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Abstract

A new wavelet based smoothing algorithm is introduced to reduce the noise
affecting chaotic signals prior to system identification. The algorithm involves a
“ multiresolution decomposition of the signal using B-spline wavelets which makes
use of the mutual information between neighbouring points in time. Rigurous
results concerning the effects of noise on the wavelet coefficients and the efficiency
of the smoothing procedure are derived. Noise corrupted signals generated from
’ Chua's circuit and the Lorenz equation are used to test the new method. The
correlation dimension and the largest Lyapunov exponent of the models, estimated
using the smoothed signals, are compared with the true values to demonstrate that

the new algorithm preserves the dynamical properties of the underlying system.




1. Introduction

Many real life systems can, under certain conditions, exhibit a very irregular
behaviour known as chaos. Chaotic behaviour has for example been detected in
systems ranging from electronic circuits, electric power stations and lasers to chemical
reactors, economic growth and heart activity. Initially chaotic motion was regarded as
a special type of noise but later work showed that it is in fact a deterministic process.
To distinguish such apparent randomness from a true stochastic process, to understand
and explain this behaviour, it was necessary to develop new mathematical techniques
within the framework of nonlinear systems theory.

In many practical situations the only information available from a dynamical
process takes the form of a time series and this has to be used to extract both
qualitative and quantitative features of the underlying system. Because of the erratic
structure it is not easy to quantify and characterise chaotic motion. The most typical
measures of chaos are the correlation dimension and the largest Lyapunov exponent
and these can often be estimated directly from the recorded time series. The correlation
dimension, characterises the fractal nature of the geometric structure generated by a
chaotic system in phase space. The largest Lyapunov exponent, a generalisation of the
concept of Lyapunov exponents of a system around an equilibrium point, reflects the
sensitivity of the chaotic motion with respect to initial conditions. Given a sufficiently
long record of clean data, both of these dynamical invariants can be estimated with
reasonable accuracy.

Unfortunately in many practical situations only a limited amount of data, often
corrupted by noise is available and this makes the estimation of the above dynamical
invariants very difficult. In this situation, the only way to gain some insight into the
process under investigation is to try to estimate a mathematical model based on a short
length of noisy observations. The presence of noise is in this case the main factor that
can limit the possibility of estimating a dynamically valid model.

Traditional Wiener or Kalman filtering techniques can be used in an attempt to
separate the signal from the noise. But this tends to be limited by the fact that one
characteristic of chaotic signals is aperiodic behaviour and a nearly flat broad spectrum
that resembles a pure stochastic process. Simple low pass filtering for example, can
severely damage the dynamical properties of the original signal with direct implications
on the dynamical validity of estimated models.

Methods that are superior to low pass filtering make use of singular value
decomposition (SVD) (Vautard1992) or are prediction-based algorithms that attempt
to correct the noise perturbed trajectory at one point using both future and past

information to predict the true value (Schreiber and Grassberger 1991, Aguirre et al
1994).

More recently wavelet decompositions have provided a useful tool for
recovering nonlinear non-stationary signals blurred by noise with high accuracy based
on the fact that a multiresolution wavelet decomposition provides a very useful time-

frequency analysis which can be exploited to reduce the stochastic part of a signal
(Donoho1992).
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In the present paper a new wavelet smoothing algorithm is introduced and
applied to the noise reduction of chaotic signals. The main objective is to develop an
approach which reduces the noise on the signals without altering the dynamical
invariants or characteristics of the underlying system. This is achieved using a
multiresolution decomposition of the signal using B-spline wavelets followed by a
smoothing operation using the wavelet coefficients. It is shown that enhanced
performance can be obtained by smoothing rather than filtering. Both the correlation
dimension and the largest Lyapunov exponent are computed for the original system
and the model estimated using the smoothed noisy signal to illustrate that the dynamic
invariants of the system remain unchanged by the wavelet smoothing routine. Chua's
circuit and Lorenz's equations are used as examples to demonstrate the performance of
the algorithm. '

The paper is organised as follows. Section 2 briefly introduces dynamical
system representations and discusses the effects of noise. Some specific problems
encountered with noisy chaotic signals, which make wavelet decomposition a feasible
tool for smoothing such signals, are also discussed. In Section 3 the concept of wavelet
multiresolution decomposition is introduced. Section 4 describes the implementation of
such a decomposition based on B-spline wavelet functions that are used to generate a
nonorthogonal multiresolution approximation. The special properties of B-spline
wavelets which make them attractive in this application, optimal time-frequency
localisation and a linear phase characteristic, are also presented. In the same section,
rigorous results concerning the effects of noise on the wavelet coefficients of a chaotic
signal are derived and a technique to reduce the stochastic part of the noisy wavelet
coefficients and subsequently smooth the underlying signal is introduced. The new
method is illustrated in two numerical examples which are contained in Section 5.
Finally Section 6 involves comments and conclusions while acknowledgements are
contained in Section 7.

3. Noise and Chaotic Systems
2.1 Dynamical systems representation

The notion of a dynamical system covers any system evolving in time which
can be described mathematically either as a set of ordinary differential equations or by
discrete mappings or difference equations.

Differential equations are used to model systems which evolve continuously in

time. Such systems occur frequently in practice and are represented in general by the
following equations

{x(z) = f(x(t),u(r)) (2.1.1)

¥(8) = h(x(2),u(?))

with fIR"XR™ - R", ER"XR" - R,




The solution or flow of the dynamical system described by equation (2.1.1) is defined
locally for each £ e R" XR ™ as the function

o(1):(-€,e) = R" 2.1.2)
with € > 0 such that

289 - fit0(, and 0(0)=% (@13

The function @(¢) is unique with respect to the initial condition & and can be denoted
as ©(2,€) or as ©(¢,x,,u,) where x,= x(0), u, =u(0).

From equation (2.1.3) is easy to see that since f(z,x(t),u(t)) is C” then
e(t)eC" (2.1.4)

Although dynamical systems are continuous in most practical situations, such
systems are usually observed at discrete instants in time. This means that the flow of a
continuous dynamical system has to be sampled in order to analyse, model or control
it. Mathematically the discretisation of a continuous flow is described by Euler's
integral equation

o(n=8+ _r[f(s,tP(S))ds (2.1.5)
0
where & is the initial condition. Equation (2.1.4) defines a function
D(p)=§ +jf(s,(P(S))dS (2.1.6)
0
so that @(¢) is the function which solves the fixed point equation

0 =P(@) (2.1.7)

The solution map satisfies the conditions

0(0,6)=¢ -
ot o(s,E)=0(t+5,E), t,seR =
as long as it exists since @(¢#) may not be defined in general for all >0

Following (2.1.7) we can define a discrete dynamical system as

{x(kﬂ) = f(x(k), u(k))

y(k) = h(x(k),u(k)) (2.1.9)




where once again x€R" is the state vector, u€R™ is the input or control of the
system and y the output of the system.

A dynamical system can under certain conditions, (for a particular choice of
parameters) behave chaotically The trajectory of such a system gives birth to a
geometric structure in the state space which is neither a fixed point or a limit cycle nor
a quasi periodic torus. Such a structure, known as a chaotic attractor, which is not
even a manifold, is related to a Cantor set and it possesses a fractional dimension. The
motion on such attractor can be associated with random behaviour, although the
equations of motion are fully deterministic. An intrinsic property of a chaotic system is
the sensitive dependence of initial conditions which is illustrated by the fact that nearby
points on the attractor will separate exponentially in time, until they become totally
uncorrelated.

When the signal is chaotic some assumptions can be made concerning the
smoothness of the chaotic signal. Such assumptions are based on the fact that chaos
can only appear if the dynamical process is described by, at least, a third-order
differential equation (autonomous case). This is a sine qua non condition for the
existence of chaos in a system governed by ordinary differential equations. Following
this and (2.1.4) we can state the following proposition

Proposition 1: A chaotic signal y(1) is at least three times continuously differentiable
with respect to time, almost everywhere.

Almost everywhere means that y(7) is not C’, r=3 for a countable set of
points. This reflects the fact that for a given dynamical system described by a set of
ordinary differential equations a global solution may not exist. An example in this sense
is given by the Chua's circuit described by the equations

i=a-(y-1(x))
y=x—-y+z (2.1.10)
b ==fiy

where

mx+(my,—-m) x21
I(x)={myx IxI<1 (2.1.11)

mx—{m, —m,) XS=—1

2
From (2.1.10) and (2.1.11) it is clear that % does not exist for x(/)={-1,1}

of

since o with f=0(y—Hhx)), is not defined at these points. Taking the observation

function to be h(x,y,z)=x it is clear that in this case the output of the system
Y(t)=x() is C* everywhere except at the points for which x(r)=-1 or x({)=1.
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In practice our ability to observe and analyse a dynamical system is limited by
the presence of unknown perturbations. Such perturbations are generally referred to
as noise and were formally described by the concept of innovations introduced by
Kolmogorov in 1941. In this sense an innovation process at each step generates new
information which cannot be predicted from previous measurements. The innovation
part of an observation is orthogonal to the previous measurement so an innovation
process is comparable to a Gram-Schmidt orthogonalisation for vectors.

For a dynamical system, the noise can be classified as two types namely
dynamical and observational.

2.2 Dynamical noise vs. observational noise

There is a fundamental difference between observational and dynamical noise.
Observational noise is related to the accuracy the output of a dynamical system can be
measured to. The presence of observational noise can be introduced in the general
representation of the dynamical system by augmenting the observation function A(x(?),
y(f)in (2.1.1). In the general case this can be expressed as .

y(1) = h(x(1),u(?),€,(1)) (2.2.1)

where €, (¢) is white noise.

However, in most practical cases the observational noise enters additively, that is
y(&) = h(x(8),u(t))+€,(t) (2:2.2)

Dynamical noise (known also as plant noise) is the noise that perturbs the states
of the system and the effect of such perturbation can be included in the state space
equations given in (2.1.1) which become

x() = f(x(t),u(t),g,(1) 22.3)

with €,(f) again white noise. Here observational and dynamical noise can be
considered to be generated by two independent random processes.

As an example observational noise can be considered as generated in the
measurement process by round-off errors or by the imprecision of the instruments,
dynamical noise can occur because of a random variation of a parameter in the
dynamical system. Dynamical noise generally creates greater problems than
observational noise. However; in most of practical cases observational noise accounts
for most of the perturbations affecting the system. In both cases the noise can be
viewed as an unknown (unobserved) input which perturbs the system.




_

The present study investigates the possibility of removing the additive part of
the observational noise present in a measured chaotic signal, prior to the identification
stage. The smoothing method introduced in the paper deals in this sense with an
unfavourable situation, when the observed signal is generated by a chaotic system.

Generally the task of filtering or smoothing a chaotic signal poses some specific
problems due to the typical aperiodic behaviour and broadband spectrum of such
signals. The broadband spectrum of a chaotic signal reflects the fact that the chaotic
motion can be represented by a continuum of frequencies. This property means
traditional filtering techniques often fail when applied to a chaotic signal. It is well
known that a purely random or noisy process also has a broadband spectrum so that
the characteristic frequencies of a chaotic signal are practically inseparable from that of
a random process.

The new approach introduced in this paper makes use of the multiresolution
wavelet decomposition of the signal, which is represented as a wavelet series, to
remove the noise. The smoothing procedure is performed indirectly by using just the
coeflicients of the wavelet series representation. First it is important to find how the
noise is reflected by the wavelet coefficients of the wavelet series representation of the
signal. New results concerning this are derived in section 4.2 using only the assumption
that the noise is white and additive. Next a way to reduce the noise using mutual
information between neighbouring points in the data sequence is introduced in 4.3 and
it is shown both analytically and numerically that this does not affect the dynamical
properties of the underlying signal.

The advantage of using the wavelet approach is twofold. First of all the
multiresolution analysis based on wavelets provides a time-frequency representation of
the signal of interest which is particularly suitable for non-stationary signals. While
simple Fourier analysis provides global information about the frequency content of the
signal, wavelet analysis can relate a particular frequency content to the moment in time
when it occurred. It is possible therefore to break down the apparently continuos
spectrum of a chaotic signal so that the frequency content of the signal at different
instances in time depends on the particular unstable periodic orbit the trajectory
follows at that time instant.

A period one or period two orbit for example is characterised by very sharp
peaks in the frequency domain. Such peaks which cannot be distinguished clearly in the
spectrum of the chaotic signal, can be separated using the time-frequency window
provided by wavelet functions. This makes the task of separating the noise from the
true signal easier. Moreover such a separation can be made not just on the grounds of
the characteristic spectrum. An important property of the wavelet representation is the
fact that the magnitude of the wavelet coefficients reflects in an unequivocal way the
properties of the signal This feature is not available in the classical Fourier
representation where it is impossible to predict the properties of a function like size
and regularity solely from the values of the Fourier coefficients.

An important aspect, which has to be considered before attempting to filter any
signal from a dynamical system, concerns the smoothness of the signal. In general the
smoothness of the data determines the smoothness needed for the wavelet basis.
Preserving the smoothness of the original signal is important especially in system
identification where the derivatives of the signal contain essential information about the



dynamical motion. In this sense by performing the smoothing procedure over the
wavelet coefficients, simultaneously, depending on the smoothness class of the wavelet
basis, the derivatives of the signal are also smoothed.

The main constraint on the smoothing procedure is that it should not affect the
dynamical characteristics of the signal so that the qualitative and quantitative
properties of the underlying system remain unchanged. Some quantitative
characteristics of chaotic signals are traditionally obtained directly from the data set
and this includes estimates of the correlation dimension and the largest positive
Lyapunov exponent. Usually to obtain good estimates of these invariants a very long
data record is required.

Another approach which has proven to be more reliable especially when a long
time series is not available is to estimate a model and to use this to compute the
dynamical measures. There are many characteristics of the system which can be
determined in this way providing the model accurately captures all the dynamical
characteristics of the underlying system. For example the full Lyapunov spectrum can
be evaluated using the estimated model and then information such as the Lyapunov
dimension can be readily computed. Qualitative aspects of the dynamical motion,
concerning the equilibrium points and the structural stability of the system, presented
in the form of a bifurcation diagram can also be calculated.

3. Wavelet decomposition
3.1. Multiresolution approximation

The main ingredient of a multiresolution analysis is the sequence of nested
subspaces V; satisfying the following conditions:

() | W, eF, €.

@ U=r®)

j= —c0

@) (W ={g}

4) fxeV, e f'x)eV,

Conditions (1) and (2) state that successive projections P f of a function f
onto ¥, approximate f with increasing accuracy. Actually property (1) states that for
i<j, P, f canbe viewed as a finer approximation of f than Pf .

It follows from property (2) that

f=imPf (.1.1)

Jore




By decreasing the resolution and taking coarser and coarser approximations,
the resulting projection P, / will contain less and less information about the function

and will eventually converge to zero.
lim P f={0} 3.1.2)
Jre

Condition (4) is the so called scaling property and introduces a link between
the successive approximation subspaces V, . Rewrite the condition as

f(x)eV, & f(27x) eV, (3.1.3)

to see that all the subspaces V; are scaled versions of a central subspace V.

The importance of the scaling property arises from the fact that a
multiresolution analysis can be induced by means of a single function @(x) and its
translates generating a basis {(p(x—k)}kez which span the subspace V. Due to the

scaling property the same function or rather a scaled version of it can generate the
successive resolution subspaces V, in a similar way.

When the multiresolution approximation was first defined by S.Mallat and Y.
Meyer the scaling function @(x) was orthonormal to all translates @(x—k) thus
leading to an orthonormal multiresolution approximation. However the orthonormality
condition imposes tight constrains on the scaling function and moreover this condition
is not essential in many applications. The orthonormal multiresolution approximation
can be viewed as a particular case included in the more general framework of
nonorthogonal multiresolution approximations generated in terms of a redundant but
still useful basis known as a frame (see Chui 1992 for a definition).

Orthonormal or not, the scaling functions spanning the resolution subspace 4

can be expressed as {2/-(2’ Jc—k)}kez where 2/ is a normalisation parameter

required to ensure that the following relation, known as the partition of unity property,
holds

[ o0 tdx=1 (3.1.4)

Wavelet subspaces W. can be introduced in the context of multiresolution
analysis as the orthogonal complement of V. with respect to the next resolution

subspace V,

w1~ This can be written as

‘[/}@W}:VJH (3.1.5)



——ﬁ

where © denotes the orthogonal sum of subspaces. We would like to have a function
Y(x) to provide a basis for W, in the same way the scaling function @(x) provides a

basis for V, . Such a function will be a linear combination of the functions
{2 -¢(2-x-K)} _ which form a frame basis for ¥, sincey(x) € W, < V;. This is
also true for the scaling function @(x) which can be expressed in a similar way in terms
of the basis functions spanning V.

The formulas which describe this

P(x)= Y po(2x—k);

(3.1.6)
v(x)= q,0(2x—k),
k

are called the two scale relations of the scaling and wavelet functions and {p, } {qk}

are known as the two scale reconstruction sequences. Moreover any basis function
©(2x — k) from V] can alternatively be written using the scaling and wavelet basis from
V, and W, respectively as

e2x-k)= Y {a, 0(x-D+b,_w(x-D}, keZ (3.1.7)

l=—co

This is referred to as the decomposition relation with {a, } and {b,} the decomposition
sequences.

Once the scaling function is known, equation (3.1.6) gives a constructive method to
determine the wavelet function such that each subspace W, is the closure in I?(R)

determined by the linear span of the collection of functions
Y, (x)=2"y (2 x-k) (3.1.8)

It is interesting to note, however, that the scaling and wavelet functions are not unique
and that different choices are available.

Following the inclusion condition ...V, ¢V, €V, c V,... and the fact that W,
is the orthogonal complement for the subspace V. with respect to V;

J+1

vew=v, (3.1.9)

Wwe can write




@ wev, =V, (3.1.10)
i={0,/}

or equivalently,

VL, eW,®..ew, =V, (3.1.11)
where in contrast to the subspaces V, which are nested
W, W, ={2} (3.1.12)

The different resolution subspaces W, are mutually orthogonal and decompose the
Hilbert space L*(R) in a similar way, for example, the orthonormal basis e/
decomposes L*((0,2m)). Unlike the Fourier series the major characteristic of the

decomposition is that the direct sum of the subspaces W, up to a given index, say j,
can be replaced by V,,, that is

+1

Va= @ W (3.1.13)
i={-=,j}

This relation gives an alternative way of representing the approximation of a
function at resolution V; (or the projection of f onto V, ) by adding up the projections
of f on each of the subspaces W, with i = {—ec, j}. From a practical point of view we
can start with a fixed resolution V, and later improve the approximation by adding the
detail or the projections onto W,. Such details could be seen as variations or
oscillations of arbitrarily small energy, of the function analysed, which in the frequency
domain are represented by frequency bands.

In the wavelet representation the coefficients play the same role as the Fourier
coefficients in Fourier analysis, the difference being that here they give information
about the local properties of the function analysed.

The expansion of a function in terms of scaling and wavelet functions (wavelet
series) is given by the following equation

F)=Y 00,00+ > d v, (x) (3.1.14)
k

i2jk

where
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Pf=Yc,0,.(x) (3.1.15)
k

is the projection of f onto V, and

Qf= Zdj.kwj,k (%) (3.1.16)

ke

is the projection of f onto W,, with

0, (0)=2"(2 x~k),

i _ G.LI7
V() =2""y(2'x-k)

Finally we can write

f(xX)=Pf+Y Qf =Pf+0,f+0,.f+.. (3.1.18)

iz

This decomposition enables us to choose how much of the details contained in
Q.f, Q;.f ,-... we want to incorporate in our approximation.

2.2. Multiresolution Pyramid Decomposition

Multiresolution analysis leads to a fast scheme for the computation of the
wavelet coefficients of a given function.

Starting with a finer projection of a function f onto V; this can be decomposed
into a coarser approximation onto ¥, together with the difference or detailed
information between the successive levels V, and ¥,_, that is the orthogonal projection
onto the wavelet subspace W, . This decomposition can be continued as long as
desired so that the initial projection P, f will be written as a projection P, f onto the

coarser subspace V,_, plus a sum of projections onto the complementary subspaces

{m.}

i=ln
B =B S Q6. S, Jned G.2.1)

At the finer resolution the function f will be approximated as

11



F@)=Pf=Y 0, (x) (3.2.2)

Using the decomposition relation we can alternatively express (3.2.2) in terms of
scaling and wavelet basis functions at resolution j-1 as follows

f(x)= P,f = Z{Cj—l,k(pj—!,k (x) +dj—l,k\|!j—!,k(x)} (3.23)

The scaling and wavelet function coefficients at resolution j-1 can be computed in an
efficient way using the fast decomposition algorithm

Crpg & Zal—zkcj,l
!

(3.2.4)
d oy Zbi—zkcj,f
]

derived from (3.1.7). Relations (3.2.4) describe a moving average process, involving
the scaling coefficients at resolution j and the decomposition sequences {a, }:ez and
{5} .z Downsampling or decimating the data sequence which results after the moving

average procedure has been performed, by taking every second value, is required to
obtain the desired coefficients.

The reconstruction algorithm is a consequence of the two scale relations
(3.1.6) and is used to calculate the scaling function coefficients at the finer resolution
level from the scaling and wavelet function coefficients at the coarser level. The
computation involves the following moving average scheme,

Cia= Z [P:—zkc ik T4 j-l_k] (3.2.5)
3

this time with the weighting sequences {p, Jand {g,}. In this case upsampling is
required before the MA scheme is used and this is done by inserting a zero between
every two consecutive terms of the input sequences \c¢,_,, f and \d,_,, .

The scaling and wavelet functions can be considered as filter functions. While the
scaling function behaves like a low-pass filter the wavelet function has the
characteristic of a band-pass filter. This is why the projection of a function onto a
subspace V, can be viewed as a smoothing operation. The importance of the

decom;_)osition and reconstruction algorithm is that by separating the details of the
approximated signal and storing them in different subspaces W, of V, using the

decomposition algorithm, a better analysis of the signal can be carried out.

12




An important feature of the wavelet coefficients is that the energy of the signal
is reflected locally by their magnitude. In this way wavelet decompositions will
compress the energy of the signal into fewer numbers of large coefficients. This
property is extremely valuable in data compression where simply by discarding the
small coefficients ( small relative to the other coefficients) the original signal can be
represented more economically.

4. Nonorthogonal B-spline Multiresolution Approximation
4.1. Construction and properties of B-spline Multiresolution A pproxfmation

For many applications of the multiresolution analysis, orthonormality is not
essential. Wavelets need not be orthonormal. Relaxing the orthonormality condition
leads to nonorthogonal multiresolution approximations and provides a more flexible
framework for function approximation.

A typical example of scaling functions @(x) are the m-th order cardinal B-
spline functions B, (x) with meZ which are defined recursively by the integral
convolution

B ()= [ B (x=1)B, (1)t @.11)

where B,(x) is the characteristic function of the interval (called also the indicator
function) x(#). Relation (4.1.1) thus becomes

Bn(x)= J:Bm_l (x—1)dt (4.12)
since
1 0,1
B.()=x()= {0 :himi)se (4.1.3)

Basgd on equations (4.1.1) and (4.1.2) the B-spline basis functions can be defined
starting with the first order basis function (of degree zero) given explicitly in (4.1.3)
and using the following recursive algorithm to construct basis functions of higher order

X

B.(x)=

m-—Xx
m_IB,,,_l(x)-rm—_le_,(x—l). 4.1.4)

13
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The B-spline function B, (of order m) consists in fact of m nontrivial polynomial
pieces of degree m-1 so that

Bml[k-—l.k) =P k=l....m 4.1.5)

where B, , is a polynomial of degree m-1. Denoting m, as the collection of all

polynomials of degree at most 7 and with C” the space of continuous functions having
up to 7 continuous derivatives, allows us to define the subspace ¥, generated by

®(x)=B,(x) as the subspace of all functions feC™*NI*(R) such that the
restriction of /' to any interval [£-1,£] is a polynomial with degree at most m-1. Each

polynomial piece can be computed analytically which gives an alternative way to
compute the value of the B-spline functions at any point.

To generate a nonorthogonal multiresolution approximation, the associated
scaling function @(x) has to generate a frame over V. In the case above, for m a
positive integer, the scaling function @(x)=,,(x) generates a frame for the subspace
V, and moreover it can be proven that a whole multiresolution approximation can be
defined based on B-spline basis functions (see Chui 1992 for details).

Let W, denote the sequence of orthogonal complementary subspaces with
respect to V,,. A B-spline wavelet basis can then be defined for any W, , which satisfies

the scaling property. It can be shown that up to multiplication by a constant the
compactly supported wavelets y(x) with minimum support that correspond to the m-
th order cardinal B-spline are unique. The support of the m-th order B-spline wavelet
is an interval of length 2m-1. Moreover all wavelets are symmetric for even m and anti
symmetric for odd m.

Because of the total positivity property of B-spline functions (analysed in
Chui(1992) , the B-spline series

> Ba(x—k) (4.1.4)

is one of the most suitable tools for smoothing purposes. In contrast the B-spline
wavelet functions have a strong oscillatory character so, normally, a B-spline wavelet
series will detect variations in the data. The smoothing effect of the B-spline scaling
functions arises because oscillations of a data sequence are diminished when convolved
with a discrete B-spline interpolation kernel.

In fact scaling functions and wavelets can be considered as filter functions. The
difference between them is that while the scaling function acts as a low pass filter, the
corresponding wavelet function behaves like a bandpass filter. The frequency
characteristics of B-spline scaling functions is presented in Fig. 1(a) for the case of a
cubic B-spline (m=4). Fig.1(a) shows how the low frequency band of the scaling basis

14




(a) (b)
Fig.1.The Fourier transform of cubic B-spline (a) scaling and (b) wavelet function at different scales j

function increases with the scale. Fig.1(b) illustrates the multiband structure generated
by the corresponding wavelets, which in the frequency domain cover higher and wider
frequency ranges when the scale is increased.

If a signal is represented using the multiresolution approximation approach,
such as a wavelet series, the reconstructed signal is nothing other than the result of a
linear filtering process. From this perspective we should be aware of possible
distortions in the reconstructed signal. A usual requirement in such cases, to avoid
distortions, is that the filter should have linear or at least generalised linear phase.

By definition f € I*(R.) is said to have linear phase if its Fourier Transform f
satisfies

F@)=tf (@) e @1

where ae R. and "+ "or "-" sign is independent of w. Moreover f € I*(R)) is said to
have generalised linear phase if

f(@)=F(@)-e"™®  gpeR (4.1.6)

where F(® ) is a real valued function. In both cases the constant a represents the
phase of f.

The Fourier transform of the B-spline scaling function B , of order m can be
written as

4.1.7)

Em - (Sln(mlz)]m _e—i-m-un'Z
/2
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which clearly shows that [ , has linear phase which in this case equals 7/2. On the
other hand the B-spline wavelet functions, can all be shown (Chui 1992) to have
generalised linear phases, due to the fact that all wavelets are either symmetric (for odd
m) or antisymmetric (for even m).

Another essential characteristic of the B-spline wavelet functions is the
excellent time-frequency (or space-frequency) localisation. This is why they are most
suitable for time-frequency analysis of non-stationary signals. B-splines provide a
flexible time-frequency window which narrows (in time) at high centre-frequencies
and widens at low centre-frequencies.

By definition a function f e I*(R) qualifies as a window function if
x- f(x)e *(R). Such a window function can be characterised by the centre x
defined as

center

By = TR f"z :[ JF ) dx 4.18)

and the width of the window 2 - A , where

172
{ .[( cemer) ’ !f(X)lde} (4‘ 1'9)

—oo

IR

Such a window will localise the signal in time with a time window

[xczmer B Af 3 xcenfer + Af] (41 10)

Therefore for wavelet functions at scale j, y,, =22 -y(27/x—k) the time
window localisation is given by

k xc!'nu'rw 1 k x centery 1
[F*T‘?'Awaf**“z?—*z?'m S

where Xemery and A, are the centre and the radlus of the window function v
respectively.

The wavelet function y,, defines a window function in both the time and
frequency domain. In the frequency domain the window of jx (the Fourier transform
of W, ) can be defined by the centre-frequency ® the window width 2-A, of
the mother wavelet and by the scaling factor

center \y?

16




(27 (@i = B850, (@ iy + 8] @.112)

This is why an important property of the frequency window is that the ratio between
the centre frequency and the width of the frequency band is an independent quantity
with respect to the scale, and is given by

O,.../a o
Q — _ center — —center (4.1.13)

The ratio O, known as the quality factor remains constant for all resolutions and in this
way the multiresolution analysis is said to provide a constant () frequency analysis.

However due to the Uncertainty Principle we cannot have simultaneously
perfect localisation in both the time and frequency domains. This can be expressed in
terms of the smallest possible area achieved by a window function in the time S
frequency plane where the lower bound is given by

2'A)F'Af">-1 (4.1.14)

The equality is attained only when the window function f is Gaussian.

From this point of view the B-spline wavelet functions are in many respects
close to the optimal time-frequency localisation attained by Gaussian functions. Since
Gaussian functions are not suitable for use as a basic wavelet, the B-spline wavelets of
larger order m are the best candidates. For m=6 for example

1
A‘“ -A@_ =0.500367 = E (4.1.15)

which is very close to the optimum 0.5.

4.2. Computation of B-spline wavelet coefficients of a signal

In previous sections the attractive properties that make B-spline wavelet
decomposition the optimum candidate for smoothing purposes and time-frequency
analysis of non-stationary signals was presented. The practical implementation of such
a decomposition must now be considered.
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Consider a discrete time series f(z,).

The first step consists in expanding the signal in terms of the scaling basis
functions corresponding to the resolution subspace V,. This involves the computation

of the coefficients of the series

F)=Y 600, (8) @.2.1)

where @, (1)=2"2¢(2/t-k) and @(r)=B,(t) the m-th order cardinal B-spline
function defined in (4.1.1).

Equation (4.2.1) can be seen as a projection of the signal f(¢) onto the approximation
subspace V,. This is in fact a B-spline interpolation problem and there are two practical

approaches to find the corresponding coefficients involved in the equation.
One way is to calculate the coefficient sequence corresponding to the basis
functions spanning the subspace V, by convoluting the data sequence (moving average

procedure) with an appropriate spline interpolation operator constructed as in
Chui(1992). It is important to choose the resolution subspace V, so that the expansion

(4.2.1) will give a sufficiently good approximation of the signal f(z,). For example for
h=2"’ the approximation error is bounded by a constant multiple of A" as j — oo

Another possibility is to compute the coefficients of the series (4.2.1) using a
least squares algorithm since it is a linear-in-the-parameters expression. This gives the
orthogonal projection of f(#,) onto the approximation subspace V.

In both situations it is important to take into account that the sequence we
want to approximate has in practice a finite extent, so in order to avoid distortions, due
to the lack of continuity at the boundaries which occur in many applications such as
image processing a standard practice is to extend the signal on both sides by using the
mirror image of the signal. In our case it is sufficient that we use a longer data
sequence than needed which will contain the signal of interest centred within the
sequence so in this way we avoid discontinuities at the ends of the signal of interest.

Once the coefficients have been determined the signal will be represented, with
an accuracy depending on the resolution subspace V; chosen, by the series (4.2.1). At
this stage presuming that the signal is corrupted by noise, the approximation represents
the noisy signal.

A multiresolution pyramidal decomposition leads to the following equivalent
expression of (4.2.1)

FEY=Y e @, 0+ Y, Y dy v, () (4.2.2)
k

k I=j-p

To perform such a decomposition the weight sequences {ak} and {bk} must be
determined, which for the case of the B-spline multiresolution approximation are
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infinite length sequences (Chui 1992). The moving average procedure used to calculate
the wavelet and scaling coefficients at the coarser resolution level is an IIR (Infinite
Impulse Response) filter. Usually ITR filters can be implemented as ARMA
(Autoregressive Moving Average) filters providing that the Z-transform of the weight
sequence is a rational function. Otherwise the infinite weight sequence has to be
truncated to give an FIR filter. Truncation coupled with round-off errors will usually
induce errors which can be estimated (Chui 1992) and made arbitrarily small.

It has been proved (Chui 1992) that the decomposition sequences for B-spline
wavelets are ARMA since the Z-transform of the weight sequences can be described
by the rational functions

60-15 g ot (2] Bl

o 2 E, (2
Eona(7) -
- = -!
H(z):l S bz =_z_1'(1 z] (2m 12.
2 n=-oc0 2 1Z2m-l(z )
where the decomposition sequences are given by
a e l . g
f (4.2.4)
Z% ==__‘}Lm
2

and E,,_, is the Euler-Frobenius polynomial of order 2m-1 (of degree 2m-2).

Formulas to calculate the truncated decomposition sequences are provided in
Chui(1992) along with error bound estimates for the cases m=2,3,4 (where m is the B-
spline order).

Having computed the truncated decomposition sequences {a,,} and {5, } the wavelet
decomposition of a signal can be performed step by step as follows:

«Compute the scaling function coefficients c;,, in equation
(4.2.1) at the finer resolution j.

*Following equation (3.2.4) perform a moving average

algorithm over the coefficients ¢, ,, using the decomposition

sequences {ak} and {bk} as weights, and downsample or

decimate by two (take every other point) the results to obtain
the scaling and wavelet basis function coefficients ¢;_,, and

d;_,, atresolutionj-/.

*Repeat the second step with ¢, , , replacing c; . In this way at

the p-th iteration the coefficients c; are used to compute

J=p+lk
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¢;.,i and d,_, .. The decomposition can be continued as long

j=pk
as desired.

It should be observed at this stage that theoretically, when the signal is
considered continuous, the coefficients of the wavelet series are obtained by integral
convolutions of the signal

Cie = [ FOF, (1)t
- (4.2.5)
d, = j O, (1)dt

where @;,(x) and , , (x) are the dual functions of the scaling and wavelet functions
@, (x)and y;, (x).

4.3 The effects of noise on the wavelet coefficients

Because of the presence of noise, the coefficients of the wavelet series
representation of the noisy signal will also have a stochastic character. To see how

noise is reflected by the wavelet coefficients consider the continuous noisy signal f
given by

ft)= f(D+e(t) 4.3.1)

where f(t)e [*(R) and £(¢) is the noise signal.

The noisy wavelet coefficients can be calculated theoretically in this case using the
integral formula (4.2.5)

Ej'k = Jj?(t)f;}j.k(t)dr — jf(r)\'[;j.,‘(r)dH ‘[s(t)f{rj,k(r)dr 4.3.2)

where ,, is the dual of the wavelet function .

Because , is a square integrable function the integral

J'e(t)fpj.kdr (4.3.3)

is also convergent.

Considering €(r) to be white noise with E[e(¢)]= 0 , the expected value for Ej'k is
given by
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E[d,,|= EF FO%,, (t)dt} +E{ Ts(r)iff o (r)dt} =

- (4.3.4)
=d,, + [E[eN,()dt=d,,
which means that the wavelet coefficients are unbiased.
The error variance of the noisy wavelet coefficients can be calculated as
- 2
0&: = E[(a'j'k - dj_k)z] = El( je(f)fpj‘k(t)dtJ }:
- (4.3.5)

= J J-E[s(u)s(v)}q!j‘k(u)ﬁ!jlk(v)dudv

But E[e(w)e(v)] =7, (u—v) =7, (1) where y_ (1) is the autocorrelation function of
the noise signal.

Since £(1) is white
Yee (D) =C-8(T) (4.3.6)

where (1) is the Dirac function. The expression of y,, () in (4.3.6) can be substituted
into (4.3.5) leading to the following relation

—eo—oa

0,2 = [ [1a®¥ QUG +ndwdt = [ ot [ ¥, (UG +T)dE =

“4.3.7
=c| 8(1)Yg 5, (DT
with Vi () the autocorrelation function of .
Using the sifting property of the delta sequence given by
[8(t)h(r)dt = h(0) (43.8)
the integral in (4.3.7) can be evaluated as
'z, =C| 8(1)Yy 5, (DdT=C-1 5 (0) 43.9)

where (. (0) is the maximum of the autocorrelation function Y ,9, (L},
i J. A

Next we can state the following proposition

Proposition2: The variance of the wavelet coefficients of a white noise signal €(t) is
scale invariant

To prove this it is sufficient to show that the maximum of the autocorrelation function
of the dual wavelet function is scale invariant. Using the fact that ¥ j« 15 generated by

translating and dilating the dual of the mother wavelet function, that is
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W, (=292t k) (43.10)

by a simple change of variable the autocorrelation function of ¥, can be expressed as

quq,“ (T= J‘ipka(&)qfka(g +T)d€ = J“'l'f(ﬁ')ﬁl(&' +T’)d&’ =

(4.3.11)
=Y4u (T) = V44 (277)

that is y Voo (=Y {241, Conseéluently we can write Vo, (0)=7v44(0) so the
proposition is proven.

Because in practice the length of the signals are finite in time the infinite
integrals in (4.3.5) are truncated which in turn means that the variance of the wavelet
coefficients of a finite noise signal will in general decrease slightly with the scale.

4.4 Using mutual information to denoise wavelet coefficients

The results of the previous section showed how additive noise is reflected by
the wavelet coefficients of a signal represented as a wavelet series. As a result, to
reject the noise affecting a signal it is sufficient to remove or at least attenuate the
stochastic part present in the wavelet coefficients. Such a procedure is equivalent to a
smoothing operation performed over the noisy signal.

The advantage of reducing the noise by using the coefficients of the wavelet
decomposition of the signal is that since the signal is represented in terms of smooth
basis functions, by reducing the noise contribution to the wavelet coefficients the
derivatives of the signal are smoothed in the same time. Another advantage comes
from the fact that a multiresolution wavelet decomposition is equivalent in the
frequency domain, to a multiband representation of the signal. This is because each of
the orthogonal signals which result after decomposition have a frequency spectrum
lying in different frequency bands. Thus by minimising the effects of noise on the
wavelet coefficients the noise will be rejected at each frequency band.

The algorithm presented here makes use of the mutual information present in the
signal to minimise the noise contribution to the wavelet coefficients.

The noisy signal is in practice a result of a data acquisition procedure. At this
stage the continuous signal produced by a physical process has to be sampled with a
sampling frequency f, which satisfies the Whittaker-Shannon condition f, > 2 f, where
f, is the highest frequency present in the continuous signal considered to be band
limited. In most cases the performance of data acquisition equipment can handle fairly
high sampling rates which allows the user to oversample the continuous signal.

During the estimation stage the oversampled data is usually decimated or
downsampled before a model is fitted in order to avoid ill-conditioned regression
matrices so only a part of the measured data is actually used for identification.
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Suppose that noisy data J(1),...,5(kn) are given from sampling a continuous
dynamical signal with a sampling time &¢ so that the data is oversampled f, > 2kf,
where £ is the oversampling factor.

It is assumed that the signal is corrupted by additive white noise
YA =y@)+e@) (4.4.1)

The signal to noise ratio is defined as
2

SNR=20log,,— (dB) (442)
(e

At the first stage the initial data set is separated in k different subsets
{FkG-D+p)}._, = {?P(i)},_ﬂ'n 4.4.3)

with p=1,. k. This is done in fact by downsampling by k the original data sequence
with & successive starting points y(1),...,y(k) . As a result ¥, (@),....3.0), i=1,..,n
represent k successive samples of the original data record stored in k different data
sets. Because the sampling time 8t =1/ f, is sufficiently small, £ successive samples

can be considered to have a linear variation since the Taylor series expansion of the
signal around the central value within the & samples interval can be truncated to the
first derivative. As a result the mean value of k successive samples of the noise-free
signal is the central value of the interval that is the (k+ 1)/2-th sample for k odd. This
can be expressed as

1 k-1 . )
}C-Zy;,(z) = Y parya (D) (4.4.4)
p=0

forany i=1,...,n.

Each of the & signals can be represented independently as a wavelet series following
the procedure described in 4.2.

Consider the noisy wavelet coefficients of the p-th signal at scale j to be
denoted as {3 4 j,k}ﬂl’ld consider the properties of the mean

- ko k k
d;, = lzdpf.k = lzd”j.t +lz de’ji (4.4.5)
k& k= k&

where {d” j,k} are the noise-free wavelet coefficients and {ds" j,k} represents the

stochastic part of the wavelet coefficients. Since the coefficients are the result of a
linear transformation performed over the signal it follows that

k+1

t —_—
%Zd"m =d 2 jx (4.4.6)
p=1

for £ odd.

As a result the expected value of the mean is given by
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k+1

= K+l k A+l
E[dj,k]=E|:d . j.k:|+%2E[dEpj,t]=d L 4.4.7
p=1

and this provides an unbiased estimate of the wavelet coefficients corresponding to the
signal having the index p=(k+1)/2.
The variance of the same variable is given by

= E_] : _‘!‘L‘ 1 k k+l ng
E (dj.k_d 2 j.k] =l ® +FZE{(d8pj,k)2]=d 2kt ksu (4.4.8)

p=1

since the noise components affecting each of the % signals can be considered
uncorrelated.

The results show that the effects of taking the mean, are that the standard
deviation of the stochastic part of the wavelet coefficients is reduced k times. The
overall effect is that the standard deviation of the noise affecting the signal is also
reduced by the same amount The improvement of the signal to noise ratio can
therefore expressed as

SNR,,, =20log,, k+SNR,,, (4.4.9)

Further improvements can be obtained by considering the fact that the noisy
signal is usually a band limited signal so at high frequencies the energy of the signal is
very small. In turn this leads to wavelet coefficients at higher scales which reflect just
the noise. By discarding these coefficients the stochastic part of the signal is further
reduced. This is equivalent to high frequency filtering with the advantage that the
underlying signal is not affected.

3. Wavelet Smoothing of Noisy Chaotic Attractors

This section is devoted to a practical application of the results derived in the
first part to reduce the observational noise affecting chaotic signals. To be able to
compare the results the signals used were obtained from simulation and not from a
practical experiment. The whole procedure can be summarised as follows -

*The observed noisy signal is oversampled and then separated
into & signals following the procedure described in (4.4.3).

For each signal a wavelet decomposition is performed as in 4.2

«Perform a high frequency smoothing by setting to zero the

. wavelet coefficients at higher scales which reflect high
frequency components above the characteristic frequency
band of the clean signal.
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«The clean signal is reconstructed using the mean values of the
wavelet coefficients corresponding to the & signals computed
asin (4.4.5).

Using the smoothed signal a model is estimated and compared in terms of the
characteristic invariants namely the correlation dimension and the largest Lyapunov
exponent with the original system which produced the data.

5.1. Chua's circuit

The first example uses the well known chaotic system known as Chua's circuit.
The system was intensively studied in the past (see for example Chua and
Matsumoto(1986), Chua(1993) Matsumoto(1993)) due to the rich dynamical
behaviour exhibited by this simple electronic circuit which can be represented by a
system of three differential equations (2.1),(2.2)

To generate a data set the system was simulated using a fourth-order Runge
Kutta algorithm with an integration step of A7=1/400. As a result 90,000
measurements of the z component were obtained. Gaussian noise was added to the
discrete data set leading to a signal to noise ratio SNR=42.7dB. Finally by
downsampling by a factor of 60, as described in equation (4.4.3), only 1500 points
sampled at 7, = Az-60 = 0.15s were retained for further processing. Instead of using all

k=60 signals which were produced, only the first 9 signals were utilised.
The presence of noise can easily be distinguished by plotting the three

dimensional attractor in the phase space using the classical embedding technique.
Fig.2(b) clearly shows that the embedded trajectory is affected by noise.

(@) (®)
Fig. 2: Chua's double Scroll Attractor: (a) noise free and (b) superimposed with Gaussian noise

Initially each signal was represented as a series of the form of (4.2.1) using a least
squares algorithm to calculate the scaling function coefficients.
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The level of the initial approximation subspace ¥; was chosen to be /=10 which
leads to an approximation of the signal characterised by a RMS error level of 4-107%,

Next a pyramidal decomposition algorithm was applied using the scaling
function coefficients at a resolution j=10. The decomposition was continued down to
the resolution space /=2 leading to the following representation of the signals.

9
()= 6,0, () + Y. Y d v, (1) (5.1.1)
k

=2 k

As a result, the original signals can be expressed as the sum of the ten orthogonal
signals illustrated in Fig. 3.

The wavelet coefficients of the smoothed signal were calculated using (4.4.4)
and the recovered signal was then used to reconstruct the chaotic attractor plotted in
Fig.4(a). This compares well with the original in Fig.3(a) and shows that the noise has
been removed from the signal.
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Fig. 3: Wavelet decomposition of the noisy chaotic signal starting with resolution level j=2.The
Qrojc.:ction onto the scaling subspace at resolution j=2 (top) can be added with the successive
projections onto the wavelet subspaces j=2,..,9 (from top to bottom) to recover the original signal.
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One thousand data samples of the smoothed signal were then used to estimate
a nonlinear input/output model of the form

y(@+1)=F(y(1),y(t-1),y(t-2)) (5.12)

Where FR®—R was represented as a three dimensional multiresolution
approximation of the form

F(y(),y(t=1),y(t=2))= > d,, @, (3(1), y(t=1),y(r=2)) (5.13)
Jok

where the basis functions @, are generated by taking the tensor product of the one

dimensional B-spline scaling and wavelet functions. Since this expansion is linear in the

parameters the value of the parameters were estimated using a simple least squares
algorithm.

The estimated model was then used to generate a time series and the attractor
reconstructed based upon this is illustrated in Fig.4(b).




x=0(y—x)
y=px—y-—xz (5.2.1)
Z=xy—PBz

Depending on the value of the control parameter, we can encounter stable and
unstable fixed points, chaotic motion, bistability and hysteresis, coexistence of stable
limit cycles and chaotic regions.

Again we chose one of the chaotic regimes to simulate and collect the data
needed for estimation. A typical choice for the parameters is 6 =16, B=4, p =45.92
for which the system trajectory settles to a chaotic 'butterfly' shaped attractor. For
these values of parameters, 15000 data points, for each coordinate x, y, and z, were
simulated from the system using the Runge-Kutta algorithm with an integration step
Ar=0.001. At this stage white noise was added to each of the three time series so that
the resulting signal to noise ratio was SNR=40dB. The three dimensional noisy
chaotic attractor is plotted in Fig.5. Using equation (4.4.3) with k=10, each of the
three time series, corresponding to x, y and z coordinates, was separated into k=10
data sets, each consisting of 1500 points having a sampling period 7=A¢ 10=0.01s.

(@ ®)
Fig. 5: Lorenz Attractor:(a) superimposed with Gaussian noise and (b) after smoothing

The smoothing algorithm was performed separately for each phase of the
system as in the previous example using again only the first k=9 signals which were
produced by downsampling. In this case the order of the basis functions used to
represent the signals was m=4.

Using the pyramidal decomposition algorithm each signal was expressed
alternatively as a sum of successive orthogonal approximations consisting of
projections of the signals onto the wavelet subspaces W, i=2,...,10, together with the
coarse approximation onto the subspace V,. This is illustrated in Fig. 6, 7 and 8 which

contain the decomposition of one out of nine signals for each phase x, y, and z
produced by downsampling.

28




o

[=lw]

oo

)

oo

odb

oo

oo

o
MOMLoL Lo oOOSEOaO Lo T O i

o

100 200 300 400 500 600

700 800

800

1000
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The new wavelet coefficients calculated as in (4.4.5) were used to reconstruct
each phase of the chaotic system.

The smoothed versions of the signals show a major improvement in terms of
noise reduction when plotted to generate the chaotic attractor illustrated in Fig.5(b).

Using the smoothed signals a multi-input multi-output (MIMO) representation
of the system was estimated using a wavelet approximation approach to give a model
of the form

x(t+1)=F'(x(), y(),2()) = Y d'ju® ;. (x(8), y(8), 2(1))
ik

Ly +1) = F(x(0), Y1), 2(1) = 3, d%e® ,, (x(8), ¥ (1), 2(2)) (522)
ik

2(t+1) = F*(x(1), y(1),2(1)) = ), &’ 1a @, (x(1), y(1), 2(1))
\ Jk

with F*:R* 5 R, k=1,..,3.

Simulation of the estimated model gives three time series for the three
components x,y and z which can then be plotted in state space. The resulting chaotic
attractor compares very well to the original Fig.9(a) and this confirms that the
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smoothing procedure has not affected the properties of the underlying chaotic signal
Fig.9(b).

(@ ®)
Fig.9: Lorenz attractor:(a)original and (b) reconstructed using the model predicted output

Furthermore there is a good agreement between the largest Lyapunov exponent of the
identified model, estimated to be A, =1.51 and that of the original system calculated to

be A, =1.5. The correlation dimension of the model was also computed and found to
be D,,,=2.028 while the original system has D, _=2.02.

6. Conclusions

This paper has investigated the use of multiresolution wavelet decompositions,
based on B-spline functions, for smoothing chaotic signals prior to identification. It is
well known that the presence of noise poses serious problems not only in determining
the characteristics of experimental chaotic signals but also when the signal is used to
estimate a mathematical model of the process. The algorithm derived in this paper
provides a new approach for rejecting observational noise on chaotic signals. The
effectiveness of the new wavelet smoothing procedure has been tested in practice using
two well known chaotic examples. The simulation results show that the models
estimated using the smoothed data have the same dynamical characteristics as the
original noise free systems demonstrating that the dynamical information contained in
the initially noisy signals has been preserved.
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