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Abstract

Certain differential systems can be lifted to algebras (of matrices) which greatly simplifies
the use of global linearization for nonlinear dynamical systems. Here we shall use Clifford
algebras to obtain an interesting collection of systems which exhibit a wide variety of be-
haviour. In a particular we shall use glél;n-ﬁl linearization to show that Lyapunov stability
theory for linear systems can be directly extended to this situation and that periodic orbits
can be explicitly calculated.
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1 Introduction

The Carleman linearization technique has been developed in a number of papers [1],{2],[3].

For a nonlinear, one-dimensional equation of the form
z=f(z), z(0)==z0, z(t) ER (1.1)

the method is very simple. We define the new variables

qfa,'::!"l.
Then
qtﬁ,- = i:r:"‘li-
= e iz

oo
= > aiz
j=0
for some values a;; depending on the derivatives of f. Then we can write the equation as

an infinite-dimensional linear one:
$ = AP (1.2)
where ® = (¢, b1, - _)T and A = (aij)o<i,j<oo. The solution is
-fb(t)ze‘“q)o ,0<t<T

where &, = (1,20, 23,23,---)T, provided the Taylor series of the solution of the original
system (1.1) converges in [0, T].
The main drawback with the method is that, for vector systems, we must consider Taylor

monomials of the form




and proceed as before. However, we then obtain a tensorial equation of the form
$ = A®

where ® = (@:,..i,)(i;>0) 15 @ rank-n tensor and A is a tensor operator. This approach
has been used in [4]. One can, of course, string & out into a long vector as in [6], but this
destroys the essential structure of A.

In this paper we shall consider systems which can be ‘lifted’ to associative algebras, so

that we have
= flz), z(0)=zp,2€ A (1.3)

where zo € A for some associative algebra A. Assuming that f has a convergent Taylor
series in this algebra, then we can use the expansion functions z* which are well-defined in
the algebra. This will lead to a matrix linearization of (1.3) since these functions can be
treated a essentially ‘scalar’ objects.

The most useful algebras for our purposes are the standard matrix algebras and the
Clifford algebras, generalizing the complex numbers and quaternions. In the next section
we shall give a brief introduction to the Clifford algebras, in section 3 we consider the lifting
of dynamical systems to Clifford algebras, in section 4 their application to linearization will
be discussed and finally in section 5 the existence of periodic orbits for Clifford systems will

be studied.

2 Clifford Algebras

In this section we shall give a brief introduction to Clifford algebras and their properties

which are needed for global linearization of systems. For more details see [7] . A quadratic




space (V, Q) is a vector space over a field F (= R, C or H) together with a nondegenerate

quadratic form @, i.e. a mapping @) : V — F such that
(i) Qv)=2Q(v), AeF ,veV
(i) B(v,w) £ Q) + Q(w) = Qu—-w) , vweV

is bilinear. The associated form B(v,w) can be used to define an inner product on V and

if {€;} is a basis for V, then

Q(U) = Z B(EJ', ek)v_,-vk N
i.k

where v = 3. vje;. We can always choose the basis to be B-orthogonal, so that, in this

case

Q(v) =) Q(e)}.
i

2.1 Examples

(a) The quadratic form
Qpa(2) = =(21 4+ a2p) +(Tpp + -+ 2hyg),

z € RPY gives rise to a real quadratic Minkowski space denoted by (R™?, @, ;). Note that
(R™%,Qn0) is just R” with the quadratic form —||z||* while (R®™ Q) is R” with the
quadratic form ||z||? (i.e. usual Euclidean space).

(b) (C™, @,) is a complex quadratic space with

The associated blinear formis By, (z, w) = J_;_, ziw; (rather than the usual form Y_!_, z;%;).
Let (V,Q) be a (finite-dimensional) quadratic space. A Clifford algebra (A,v) for

(V, @) is an associative algebra A over F with identity 1 together with an F-linear embedding




v:V — A of Vinto 4 such that (¢(v))> = —=Q(v)1 , v € V and A is generated by
{v(v) :v € V} and {A1: X € F}. Identifying V as a subset of A we simply write the Clifford

condition as
v? = —Q(v)1.

Given a quadratic space (V, Q) we can generate a Cl__iﬂ'ord algebra A as
A=T(V)/I

where T(V) = Y52,V @ --- @V is the tensor algebra over 1" and 7 is the two-sided ideal
generated by the set {v ® v+ Q(v)l : v € V}. The embedding v : V — A is just the
projection 7 : T(V) — T(V)/I = A restricted to V.

For any nondegenerate quadratic space (V, Q) we can find an orthonormal basis e; , 1 <

i < n for which Q(e;) = £1. Expanding (u + v)? for any u,v € V we see that

B(u,v) = —-;—(uv +ou), wu,veEV

so that
ejer +exe; = —2Q(e; )b , 1 < 4,k < n. (2.1)
Define
€= €ny v €ay v =1
for each subset « of {1,---,n} such that 1 < @y < --- < a; < n. From (2.2) we see that a

Clifford algebra for V is generated by all the e, , o € 211"} and so has dimension < 2".
If the algebra has dimension 2" it is called a universal Clifford algebra.

2.3 Examples We shall characterize the real Clifford algebra over R?? for p+ ¢ < 2.




These are denoted by A, ,. First let

1 0 1 0 0 —7 0 1
1:0’02 101 = 02 = I3 =
01 0 -1 ] i 0 10
denote the usual Pauli matrices and define
1 0 i 0 0 1 0 1
Ey=00= yEy = jEy=- Ey=
|- 01 0 —i ] | -1 0 i 0

af =T, 028, B=t, E}==F 1544
Since R®° has dimension 0, its universal Clifford algebra has dimension 2° = 1 and so
Aso=1{M:1€R} =R,

together with the embedding v : R%® — A4, given by v(0) = 0. Since g3 = T the
embedding v : R*? — A, o given by v(y) = yos gives rise to the realization

Ty
A1,0= :I,yER =R4R

with basis e =1 =0p , €1 = 3.

Similarly, Ag 1 has the realization

Ao = 2, yeR ) =C
with basiseg =1 =0y, €; = Es.
For A3 o note that
2
i ry  z2 23 + 23 0
(z101 + z2203)° = =
g —I 0 :U‘l‘? + .’1?::;

= (z}+2z3)oo

= —Qao(z1.72)1




and so v : (z1,23) — z,07 + 303 is the required embedding. Hence, 4, has basis

€y = 0p, €] = 01, €3 = 03, €12 = 0103, giving the realization

Zo+z) 22+ z3 »
-42,0= ‘2o, ,23€ER ) =R
Tg—2T3 Tp— I

Similarly,

|| zo+1iz;  z2+4ir3
A0’2= :xp,--,23€ER > =H
-5 4+ l'.‘L'g T~ ?:21

Higher order Clifford algebras can be generated from the above special cases since it is easy

to see that if A(V, Q) denotes the universal Clifford algebra for (V, Q) then

b
M2, AV,Q)) = ¢ ta,be,de AV, Q)
c d

is a universal Clifford algebra of dimension 4 x dim (A(V,Q)). For example, consider the

quadratic space

(Ve RY —Q(v)+ 22+ ¢2).

a b
It is realized by matrices ,a,be,d e A(V, Q) under the embedding v : (v. 2. y) —
c d
iz iy+ v
Similarly, (V & R, —Q(v) — 2?) is realized by a subalgebra of
iy—v —iz

(Ve R2% —Q(v) — 22 — ¥°) under the embedding

0 v+z
v:(v,z) —

—v+z 0

while (V @ R%!, Q(v) + z2) is realized by a subalgebra of (V & R»!, Q(v) + 22 — 4?) under




the embedding

0 wv4z
v:(v,z) —

v—2z 0
In fact, it can be shown that if A(V, Q) is the universal Clifford algebra for a non-degenerate
real quadratic space (V,Q), then it is isomorphic to a real subalgebra of one of the matrix
algebras C2"X2" or C2"X2™ g C2"*2" if dim V is even or odd, respectively.
Threé important operators are defined on a Clifford algebra. These are the principal

automorphism (’), given by
€ = (=1)l%le; , a g 201 7n]
the reversion (*), given by
€5 = (Buslay » -8 )" = Eay - BBty

and the conjugation operation (™), given by

All these operators are extended by linearity to the whole of the algebra. Using these

operators we can define the norm function
A:A— A
by
A(r)=ZT=z.

Care should be taken,.however, with definition, since it may not resemble the usual idea of

norm in a vector space- it is more like the deteminant of a matrix, and indeed replaces the




det function in the general theory of spin groups. This can be seen clearly in the cases Ag ,
and A; 0. In the former case we have the expansion of any element = = zeg + yes € Ag.1 in

terms of the basis eg, e5. Then

A(z) = (zeg—yes)(zeo+ yeo)

(224 y))1

and this is indeed the standard Euclidean norm. In the latter case, however, we have

z = zop + yo3 for any element in A; o and then

A(z) = (zoog—yos)(zoo+ yos)
= (2= .
In fact, we have
A(z) = ||z||*T (2.2)

always in the Euclidean case. i.e. Ag, for any n, where ||z||° is the Euclidean norm.

considering z in terms of a basis e,, a € 2117} of Ag n: thus, if

r= Z Eala (2.3)

then

P= Y (2.4)
ag2{1.n}

-

Moreover, this norm is independent of the basis. We shall use the norm given by (2.4) and
(2.5) even in the non-Euclidean case, but it should be noted that (2.3) no longer holds and

the norm is not independent of the basis {e,} although all such norms are equivalent.




3 Lifting Nonlinear Dynamical Systems to Clifford Al-

gebras
Consider a nonlinear differential equation of the form
z=f(z), 2(0) = z0 € R". (3.1)

If Ay 4 is a universal Clifford algebra, with p+ ¢ > n,zwe say that the equation (3.1) can be

lifted to A, ¢ if there is a linear embedding L : R® — A, , such that
L(zy, -+ Zn)= 210, + + Tpe,,
for some basis elements e,, in A4, , and a function
FiAdp,— Ay
such that
(F.eadle=t=

where

n
X = Zﬁjfljj + Z.‘r;for

j€J i=1
and {egj}je_; U {€a, }1<i<n is a complete basis of Ap,q such that {es }jes and tea, Jagicn

are disjoint. We then consider the ‘extended’ differential equation
X=F(X) , X=Liz)edy (3.2)

3.1 Lemma If the equation (8.2) is a lifting of equation (3.1) to A, . then any solution

X(t) of (3.2) with & =0, j € J gives rise o a solution z(t) of (8.1):
zi(t) = (X, eq,).

10




Proof We have

: d d
Xien)= —(X = —z:
(X, e0) = F(X,ea) = 22

and
(F(X)»eﬂ.‘)'fj=0 = fi(z)

and the result follows.
3.2 Examples

(i) The equations

S .2
r = zi+ .'r%
.ﬁg = 2:!211'3
lifts to A; o, since it can be written
1 s ( 2"1? . .’L‘g 2r124
o @y \ 22120 23423
( ;7
Iy &g
\ o I
i.e.
X=X?
in A; o. The system
i‘l = .'L'? = Ig
i?g = 22‘11‘.‘2

11




can be lifted to Ag i, since

2‘.31 2I32 A I I
—i!z :itl -T2 I
(ii) The system
£ = x? - 31:34;1 - 3::%::1 - 313:1
zo = 3:-:?::2 - zg - .’C%I‘g - ziml
ia = 31!%223—3:3 —1313— 1:31‘3
g = 3zizg—23—1dry— 23z, (3.3)
can be lifted to the system
X=x3

on Ap 2, where
21 4iry 3+ ixy
X =
—23 4 iy Ty — i

Now let

X=F(X), Xo€ A, (3.4)

be a differential equation defined on a universal Clifford algebra A, ; and suppose that F

has a convergent Taylor series (in the Hilbert space norm introduced in section 2). Thus,

oo

F(X)= %X.X---X (3.5)
i=0 H

where a; € F , i > 0. The solution of (3.4) is given directly by the Lie series:
X(t)-exp(th)Xl . (3.6)
dX X=Xo '

12




3.3 Example Consider the system

X=j
on Ag 2 given in example 3.2, with X, = . The solution is given by (3.6), i.e.
01
X() = exp (t}(si) X‘
dXx /- X=X,
[T 1
tl 3 d -
= Y5(rx) 2
i=0 X=X¢
oc {': R
= Z =(2i = NXZH!
!
i=0
where n!! is the double factorial given by
nl=nn-2)(n-4)--- , M=1,01=1,nl'=1.n<0.
Thus, if
Ti0+1T20 T30+ iT40
Xo =
—Z30+ 1240 210 - iZ20
we have
241
T+ 1Ty I3+ 1Ty Xt Tio+ 1T T30+ 1240
= Z =(2i = 1!
. 1. P d
—T3+ity *;— il =D —Z30+ 1240 T10— iTap

which gives the solution to (3.3) in the form
s 3 2 2 9
z1(t) = 210 + 1(23 — 3230210 — 3230210 — 3230210+ - -
— 3 2 2 9
x2(t) =T+ i(_-'f—'zg + 3r{pT20 — T3pT20 — T3pToo+ - -
_— 3 2 9 2
23(t) = Z30+ t(-—l'3g + 3.’3101'30 — T50T30 — TypTag+ -

3 2 2
24(t) = 240+ H—zy+ 31‘%31’40 — T30T40 — T3pT40+ -

13
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4 Global Linearization of Clifford Differential Systems

Consider now a Clifford differential equation of the form

X =FX) ; Fl)=Xoed; (4.1)
where
F(X)= %y xox
B i=0 i! : : =

Define the Taylor monomials by

q&;:X-X.---X:X" , i20.

Then

-

b = XXX

where

il O]

0 otherwise

Qi =

Hence, writing ® = (o, ¢1, d2,---)7, we have

d = Ad (4.2)

14




where A = (e;)o<i,j<oo- Note that & € A, £ &7=oAp,q and the latter can be made into

a Banach space by defining

— lIill4,.,
I®llags, = 3 =572, 43)
i=0 :
Then (as has been shown in ) e#! exists as a bounded operator fort € [0, 7) on (.,4;’?9,?, IE ”Aﬁq)

and the solution of (4.2) is given by
®(t) = e'®(0)
where
@(0) = (1,X(0), X*(0), - )T .

7 is the maximal time of existence of the solution and Agff is the subset of A, consisting
of all elements of the form (1, X, X2, X3 ...

4.1 Remark If F(0) = 0, i.e. ap = 0, we can consider the vector & = (¢;,¢2.---)T.i.e. we
only need to take into account Taylor monomials for ¢ > 0.

4.2 Example Consider the system in example 3.2(ii), i.e.
X = x2.
Then
vk s £330

and so
. l._g . .
b= Y xtxxie
k=0
= §Xxit+?

= idiys .

15




Hence the system is equivalent to the system

@ = Ad
where
( 0 01 \
0 0 0 2
A=
0000 3
\ . - . - . - - /
This is easily checked to lead to the same solution as in (3.7). |

The linearized structure (4.2) is particularly useful in generalizing a variety of linear
results to nonlinear systems which lift to Clifford algebras. First note that since the Clifford
norm || - ||4,, induces a norm on RP*¢ equivalent to the Euclidean norm, the stability of
a Clifford system (4.1) is equivalent to that of the underlying system in R"*9. The next
result is proved in formally the same way as Lyapunov’s classical theorem:

4.1 Theorem If F(0) = 0, the system ({.1) is stable if and only if. given any positive

definite (infinite) matriz Q, there exists a positive definile matriz P such that
ATP+PA=-Q.
where by positive definite we mean that
3 Po >0

for all ® € A, of the form & = (X, X?, X5, -). D
(Here, ® = (X, XX -) where X denotes the conjugate of X'.) A Lyapunov function

is then given directly by




4.2 Example Consider the system

X==-Xx3

on Ap 2, where

ry+ize T3+ 1izy

X =
—Z3+ 124 T — iZ2
Let
(1 00 \ (0 0 1
0 0 0 00 0
P = , Q:
1 00
\ ) /
Then,
(0 01 \
0 0 0 2
A=-—
00 0 0 3
and so
ATP4+ PA=-Q.
Also,
V=% Pd=XX=A(X) = |jz|]
and

. =T =3
V=-% Qd=-X X3=—|z|°
Remark ‘Positive definite’ now means something rather different than in the usual sense.

17




5 Periodic Orbits

The proof of the existence of periodic orbits of nonlinear dynamical systems has a long
history, including justifications of the harmonic linearization techniques [8], Lyapunov theory
[5] and the use of index theory [9]. The method developed here will allow us to prove directly
the existence of periodic orbits for systems which can be lifted to a Clifford algebra. Thus,
consider again the system (4.1) on A, , and its Iineé.rization (4.2) on A2,. Suppose that

X (0) lies on a periodic orbit of period 7. Then
eA7®(0) = $(0) (5.1)

where ®(0) = (X(0), X2(0), X3(0),--:)T. Hence, eA7 has an eigenvalue 1 with eigenvector
®(0). Thus, although A is not a bounded operator on .Ag?&'f, an obvious extension of the
spectral mapping theorem implies that A has an eigenvalue 27i/7 (although note that A4
will not generally have an eigenvector of the form ®(0)). Hence we have
5.1 Theorem A necessary condition for (4.1) to have a periodic orbit of period © is that
the associated operator A C L(A,) has an eigenvalue of 2mi/T. m]
A sufficient condition is that A satisfies the necessary condition of theorem 5.1 and
that e4” has an eigenvector corresponding to the eigenvalue 27i/7 of the form ®(0) above.
Moreover, each element of the vector e#'®(0) is a formal power series which must converge
for all £ € [0, 7]. In many cases we can evaluate e/’ directly and determine conditions for

the existence of periodic orbits.

5.2 Example Consider the system

X =iX + X3 (5.2)

18




for X" in a complex Clifford algebra A. The linearization (4.2) is given by the operator

(z'Ul )

2 0 2
3 0 3
4 0 4

\ )

Clearly A (as an operator on .A*) has i as an eigenvalue. To determine ¢!

consider the

systems of equations -

1, = iry+ 23
Ty = 2izo+ 2z4

(5.3)
2y =  kirg+krpgo

Put y; = e~***z). Then we have

h = —ike g ey,

= ke®'ypyy , 1 <k <.

We must solve these equations with the initial condition (0,0,---, 1 .0,--.). Thus,
2p+1

Yope1 = 0 = yopp1 =1

(2p—1)e® . 1

!.J2p—1

80
Yap-1 = (29— 1) m(e¥ = 1)
B 2 '

19




Cfop—3 = (2p—8)eFlyspy

1l

|
(2p-3)(2p - 1)562”(82" -1)
and so
Yop—3 = (20— 3)(2p — 1) (2 — 1)1
e 2i 43 :

Continuing in this way we obtain

v o= (213-—1-)!!_2.1?%...}%22_(62:'1_1);,
2p— 1)1 o,
%(e“—l)?.
Thus,
- ..
=S %fz”(e:’” - 1.

It follows that the solution of (5.2) through Xj is given by

oo _ 21 qyy2n P
X(i)ze“XoZ(zpp!l)!! ((e : 1))&0) .

= 21

This power series has radius of convergence

N (2p— 1!t
r = 1/limsup {/ ————
/ P ¢ p!
- 1 1 1
— 1/1:msup,,(/(2—;) (2_;—_1)'”(2_?
1
> =
= 2

Hence, if

|(e?* — 1) X3

1
& 5
2 — 2

20




then the solution is given by the above power series. Since A has i as an eigenvalue, all
solutions with

1 1
Supgsfsg,lfzﬂ - 1! - 2

IXol* <

lie on periodic orbits of period 27. In particular, if A = Ap; = C. then the equation

becomes
d ; ; ' .
_E(:h +izg) = i(zg +iza) + (21 + iz0)
1.e.

£ = —z+423-3223

2y = z3—z5+3z22z,

The phase plane portrait of this system is shown in fig. 1.

-2. 16 (1.2 del del 0 del Bel 12 16 2.

‘{“"‘31 FL&S-&"?L&_\\\ 'OP\:(‘H.\.‘{ ei- ‘Xzii*xa
6 Conclusions

In this paper we have studied nonlinear dynamical systems which can be lifted to Clifford
algebras. Such systems have a considerable degree of symmetry and exhibit interesting
behaviour. In particular, we have shown that Lyapunov’s equation for linear system stability

directly generalizes to Clifford systems and that periodic orbits may often be computed

21




explicitly for these types of system. We have presented only some very simple examples to
illustrate the theory. Clearly, many other kinds of systems are expressible in this form and a
thorough study of some higher-dimensional examples should provide some very interesting
behaviour. For example, are any of these systems chaotic? If so, the global linearization
technique will provide a method for obtaining explicit characterization of their properties,

as in the case of periodic orbits. These questions will be examined in a future paper.
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