of generic mapping
 ¹⁵²⁴ tools released. EOS Transactions AGU 79, 579–579.
- Weston, J., Ferreira, A., Funning, G., 2012. Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics 532-535, 61–81.

- Weston, J., Ferreira, A.M.G., Funning, G.J., 2011. Global compilation of interferometric synthetic aperture radar earthquake source models: 1. Comparisons with seismic catalogs. Journal of Geophysical Research 116.
- Weston, J., Ferreira, A.M.G., Funning, G.J., 2012. Systematic comparisons
 of earthquake source models determined using InSAR and seismic data.
 Tectonophysics 532–535, 61–81.
- Wright, T., 2002. Remote monitoring of the earthquake cycle using satellite
 radar interferometry. Philosophical Transactions of the Royal Society of
 London. Series A: Mathematical, Physical and Engineering Sciences 360,
 2873–2888.
- Wright, T., Lu, Z., Wicks, C., 2004a. Constraining the slip distribution and
 fault geometry of the Mw 7.9, 3 november 2002, Denali fault earthquake
 with interferometric synthetic aperture radar and global positioning system
 data. Bulletin of the Seismological Society of America 94, S175–S189.
- ¹⁵⁴² Wright, T., Parsons, B., Fielding, E., 2001. Measurement of interseismic
 ¹⁵⁴³ strain accumulation across the North Anatolian Fault by satellite radar
 ¹⁵⁴⁴ interferometry. Geophysical Research Letters 28, 2117–2120.
- ¹⁵⁴⁵ Wright, T.J., Lu, Z., Wicks, C., 2003. Source model for the M_w 6.7, 23 ¹⁵⁴⁶ October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geo-¹⁵⁴⁷ physical Research Letters 30.
- Wright, T.J., Parsons, B., England, P.C., et al., 2004b. InSAR observations
 of low slip rates on the major faults of western Tibet. Science 305, 236–239.

- Wright, T.J., Parsons, B.E., Jackson, J.A., Haynes, M., Fielding, E.J., England, P.C., Clarke, P.J., 1999. Source parameters of the 1 October 1995
 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth and Planetary Science Letters 172, 23–37.
- Yamasaki, T., Houseman, G.A., 2012. The signature of depth-dependent
 viscosity structure in post-seismic deformation. Geophysical Journal International 190, 769–784.
- Yamasaki, T., Wright, T., Houseman, G., 2013. Weak ductile shear zone
 beneath a major strike-slip fault: inferences from earthquake cycle model
 constrained by geodetic observations of the western North Anatolian Fault
 Zone. Journal of Geophysical Research In Review.
- Yang, Z., Chen, W.P., 2008. Mozambique earthquake sequence of 2006: Highangle normal faulting in southern Africa. Journal of Geophysical Research
 113.
- Yelles-Chaouche, A.K., Djellit, H., Beldjoudi, H., Bezzeghoud, M., Buforn,
 E., 2004. The Ain Temouchent (Algeria) Earthquake of December 22nd,
 1999. Pure and Applied Geophysics 161, 607–621.
- Yu, S.B., Hsu, Y.J., Kuo, L.C., et al., 2003. GPS measurement of postseismic
 deformation following the 1999 Chi-Chi, Taiwan, earthquake. Journal of
 Geophysical Research 108, 2520, doi:10.1029/2003JB002396.
- ¹⁵⁷⁰ Zhang, P.Z., Molnar, P., Xu, X., 2007. Late Quaternary and present-day
 ¹⁵⁷¹ rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan
 ¹⁵⁷² Plateau. Tectonics 26, TC5010,10.1029/2006TC002014.