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STATIC AND DYNAMIC MODELLING OF A
TWO-FLEXIBLE-LINK ROBOT MANIPULATOR

by

A. S. Morris, BEng, PhD, CEng, MIEE, MInstMC and A. Madani, BEng

Abstract—This paper is addressed at the difficulty of accurately modelling a two-flexible-link ma-
nipulator system, which is a necessary pre-requisite for future work developing a high-performance
controller for such manipulators. Recent work concerned with the development of an accurate single-
flexible-link model is first reviewed and then the expansion of a single-link model into a two-flexible-link
system in a way which properly takes into account the coupling and interactions between the two links

is discussed. The method of approach taken is to calculate the elastic and rigid motions of the links

separately and then to combine these according to the principle of superposition. The application of
the model developed is demonstrated in a simulated two-flexible-link system.

1 Introduction

The use of small section, low mass links in robot manipulators is attractive because it avoids the
severe control problems associated with the large inertia forces generated when the large-mass links
in a conventional manipulator move at anything other than low speed. Unfortunately, the control
problem is not eliminated but only changed: instead of on-line compensation for inertia forces, the
controller has to respond to link flexure and the consequent vibrations.

The necessary pre-requisite for a flexible manipulator controller is the existence of a suitably ac-
curate model of the manipulator system. In practice, a typical revolute-geometry industrial robot
manipulator has six degrees of freedom but the problematical inertia forces are due to just two of the
links within it. Thus, it will normally only be necessary to have a manipulator with two flexible links
to avoid large inertia forces and the ensuing control problems: all other links can remain rigid. Hence,
the necessary manipulator model can be divided into two connected sub-systems: a two-flexible-link
model and a model of the other rigid links.

The starting point in modelling a two-flexible-link system is a single-link model. Two such models can
then be assembled together, but in a way which takes proper account of the coupling and interaction
between the link motions. Because of this inter-link coupling, any modelling errors will be cumula-
tive, and hence high accuracy is essential in the single-link model on which the two-link model is built.

Until a short time ago, a flexible-link model of adequate accuracy did not exist, but this problem
has been now been redressed by recent work. This paper will start by summarising this recent devel-
opment of an accurate single-flexible link model and will go on to explain the expansion of this into
a two-flexible-link model which takes proper account of inter-link coupling.

2 Static Single-Link Model

The assumed mode method (AMM) is a computationally efficient scheme which serves as a useful
starting point in formulating a flexible link model. Assuming the magnitude of flexure to be low, the
slope and static deflection of a flexible beam bending under gravity are described by:

Ay, mg (., 5 . &P mg [1*z? 123 x“)
e (S i i = . =, —_— - — — 1
dz ~ 32BN (1 z-lf+3)i wm=—gn\ T T3 tE (1)
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where m is the mass of the beam, [ is the length of the beam, EJ is the flexural stiffness of the beam
g is the gravity vector, z is the position on the beam of the point where the slope and deflection 'u,r
measured and the subscript m denotes the slope or deflection resulting from the mass of the beam.

For a flexible link with an end-tip load m, (Figure 1), the mass m, produces a negative slope and

deflection given by:
dium,  mag z?\ _ mug (1z? g3
dz  EI (I”‘? - A S )

By the principle of superposition the total static slope and deflection for a flexible link are given by:

du _dum  dum, g 5 g , mz3
&~ & T de - gpn \(MH Iz (mam)lat+ —
_ g 1322 Iz3  mzt
US Um t Um, = o ((m+2m;) 2 (m+m=)T+T (3)
The maximum static slope and deflection of the flexible link occur at the free end, where z =1, i.e.
R L _ _ Bg (m 2m,
=g (3 a7 i )

The deflection of the link end-tip is calculated in the above equations on the assumption that the end-
tip moves vertically downwards instead of in a circular arc. This is clearly only valid if the magnitude
of flexure is low. This condition is unlikely to be satisfied in typical industrial flexible manipulator
links, and modification of the equations is therefore necessary.

Previous work [1] has shown that the case of large magnitude flexure can be handled by adding
a correction factor to the basic equations. This is calculated by considering the link as a body com-
posed of n equal sections and applying finite element analysis.

The corrected coordinates of the end-tip are then given by [1]:

ze=1l—3s and y, =u(l—3s) (5)
where:
n<-1
s = Z w; (6)
‘U,‘l 2
m=l-lfni  wa=22 L=/(u(l-s)-u((n—1)l/n—s)) + (I/n)? (1)
u(l—s—wn)z?u(l—a) (8)

n

3 Dynamic Single-Link Model

The equation of motion of an undamped flexible link without payload is described by [2] and [3]:

2 4 2 2 t
P = (B2 ) L uet) = glerete) (9
where p is the mass per unit length of the link, u(z,t) is the deflection of the link, ¢(z) is the assumed
mode shape function and g¢(t) is the modal function. Assuming that E7 is a constant, allows Eq. (9)
to be written as

1 d%(t)  EI 1 d(z)
qot) d* " p g(z) def

(10)




i

TR e |

which leads to the two following differential equations:

d*¢(z)

dzt

2
-F'é(z)=0; ddqt(;) +wig(t) =0 (11)

where w is a constant and 8* = pw?/E].
The solution as found in [2] and [3] is:

¢i(z) = Ci(cos f;z — cosh fB;z) + (sin f;z — sinh Pix) (12)

and
9i(t) = A; cosw;t + B; sinw;t (13)

where A;, B;, C; and w; are constants, i denotes the number of modes of vibration. The deflection is
then given by '

e, t)= 3 die)alt) (14)

From the boundary conditions (u(0,t) = u(l,t) = §2(0,t) = g%‘,‘(l,t) = 0) we obtain

_cos Fil 4+ cosh Gl
" sin Bl —sinh Gl

(15)

and f; as a solution to
cos il cosh Bil= -1 (16)

Solving Eq. (16) for the first four modes gives 5,1 = 1.875, B2l = 4.694, B! = 7.854 and Bal = 10.995.
From here, using the definition that §} = pw?/EI, we can deduce the values of the natural frequencies
w; of the flexible link for the first four modes. This means that, given an initial excitation F, the link
is going to oscillate according to a combination of these four natural frequencies.

The equation of motion can be generalised as an eigenvalue problem linking the two parts of the
system (the assumed mode shape functions ¢;(z) and the modal functions g;(t)). Subsequent analysis
(1] taking into account the first three modes (i =1,2 and 3) leads to the following equations for the
vertical displacement u(z,t) of any point z on the link at any time ¢, the slope u'(z,t) of the link at
any point z and any time ¢ and the velocity 4(z,t) of any point z on the link at any time t:

u(z,t) = ¢1(2)g1(0) coswit + ¢3(z)q2(0) cos wat + ¢a(z)qa(0) cos wst (17)
u'(z,t) = il%-j:'—t) = ¢1(2)q1(0) coswyt + ¢5(x)g2(0) coswat + ¢5(z)ga(0) cos wat (18)

u(z, i) = a_u%,_f,_) = —¢1(2)q1(0)ws sinwit — ¢2(z)q2(0)w2 sinwat — ¢3(z)gs(0)ws sin wst (19)

subject to the initial conditions:

u(z,0) = Z $i(2)ai(0) = f(z) 5  u(z,0) = 6i(2)&i(0) = g(z) (20)

i=1

Using the orthogonal relation, the corresponding initial conditions in the normal coordinates (the
normalisation or weighting is operated on all modes) are

1 1 I
w0 = £ [1@niees w0 = 2 [ g@e (21)
Similarly, ¢;(0) and ¢;(0) can be obtained from the nonpalised flexural stiffness as
1 !
w0 =5 [ F@#@E 60 =1 [ ¢l (22)

When an end-tip load is added to the link, an extra eigenvalue will appear in the boundary conditions
and it can be shown [1] that the effect is to cause the link to vibrate at a slower frequency and for
vibrations to persist for a longer period of time.
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3.1 Shear Deformation Effect

The assumed mode method neglects shear deformation effects and calculates link deformation on the
assumption that this is due only to the bending moment created by the mass and end-tip load of
the link. This assumption appears to have been made in all flexible link models previously reported.
However, a shear force also exists which acts in the opposite direction to the bending moment and
produces motion which has been shown to be significant [4]. Thus, in the interests of accurate mod-
elling, the shear deformation effect must be included in both static and dynamic models of a flexible
link.

It is known that the shear force of flexible arms depends on the shape of the cross-section of the
arm. Therefore, a physical quantity called the numerical factor, representing the geometric charac-
teristics of the link cross-section, is required in the dynamic formulation of the manipulator.

Referring to [5], the numerical factor of a flexible beam is defined as

AQ
K =
Id

where, I, is the moment of inertia of the cross-sectional shape of the link computed with respect to
its neutral axis, Q denotes the first moment about the neutral axis of the area contained between an
edge of the cross-section of the beam parallel to the main axis and the surface at which the shear
stress is to be computed, A is the cross-sectional area and d is the width of the cross-sectional area

at which the shear deformation is required. For a uniform link of square cross section, the factor K is
given by:

(23)

_AQ  d3(ph)i?/2 _3d
T Id T (ph)i2d/3 T 2
An element dz of the flexible link is deformed by the shear force V and the bending moment M
shown in Figure 2. When the shear force is zero, the centre line of dz is normal to the face of the
cross-section. If du(z,t)/0z is the slope due to the bending moment M, neglecting the interaction

between the shear and the moment, the shear force will cause a rectangular element to become a
parallelogram without a rotation of the faces.

K (24)

Thus, the slope of the deflection curve is decreased by the shear angle as formulated in the following
equation:
Ouc(z,t) _ du(z,t) V
8z Oz KAG
where V' is the value of the shear force and is equal to EIp, G the shear modulus of the material the
link is made of and Gu./8z the total slope cause by both shear and moment.

(25)

As a result of the above formulation, the equation of motion of an undamped flexible link after
addition of the shear deformation becomes

E1,34uc " 0%u, _ EIp 8u,

fzt o0t?  KAG 9z25t2

This equation is very difficult to solve because of the last term in the left hand-side. However,

supposing that the shear force affects only the modal functions ¢;(t), a solution is found in [6] as being

=0 (26)

#i(z) = Ai(cos fiz — cosh f;z) + sin ff;z — sinh §;z (27)
and
2ci(t) = ¢ei(0) cos(weit + ) (28)

where [3; are obtained in the same manner as for the system without shear deformation, (ie., as in

section 3) and w,; are the transformed natural frequencies including the shear deformation and are
given by

1 EI
gy [ i B 29
el {1 2 KAG ] (29)




w; being the natural frequencies of the system without shear deformation.
The angle 9 is equal to v i
Elp

Y= X4C = KAG (40)
From this set of equations, we can see how the shear deformation decreases the natural frequencies
of vibration of the link. The effect is more pronounced for the higher modes because of the existence
of the term f$? in the equation for w. The total slope is also decreased by the amount 9. Thus it
1s apparent that the shear deformation acts similarly to a load on the frequency of the system, but
operates in the opposite manner for the slope.

4 Two-Flexible-Link Model

The main difficulty in modeling multi-link flexible manipulators is that the rigid motion and the elastic
motion are coupled together, and the elastic motion has direct effects on the transformation matrix
between the link coordinates and the global coordinates. Due to the complexity of the problem, the
modeling of flexible manipulators is initially simplified by neglecting the effect of the elastic motion
on the transformation matrix and neglecting the effect of the elastic motion on the rigid motion.

If the rigid motion is not affected by the elastic motion, the rigid system dynamic equations can
be derived using the Lagrange-Euler principle. These equations can then be used to predict the dy-
namic stress and elastic deformation of the system, by applying the respective torques obtained for
the rigid motion to the dynamic equations describing the elastic motion. For the two-link flexible
case, this is difficult because of the cross-interaction between the two links, which consists of:

1. Action of the second link on the first link. This effect is created by any type of motion of the
second link (rotary, vibrational or both), causing the first link to vibrate according to its natural
frequencies.

2. Action of the first link on the second link. This effect is created by any type of motion of the
first link (rotary, vibrational or both) causing the second link to move in a highly nonlinear
manner.

The task of modeling a two-link flexible manipulator is'made even harder by the fact that this cross-
interaction between the two links is permanently present, i.e., a small disturbance at the end-tip of
the first link will cause this link to start a vibrational motion, causing the second link to engage in a
motion that will affect the vibrational motion of the first link, and so on . ..

To avoid this problem and simplify the modeling of a two-link flexible manipulator without com-
promising on accuracy, the first type of cross-interaction will be ignored, by assuming that any energy
produced in the second link is absorbed through the actuator of this link and therefore cannot prop-
agate to the first link. Thus, the following modelling methodology can be applied:

1. Define the equations of motion for the rigid motion by formulating the necessary torques that
are going to be applied to the respective actuators either by choosing the appropriate angles of
rotation é;, or by using the initial cartesian and desired cartesian coordinates of the manipulator.

2. Define the set of dynamic equations for the flexible motion (only the flexible modes are included
in this formulation). From here, a state-space representation of the flexible system can be sought
in order to study the elastic behaviour of each link.

3. Apply the desired torques to the flexible system.

4. Implement the Correction Factor in the response.




5. Combine the two motions (rigid and elastic) according to the principle of superposition and
deducing the general motion of the manipulator.

This modelling methodology for the elastic motion has been further simplified by the use of only the
first three flexible modes, since higher modes have negligible influence on the behaviour of the system
[1] and [4].

4.1 Rigid Motion

The rigid motion of a two-link manipulator can be described in terms of the Lagrange-Euler formula-
tion:
2195} Rk
dt 661 86; i
where L is the Lagrangian function and is equal to K — P, K is the total kinetic energy of the robot

arm, P is the total potential energy of the robot arm, §; are the angular joint positions, 7; are the
generalised torques applied to the system at joint i to drive link i as defined in:

i=12, - (31) |

7i=ZDikék+iihikmékém + & 1=, 2. (32)
k=1 k=1m=1
or in a matrix form as B )
(t) = D(8(t)) 8(t) + h(6(t),6(t)) + c(6(2)) (33)

where 7(t) is a 2 x 1 generalised torque vector applied at joints i = 1,2.

6(t) is a 2 x 1 vector of the joint positions,

8(t) is a 2 x 1 vector of the joint velocities,

B(t) is a 2 x 1 vector of the joint accelerations,

D(8) is a 2 x 2 inertial acceleration-related symmetric matrix whose elements were calculated in M
as:

2/3m212 + 2/5m2,d2, + mym,(4/31% + 4/5d2)
(2my + m-m)
m3(8/312 + 212 cos 8;) + m? (12 + 2/5d7)
(2ma + my)
mymy(13/31% + 12 cos 6, + 4/542)
(2my + my)

Dy, =

+ (34)

m212(2/3 + cos ;) + 2/5m?d? + myme(4/31% + 12 cos 63 + 4/5d})

Di2=Dxn = (@ )

(35)
and
_ 2/3mil + 2/5m3d? + myma(4/312 + 4/542)
- (2my + my)
where m; and my are the masses of the first and second links respectively, mm, is the mass of the

actuator located at the end-tip of the first link, m, is the mass of the load at the end-tip of the second

link, d,, is the radius of the actuator (considered to be spherical), and d; is the radius of the load
(also considered to be spherical).

h(8,8) is a 2 x 1 nonlinear Coriolis and centrifugal force vector given by

_ _&m(*mﬁm% (63 + 2616,)
h(6,6) = ﬂnfr"ll)_ri 2 -
2ma+my 1

Ds,

(36)
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and finally ¢(f) is a 2 x 1 gravity loading force vector given by

«(0) = [ gl (%%m:"‘;l cos by + % cos(fy + 63) + (my + ™y cos 91) (38)
..gl%ﬂ%;l cos(fy + ;) .

- 4.2 Work Space

For a two-link rigid manipulator operating in the vertical plane, the work space is a circle of radius
equal to the sum of the lengths of the two rigid links (see Figure 3). If the links are flexible, the radius
of the circle is reduced by link flexure and becomes a function of the length, width, stiffness, mass
and loading of each link. To determine the value of the radius of the circle of influence of a two-link
flexible manipulator, it is necessary to first determine the static deflections at the end-tip of each of
the links, then obtain the value of the horizontal deformations associated with these deflections. The
static deflection at the end-tip of the second link is given by

I8 m 2my
uz(l) = —-2?5%: (T: + T) (39)

where m; is the mass of the second link and m, is the mass of the payload.
The static deflection at the end-tip of the first link is given by

Bg (my  2(m+my+mpy)

u(l) = -5z (T + = ) (40)

where m; 1s the mass of the first link and m,,, is the mass of the actuator for the second link considered
to be a part of the payload for the first link. The two links are considered to have the same length !
* and the same stiffness E].

Using the correction factor discussed in section 2, the static deflections at both end-tips are corrected
and the horizontal projections (L} and L)) of the deformed links are calculated. The maximum reach
(L:) for each link is deduced from the following equation:

Li = /(L)) + (uic(1))? i=1,2. (41)

where the subscript ¢ denotes that the correction factor has been applied to the variable. The radius
of the circle of influence of a two-link flexible manipulator is therefore

R= L1 + Lz (42)

4.3 State-Space Representation of the Flexible System

It was shown in [1], [2] and (3] that, the equation of elastic motion of a flexible link which is part of a
multi-link system can be written as:

ui(2,8) = Y ¢ii()ai; (1) (43)

i=1

where the subscript j denotes the link number (7 = 1 for the first link),the subscript i denotes the
mode number, u;(z,t) is the vertical deflection of the link j at the distance z and time ¢, ¢;;(z) is a
shape function defined in [2] and [3], and ¢,;(t) is a modal function solution of the following second
order differential equation:

dzq,--(t) c; dgij(t)
T 4 220 ey = 7o) (44)
J
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where c; is the damping coefficient of the link, m;; is the normalised mass for each mode i of the link

J and w;; i8 the corresponding frequency equal to \/k;j/my;, ki; being the normalised stiffness of the “—
ith mode of the jth link.

Typically, the contributions of the flexible modes attenuate rapidly with frequency such that it is
always possible to characterise the system dynamics to any required degree of accuracy with only
a finite number of the lower modes. Bhat and Miu [8] and Korolov and Chen [9] have formulated
a state-space representation for a one-link flexible manipulator by including the rigid mode in the
matrix representation. This is valid only when the deflections or the vibrations of the flexible link are
very small (slopes of less than 10 degrees), otherwise, the rigid motion of the deformed link becomes
inappropriate and the state-space representation becomes inevitably inaccurate. For this reason, the
flexible system is first studied separately from the rigid system, then, the various flexible variables
such as end-tip deflection, end-tip slope, etc., are corrected. Finally, the two motions are combined
to describe the whole system.

Considering only the first three flexible modes of each link, the flexible system can be described
in the following state variable form:

=

: 0 1 0 0 0 0 ] ;

915 . q1; 0

4 g —wi; —;‘t 0 0 0 0 d1; byj

o = } Cq . t
Go; - 0 0 -wf -5 0 0 O R ®)
EY L0 0 0 0 0 1 g3; 0

gsj 0 0 0 0 —uw} - g3; b;

and with the position vector given by:

uj(2,t) = [¢15(2) 0 $2;(2) O b3;(2) O)lasj 415 925 G2j qs; 4aj)7 (45)
This description can also be expressed in the following simplified form:

{ ;=4 ¢+ B; 7
u;(z) = Cj(z) g

The constants b;; are obtained after normalisation of the torques 7; for each mode of the flexible link ;.
The state-space representation given by Eqs. (45) is incomplete without the initial conditions relating
to each link such as static deflection, relative position of each link in the reference frame and effect of

/the first link on the second link. These points will be discussed in the next sections by studying each
link separately.

(46)

4.3.1 Link1

According to Eqs. (45), the elastic motion of the first flexible link can be described by the following
state-space representation:

d11 02 1 0 0 0 0 a1 0
g1 —wi; —;= 0 0 0 0 11 b1y
421 _ 0 0 0 1 0 0 g21 - (t)
gz1 | 0 0 =—wi -7 0 0 21 b .
ga1 0 0 0 0 0 1 ga1 0
a1 0 0 0 0 —wi o g1 ba;
where ;
gy f o+ mb(z - j¢hde  i=1,23. (47)
8]

m; being the mass of the payload for the first link which consists of the mass m, of the actuator of
the second link, the mass pl of the second link and the mass m, of the payload at the end-tip of the




second link.

The normalised flexural stiffness k;; relative to each mode is given by

1
ki =] EI(¢}})%dz i=1723. (48)
0

The constants b;; are deduced from the normalisation of the principal torque 7;(t) applied to the link,
and are equal to
$i1 (1)

b,‘l = —-_k..,? (49)

The position vector giving the deflection of the link at any point z is
u1(z,t) = [$11(z) 0 ¢21(z) 0 ¢a1(z) 0][gu1 d11 921 g1 ga1 ga1)”

This vector is increased by a value ug;(z) corresponding to the static deflection caused by the mass
of the link itself and the load attached to its end-tip. So, the deflection vector becomes:

ui(z,t) = [¢11(z) 0 ¢21(2) 0 d31(z) 0)[g11 d11 g21 G21 ga1 daa]T + uo1(=)_ (50)
with 1242 123 1zt
wr(e) =~ (01 + 2m) 2 — (ot ) 5 + B2 (51

The motion of the first link can be obtained from the inverse Laplace transform of the following
equation:

uy(z,s) = Ci(z)(s] — A1) ' By ni(s) + uoi(z) (52)
where s is the Laplace operator and I the identity matrix.

To determine the deflection u; at the end-tip of the first link, the variable z is replaced in Eq.
(52) by . Figure 4 shows the time history of this end-tip deflection for an impulse input of 1 Newton.
The mass of both links is 400 grammes, the mass of the actuator for the second link is 200 grammes
and the mass of the end-tip load of the second link is also 200 grammes.

The limitation of this state-space representation is that the response u,(z,t) will be relatively correct
only for very small deflections. Since a good accuracy in determining the position of the end-tip of
the first link is needed to locate the origin of the second link, the necessity in using the correction
factor arises once again. The difficulty in using the correction factor lays in the fact that, unlike the
normal procedure required by the state-space representation where the variable z is replaced by the
value at which the deflection of the link is wanted (for this case z=I), the Correction Factor Method
requires the value of the deflection all along the link. In order to obtain a good accuracy, the incre-
mentation of the variable z has to be very small (independently from the number of finite elements
chosen to approximate the flexible link). All this generates some extensive calculation and increases
the computing time needed to obtain a response for the corrected deflection.

Figure 4 shows that, after applying the correction method to the deflection of the first link, the
values obtained are smaller than those resulting from the solution of the Laplace transfer function
relative to the first link. This, of course, will provide an acceptable basis for calculating the position
of the second link and its general motion relatively to the first link.

A set of input torques (numbered 1 to 11) consisting of two consecutive impulses was applied to
the actuator of the first flexible link (see Figure 5) to study the respective response of the end-tip
deflection. These torques are not deduced from Eq. (33) and therefore do not result in any rotational
motion. The link is only subject to a forced vibration due to the application of this set of torques.It
can be seen from Figure 5(a) that the ideal torque would be torque number 5, since the forced vibra-
tion of the end-tip is successfully damped by the second impulse of this torque. It is also be observed
that the forced vibration can be stopped by applying an impulse in the same direction as the initial
impulse but after a delay determined by the frequency of the forced vibration, i.e. the second impulse

should be generated during the second half-period of the first oscillation, or any consecutive second
half-period.
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4.3.2 Link 2

In the same manner as for the first link, the equations governing the elastic motion of the second link
can be structured in a state-space representation as:

d12 i 02 1c 0 0 0 0 '| q12 M0 7
d12 | —wis —ae 0 0 0 0 q12 | b1z
g22 r 0 0 0 1 0 0 q23 r 0
= = ; t
g22 r 0 g —hdgy —g= 1 0 g (Y F b 7a(t)
gaa -0 0 0 0 0 1 g3z - 0
32 | O 0 0 0 -—wi; -2 || ¢ | b3z |
All the constants are determined in the same manner as for the first link.
The position vector giving the deflection at any point z on the link is:
uz(z,t) = [$12(z) 0 ¢22(z) 0 ¢a2(z) 0][g13 d12 922 422 933 Gaz]” + uoa(z) (53)

with upz(z) being the value of the static deflection of the link at a distance z from its origin. This
static deflection is caused by the mass pl of the link plus its payload m, and is equal to

g Pa? ! plzt
‘u.02(3) = —m ((PZ 4 27711)_ = (P £ )— + 12 ) (54)
In a similar manner to that of the first link, the response of the second link can be obtained from the
inverse Laplace transform of the following equation:

uz(z, s) = Ca(z)(sI — A3)" 1By (11(s) + 73(8)) + uo2(z) (55)

Figure 6 shows the time history of the uncorrected, then corrected end-tip deflection for an impulse
input of 1 Newton generated by the actuator of the second link only (72(t)= 0). It can be observed
that the time needed by the link to regain its steady-state position is shorter (by almost 3 seconds)
compared with that needed by the first link. This is due to the distribution of masses for the two links.

Figure 7 shows the effect of a set of input torques (generated in the same manner as for the first
link) on the behaviour of the end-tip of the second link. The dynamic properties of the second link
not being the same as those of the first link, the response of the corresponding end-tips is therefore
totally different. For this case, the ideal torque is found to be torque number 9. The overshoot is
minimum and the settling time, compared with the rest of the responses, faster.

The next step in the modeling of a two-link flexible manipulator consists of repositioning the ori-
gin of the second link. This is done by obtaining the corrected horizontal and vertical positions of the
end-tip of the first link and assigning these values to the coordinates of the origin of the second link.
Then, the vibration and (or) rotation of the first link is used as an additional input to the second
link. This is considered as the effect of the first link on the second link. This operation is carried out
by obtaining the time-varying slope du,({,t)/dz of the end-tip of the first link through the correction
factor method and adding it to the angular position f;(t) of the second link.

4.4 Final Model

The block diagram in Figure 8 summarises the modelling algorithm for the two-link flexible manipu-
lator. The model is divided into two sub-systems, one for each link. Desired coordinates (z14, ¥14, Z24
and yz4) are fed into the system through the block representing the inverse kinematics of the system
to generate the desired angles of rotation #4(t) and 634(t). This operation can be omitted if these two
desired angles are known initially. Both angles are then used as inputs for the rigid system models
representing the two links. Outputs such as link masses, actuator mass, payload, stiffness, length and
width of each link, etc., are passed to the second part of each sub-system which computes the elastic
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motion of each link. Other important outputs produced by each of the two rigid model sub-systems -
are the applied torques 7;(t) and 73(t). Each torque induces the corresponding rigid body to rotate

according to the corresponding angle of rotation 64(t) and, simultaneously, provokes a forced vibration
into the corresponding flexible sub-system.

The superposition of both motions (rigid and flexible) produces a set of variables for each link; among
these are the end-tip vertical positions, the end-tip horizontal positions, the end-tip deflections and
the end-tip slopes. Using the Correction Factor Method, all of these outputs are recalculated. As
a result, some of them will be used as a feed-back to the whole system to test if the rotations are
accomplished, while others (the end-tip slope of link 1, for instance) will be added to the angular
position of the rigid body of the second link, therefore quantifying the effect that the first link has
on the second link. To illustrate the mode of operation of the modeling algorithm, a simulation was
carried out in which a rotation of +30 degrees was applied to the first link, while a rotation of -30
degrees was applied to the second link. As initial conditions (see Figure 9), the rigid body of the first
link was taken to be horizontal (a; = 0). This implies that the end-tip of the actual link is below the
horizontal axis OX since the link is deflected by its loading and the loading of the second link. The
second link was initially aligned with the first link (a; = 0) meaning that the rigid body of link 2 is
aligned with the tangent to the first link at its end-tip. A Correction Factor calculated using 6 finite
elements for each link was used in obtaining the following results from the simulation.

Figure 10(a) shows the variation with time of the angle of rotation 8, (t) of link 1. This angle (plus
the variation of the angle of rotation of link 2) will be produced by applying a torque m(t) (Eq. (33)
to the actuator of link 1. This torque is shown in Figure 10(b). A nominal value of 4.8 Newtons is
necessary to compensate for the gravity force, and should be applied to the actuator as long as the
manipulator is 1n use.

It can be seen that the torque provokes first an acceleration (part of the curve which is above 4.8
Newtons), then a deceleration (part of the curve which is below 4.8 Newtons). The magnitude of -
these two variations depends mainly on the time necessary to rotate the link(s). For a faster time of
rotation, the magnitude of the acceleration and deceleration torques is increased, and vice-versa.

Figure 10(c) shows how the end-tip deflection of the first link reacts to the variation of the torque.
First, there is an increase in negative deflection (the link is starting to rotate, so the torque adds to
the gravitational effect). After 0.15 seconds, the torque is decreased. This causes the link to try to
regain its static equilibrium position (the value of the end-tip deflection jumps from -0.41 metres to
-0.36 metres), but soon after, the torque is decreased even further (braking phase) causing a gradual
overshoot for the end-tip deflection. In this phase, the deflection is decreased until the braking process
has completely ceased. The link will then start oscillating according to its natural frequencies for the
period of time determined by its damping coefficient.

To exactly clarify what is happening at the end-tip of the first link, a plot for the horizontal and
vertical positions of this end-tip is shown in Figure 11. It can be seen that the initial coordinates for
the position of the end-tip of the first link are (0.9,-0.34). After 5 seconds, the new position is given
by the following coordinates (0.97,0.16) showing that the first link has rotated by 30.062 degrees (this
value will equal 30 degrees as soon as the vibrations disappear).

A two-dimensional side view of the rotating first link is shown in Figure 12(a). The use of six fi-
nite elements to model the link achieves an accurate representation of the curvature. It can be noticed
that the curvature (slope) is more pronounced towards the origin of the link (where the loading stress
is maximum). The link is less curved towards its end-tip (where the loading stress is minimum). It
can also be seen from this side view how the end-tip is pushed downwards at the beginning of the
rotation. This is due to the fact that while the origin of the link is rotated upwards, the torque in-
crease provokes the link to bend more and at the same time its inertia is trying to keep it at its initial
position. The resulting effect is that the end-tip is brought downwards and towards the vertical axs
for a very short period of time. When the link reaches the desired position (here, a vertical rotation
of 30 degrees), the actuator is stopped and only the free damped vibrations of the link will remain.
Figure 12(b) shows the same link under the same circumstances as Figure 12(a), but with an extra
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dimension added to show the time history of the flexible link when rotating.

While the first link is being rotated upwards, the second link engages in a similar angular rota-
tion but in the opposite direction. Fig. 6-13(a) shows the value of the angle of rotation #,(¢). This
angle is used in combination with the angle 6;(t) to help determine the value of the torque 73(t) (see
Eq. (33)) to be applied to the actuator of the second link.

Since the rotation is opposite to that of the first link, and since the loading involved in this mo-
tion is smaller than that involved with the first link, the resulting torque (Figure 13(a)) is found to be
of a lesser magnitude than 7(t), causing the end-tip deflection (Figure 13(c)) to be smaller than its
counterpart of link 1. The response of the end-tip deflection for the second link is exactly the opposite
of the end-tip deflection of the first link, such that it is first decreased from its static equilibrium value
since the link is starting to rotate downwards. This is followed by a phase of readjusting (the link tries
to regain its static equilibrium deflection) and that is soon followed by the braking phase where the
deflection is increased to a maximal negative value. Finally, the link is left to vibrate at its natural
damped frequencies. ‘

Figures 14(a) and (b) show the variation with time of the coordinates of the end-tip of the sec-
ond link. These coordinates are expressed in the reference frame attached to the second link, and do
not show the effect that the rotation of the first link has on the second link. In a similar manner to
that of the first link, the angle of rotation of the second link can be derived by calculating the angle
given at any time by the coordinates shown in Figure 14 and substracting this from the initial angle
given by the coordinates at time zero.

The next step is to convert all the coordinates of all the points on the second link plus the cor-
responding deflections and slopes from the second link reference frame to the first link reference
frame. By doing this, the effect of the first link on the second link is introduced. The value of the
slope at the end-tip of the first link will act as an additional input to the second link. This will define
the new motion of the second link. As a result, the new coordinates of the end-tip position of the
second link are given in Figures 15(a) and (b). The vibrations caused by the action of the first link
on the second link are magnified to a point where the second link’s own vibrations are almost entirely
absorbed by those of the first link.

Figures 16(a) and (b) show a two-dimensional and three-dimensional view of the motion of the two-
link flexdble manipulator. Since the two links rotate by the same angle but in opposite directions, the
second link will tend to keep a position parallel to its initial position. This type of motion for the
second link is valid only when 6, (2)=-6.(t).

5 Summary

In this paper, the accurate modelling of a two-link flexible manipulator has been studied. Based on
the Lagrange-Euler formulation, the equations for calculating the necessary torques to be generated
by the corresponding actuators to provoke the desired rotations 6, (t) and #3(t) have been presented.
The work space of the manipulator has also been considered and it has been shown that the reach is
shortened due to its flexibility.

The approach to the development of a state-space representation of the two-link flexible system has
been to consider the manipulator as two systems which are each divided into two sub-systems: a rigid
sub-system and a flexible sub-system. The model has been used to study the time response of the
deflection at the end-tip of link 1 and link 2 to an impulse input applied to each actuator was obtained.
Initially, no correction was applied, and then the correction factor explained in section 2 was included
in the model. This demonstrated that the modelling of flexdble manipulators can be highly inaccurate
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if this correction method is not applied. Finally, simulation of the behaviour of the two-link flexible
manipulator model when the two joints are driven through certain angles was performed.
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Figure 3. Work spaces for rigid and flexible manipulators.
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Figure 4. Response of the end-tip deflection of link 1
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Figure 5(a). Input torque for the first link.
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Figure 7(a). Input torque for the second link.
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Figure 7(b). Response of the end-tip deflection of link 2.
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Figure 9(a). Initial conditions for the position of the manipulator.
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Figure 10(b). Input torque for the first flexible link.
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Figure 10(c). End-tip deflection of the rotating first flexible link.
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Figure 11(a). Horizontal position of the end-tip of the first link.
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Figure 11(b). Vertical position of the end-tip of the first link.
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Figure 12(a). Vertical rotation of the first link (2-D view).
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Figure 12(b). 30—degree rotation of the first flexible link (3-D view).
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Figure 13(b). Input torque for the second flexible link.
-0.1 T T T '
-0.12 :
-0.14
-0.18 : g
_0.2 i | i 41
0 1 2 3 4 5

Time in seconds

Figure 13(c). End-tip deflection of the rotating second flexible link.
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Figure 14(a). Horizontal position of the end-tip of the second link
taken from the reference frame attached to this link.
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Figure 14(b). Vertical position of the end-tip of the second link
taken from the reference frame attached to this link.
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Figure 15(a). Horizontal position of the end-tip of the second link
taken from the reference frame attached to link 1.
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Figure 15(b). Vertical position of the end-tip of the second link
taken from the reference frame attached to link 1.
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Figure 16(a). Vertical rotation* of the two links (2-D view).
* Theta 1 = +30 degrees. Theta 2 = =30 degrees.
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Figure 16(b). General motion* of the two flexible links(3-D view).




