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I. Introduction.

This report aims to clarify how the fusion ARTMAP neural network operates. Here we
explore the case of multiple-input sensors with single-teacher channel architecture and ART
sensor modules using independent baseline vigilance parameter. Two similar algorithms have
been interpreted and implemented from the fusion ARTMAP architecture proposed by Asfour
et al [1],[2]. One uses unsupervised Fuzzy ART [3] modules to form a compressed code
within each channel before activation of a global recognition code. The other generates
simultaneously the compressed, and the global, recognition codes. The latter algorithm seems
more closely to resemble the fusion ARTMAP architecture as set out in [1],[2]. Simulations

are shown and compared with fuzzy ARTMAP [5].

II. Fusion ARTMAP Neural Network.

Fusion ARTMAP is a self-organising neural network architecture for multi-channel or

b multi-sensor data fusion [11,[2]. That is, it is designed to classify input data using information
from multiple independent channels or sensors regardless of its source or type. This network
generalises the fuzzy ARTMAP architecture by inéor‘porating an individual sensor classifier for
each input channel and by extending the ARTMAP match tracking mechanism so that when a
predictive error occurs, vigilance parameters in multiple ART modules are simultaneously
increased until reset is triggered in one of them. This channel hereby is considered to be the
most likely source of the predictive error and is defined as the channel with the minimum
predictive confidence. This selective reset process, by assigning blame to one channe] only, is
considered to be a type of credit assignment that efficiently shares codes subsets across
categories in the learned network (i.e. one intra-channel code can contribute to several global
codes), because predictively effective channels are not unnecessarily reset to correct errors
caused by ineffective channels [1], [2]. It is argued that this approach retains system predictive
accuracy while reducing total network connectivity by maximising compression within each

channel [1],[2].

4 The algorithms that are presented here are based on multiple-input sensors with single-
teacher channel fusion ARTMAP architecture (figure 1) using equal baseline vigilance

parameter for all the sensor channels and an independent one for the global channel.
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A fusion ARTMAP architecture consists of two components: an individual sensor

classifier and a global classifier. The former are fuzzy ART modules [3]. Each channel or fuzzy

ART module serves as an individual classifier for each sensor, since each sensor is assigned to

¢ an individual channel. The latter includes a fuzzy ARTMAP module [5] that serves as a global
— classifier which makes global predictions using compressed recognition codes as input from
each individual classifier. From figure 1, the module ART, represents each one of the
individual sensor classifier and the modules ART,, ART; and the Map Field F® form a fuzzy
ARTMAP system that constitutes the global classifier. The fuzzy ARTMAP system internally

controls code formation via a non-specific feedback signal sent in paralle] to the fuzzy ART

systems of the individual channels. This process is called parallel match tracking because it

generalises the ARTMAP match tracking mechanism [11.[2].

In fusion ARTMAP, the ART. module receives a stream {c} of input patterns, ART,

receives a stream {a} of compressed codes and ART,, receives a stream {b} of input patterns,

where b is the correct prediction given ¢, and a is the compressed categorical input formed by
the compressed code from each channel, given c. At the start of each input presentation, the
vigilance parameter, p , of each sensor channel and ART, module equals a fixed baseline

vigilance p_ and p, respectively. When an input to ART, makes an erroneous prediction of

the actual ART, input, the Map Field orienting subsystem becomes active. This mismatch,
detected at the Map Field, between the ART, category activated by the compressed
categorical input a and the ART, category activated by the input b, activates the parallel
match tracking mechanism. This control strategy simultaneously raises the vigilance of the
multiple ART. modules (figure 2) until reset is triggered in just one of them. That module has
the poorest match between the bottom-up input and the top-down prototype and is defined as
the channel with the least predictive confidence [1],[2]. As a result, a search ensues in that
module alone and a new category or compressed code is then chosen and used to replace the
old contribution of this channel into the compressed categorical input to ART,, preserving
other input channel categories of the previously active pattern. Parallel match tracking
v continues until an active ART, category satisfies both the ART. matching criterion and the

Map field matching criterion.
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Owing to the sketchy information and the lack of mathematical and algorithmic detajls
in [1] and [2], we had to clarify and define some of the terminology used for this architecture
such as the compressed categorical input and the compressed recognition code as well as

3 develop a strategy for the operation of the parallel match tracking mechanism that led us to
some important modification. The following two sub-sections state the strategy and definitions

commented here.

A. Parallel Match Tracking.

Let us define the minimum matching value 1 as follow: -

ICiAwi‘i’

ICil

¥ = min( )  fori=l,...,n (1)

Where

wi isthe Lth weight vector of the ith ART, sensor channel, and
1 1

C, =(¢,,c}) is the input vector in complement code form to the

ith ART, field F*,and

n: number of sensor channels.

The channel with the minimum matching value has the poorest match between the

bottom-up input and the top-down prototype and is defined as the channel with the least

predictive confidence, ART, .
c

Since all the ART. modules have equal baseline vigilance parameter

P. =p. =p, forizj (2)
J

Parallel match tracking increases p. in multiple ART, modules until it is slightly larger

than v, that is

(new)

P =min(y +8,1) (3)

where & is a positive bias small enough to reset the least confident channel.
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Now, let us define the increment in confidence A as:
A=y -p“ +§ )

This equation represents the minimum amount by which the parallel match tracking
mechanism raises p. in order to reset the least confident channel and, in turn, represents the

proportion that should be added to p, to track the adjustment in ART. . This leads to the

following equation:

(new)

p U™ = min(p ™ + A1) - (5)

a

When y=1 and a predictive error occurs, no more blame can be assigned to the ART,
module since y=1 implies a perfect matching between the bottom-up input and the top-down
prototype. Therefore, the fusion ARTMAP architecture behaves as the fuzzy ARTMAP
architecture because the compressed categorical input to ART, can not be anymore modified.

Hence, equation (5) can be extended to give:

Al s ify =1 :
new T =
r = Al o (6)
min(p ©¥ + A,1) otherwise

Note that, when the individual classifier and the global classifier have equal baseline

vigilance parameter, equation(6) reduces to equation (3) for y # 1.

In order to illustrate why we have used the minimum operation in equation (3), let us
assume the following scenario: parallel match tracking has been activated and ART, receives a
compressed categorical input a that is formed by a set of compressed codes arising from
uncommitted nodes; then, an ART, category may satisfy the ART, match value criterion but

fail to meet the parallel match tracking criterion which is the same as the ARTMAP match

tracking criterion [4],[5]. In this situation p. becomes one, since all match values from the

sensor channels satisfy the following equation:
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In this case, no more blame can be assigned to the ART, module since the prototype becomes
the exemplar. Parallel match tracking cannot increase any more the value of p. because this
= value is confined to the interval [0,1] [6]. There are two alternatives to solve this situation.

One is as proposed in [4],[5] for the ARTMAP system, if no such node exists that satisfies

both criteria then ART, search leads to the shutdown of F; for the remainder of the input

presentation. In other words, we have to remove the present input pattern hence avoiding
learning the active input presentation. This situation also arises from time to time in fusion
ARTMAP according to the simulation done. The other is to set p. to 1 as indicated in

equation (3). This has the advantage of establishing a correct ART, — ART, prediction by

adjusting the value of p, according to the ARTMAP match tracking mechanism given by

equation (6) fory= 1.

It is worth noting that, when a predictive error occurs and y # 1, the jth chosen

category at ART, is not reset in the usual way as may be expected, i.e. p. is increased just

|AAW]|
A

enough to ensure 2 p, . Instead, the vigilance parameter p, is increased by the

minimum difference to reset the least confident channel, equation (6), as we do not impute this
error to the compressed categorical input (input to ARTa) but to the compressed recognition

code of the least confident channel. Two possibilities arise with this method:

(new) (old)

i p. 7 >p, ", this is equivalent to resetting the jth chosen category in ART, and

finding a better F;’ recognition code, or selecting an uncommitted node.

(new) (old)

i. p, <p,., unnecessary nodes are not reset.

¢ To illustrate how the parallel match tracking mechanism works, let us describe a cycle
of p. and p. adjustment. When ART, makes a prediction that is incompatible with the actual
ART, input, The MAP field orienting subsystem becomes active. This mismatch event

activates the parallel match tracking mechanism. In fusion ARTMAP a mismatch at F*° while




FZ is active triggers an inter-ART reset signal to the ART, and the ART, orienting

subsystems, identical to [4], [5]. This occurs whenever

xabl<pab Ybl (8)

where

x™ denotes the F,, output vector,

¥’ denotes the E} output vector, and

pa» denotes the Map Field vigilance parameter.
At the start of each input presentation, p. and p, equal a fixed baseline vigilance P, and P,

respectively. When an input ¢; activates an F,' category node, L; , and resonance is

established at each one of the ART, channels according to [4], [5],

S

X

2p.[C|] for i=1,....,n )

= ’Ci AW
L;

Then, ART, receives the compressed categorical input, a, from each channel separately. When
this input a activates an F; category node, J, and resonance is established at the ART,

module,
x*|=|Anw,|2p,|A] (10)

as in equation (9). If the ART), category predicted by a fails to match the active ART, category
by equation (8), an inter-ART reset signal is sent to the multiple ART modules. The inter-ART
reset signal simultaneously raises the vigilance of the multiple ART modules to a value that is
just enough to cause equation (9) to fail in just one of them and the new matching values for

Pc and p, are adjusted by equation (3) and (6) respectively. Node L of the ART, channel is

therefore reset and a search ensues in that module alone. Parallel match tracking continues
until an active ART, category satisfy both the ART, matching criterion equation (10) and the

map field matching criterion equation (8).




B. Compressed Recognition Code.

In the adaptive resonance theory, the compressed recognition code is referred to as the
category or symbol to represent input I at level F, [3]. In this context, field F, acts to match
the learned expectation V against the active input vector I. The result of this matching
process ( once a resonant state has been reached) is the re-constructed feature vector X~
across field F, that encodes the pattern of features relevant to I and determines the future
course of learning and recognition by the network [6]. Thus, the compressed recognition code
that is used as input to ART, depends on the selection of the learning rule. ART systems use

the following learning rule [3]:

w(new) =B(IAW(Dld))+(I—ﬁ)W(D'd) (11)
] J ]

where fast learning corresponds to setting B =1. For the fast-commit slow-recode option,

(new)

w " =1 the first time category J becomes committed, otherwise equation (3) with P <1 is
used.
The compressed categorical input vector a is defined by:
a=z"u z% U - Uz (12)
where
z° is the compressed recognition code vector of the ith ARTEi sensor
channel,
n: number of sensor channels, and
U : union operator.
and
z“ obeys equation (11), so that
2 = B(I, A WES) 4 (1 Bywic? (13)
where
w1 is the Lth weight vector of the ith ART, sensor channel,




B denotes the learning rate parameter, and

I, =C, =(¢,,¢c]) is the input vector in complement code form to the

; ith ART, field Fe.

In the case of fast learning (B=1), the compressed recognition code ,z", equals the

activity vector x“, since

2% =(I, AWy ) =x" (14)

I1I. Fusion ARTMAP Algorithm

Two algorithms designed to reproduce the functionality of that proposed in [1] and [2]
have been implemented. The main difference between the two versions is that, initially, in one
of them, the sensor channels are allowed to self-organise into category codes in response to a
stream {c} of input patterns as if they were disconnected from the rest of the system, thus
during this phase, each channel forms an unsupervised fuzzy ART classifier. Therefore, during
training the input pattern set is presented twice. The first time, to form a set of compressed
codes for each channel separately and then to begin the association between the compressed
code of ART, and the compressed code of exemplar b in order to make a global prediction.
Incidentally, such an approach is inherently “off-line” and thus diminishes the utility of fusion
ARTMAP from the perspective of “on-line” operation in a changing environment. In the

discussion below, this version is referred to as the “two-pass™ algorithm.

In the second version the input pattern set is presented just once. As an input ¢ arrives

at each sensor channel, a compressed recognition code is created in each channel separately.

These codes are merged into a single vector a and sent as input to the ART, module. Then,
- the fuzzy ARTMAP system organises the multi-channel recognition code via the parallel
| match tracking mechanism. In the discussion below, this version is referred to as the “one-
pass” algorithm. This retains the option of on-line operation and thus remains true to the spirit

of Adaptive Resonance Theory.



Both algorithms use complement coding since this prevents the problem of category

proliferation as too many adaptive weights converge to zero [3]. This pre-processing method

is used at the ART. field, F;, for the input pattern ¢, at the ART;, field, F;, for the input

pattern b and at the ART, field,F , for the input pattern a. Also any other method that

normalises the inputs at a pre-processing stage can be used to avoid this problem of category
proliferation; i.e. performing fuzzification of the input domain using symmetric membership

functions.

A. The One-Pass Algorithm.

At the start of each input presentation, p. = p, and p, = p.-

. 1. Present an input ¢ to each ART, sensor channel.

2. When an input ¢ activates an F; category node L and resonance is established, a

compressed recognition code, 2, is generated in each channel given by equation (13).
3. Form the compressed categorical input, a, to ART, given by equation (12).

4. Present an input b to the ART, module.

3. Search for an F'; category node, K, such that resonance can be established in the

ART}, module.

6. Search for an F; category node, J, such that resonance can be established in the
ART, module.

7. Test if ART, predicts the same category as ART,.

If equation (8) is true then

the prediction w}"is disconfirmed by y® and paralle] match tracking is activated.

Else



.

go to step 12.

8. Parallel match tracking raises the vigilance of multiple sensors in ART, , so that the

new baseline vigilance values are given by equation (3) and (6).

9. Reset node L of the least confident channel, ARTC, , and a search ensues in that

module alone, leading to activation of another F; node. Once a resonant state has been
¢ (new)

established according to equation (9), a new compressed recognition code, z , IS

generated by equation (13) .

10. Replace the previously compressed recognition code, z°“®?, of ART, with a new

c (new)

z code in the compressed categorical input a, preserving other input channel categories

of the previously active pattern.
11. Go to step 6.

< 12. Learning proceeds updating the connection weights to the winning nodes J, K and

L at the F, layer according to the chosen learning rule, and updating the Map Field weights

wj in F? - F* paths.

13. Remove input vector ¢ and b. Return to step 1 with a new input vector.

B. The Two-Pass Algorithm.

1. The ART. module is disconnected from the rest of the fusion ARTMAP system so

that it behaves as a fuzzy ART system with p. equal to the chosen baseline vigilance, ..

Stable recognition categories for each individual ART. channel are established in response to

astream {c¢} of input patterns.

2. Repeat all steps of the one-pass algorithm.

10
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IV. Simulations.
A. Circle-in-the-Square
The circle in the square problem requires a system to identify which points of a square

lie inside, and which lie outside, a circle whose area equals half that of the square [5].

A single-channel Fusion ARTMAP system was trained to recognise whether a point
within a unit square was inside or outside a circle of one-half unit area. The results were
compared with those using fuzzy ARTMAP. The main goal of this task was to evaluate the
predictive accuracy of the one-pass and two-pass algorithms and to make comparisons with
fuzzy ARTMAP since during supervised leamning of single-channel signal and teaching input,
fusion ARTMAP is functionally equivalent to fuzzy ARTMAP for analogue inputs [1].
According to the same simulations described in [1], the performance of the two systems was
identical and fusion ARTMAP produced more ART,, category nodes than did fuzzy
ARTMAP at F*. However, no simulation results are shown in either any setting for the

network parameters.

eSimulation A1l

Fusion ARTMAP was trained on a data set size of 1000 input patterns. Inputs in
complement coding form, equal baseline vigilance parameters for the ART, and the ART,
modules, and single and multiple training epoch were used. Both the training and test sets
consist of 1000 input patterns. For this simulation, the choice parameter was set to 0.001; i.e.
o = 0.001, fast learning was used; i.e. B = 1, and different values for the baseline vigilance
parameter were used. With fast learning at the Map Field, its vigilance parameter, Pab , can be
set to any value between O and 1 without affecting fast-learn results. Fuzzy ARTMAP was

trained using the same data set and network parameters.

Typical results are shown in table I. In general, we can observe similar accuracy
between the two architectures. Note that, for b_= 0, the two-pass algorithm had a better

accuracy than the others. However, fuzzy ARTMAP was better in general. Overall, we cannot

11




generalise, since the training process depends on the statistical nature and the size of the
training sample. This simulation shows that the one-pass and two-pass algorithms are good

candidates to represent the fusion ARTMAP architecture proposed in [1],[2].

eSimulation A2

Fusion ARTMAP and fuzzy ARTMAP were trained on the same data set and network
parameters used in simulation A1 but using fuzzification of inputs. Since a priori information

about the inputs is available, network training accuracy can be significantly improved.

Typical results are shown in table II. Note the effect of the fuzzification of inputs on

the improvement on the test accuracy and the significant reduction of the ART,, category

nodes at F* as p is increased (# E} nodes at table II) in the one-pass and two-pass

algorithms. For example, when comparing table I and I for p = 0.7 and three training epochs,
the test accuracy for the one-pass algorithm is increased from 95% to 97.4% (42 ART,,
category nodes ) while the test accuracy for fuzzy ARTMAP is increased from 95.4% to
97.4% (65 ART, category nodes). Fuzzy ARTMAP created more codes because the
dimension of the input vector was increased, leading to the formation of more category nodes

at field F; .

eSimulation A3

Fusion ARTMAP and fuzzy ARTMAP were trained on the same data set used in
simulation Al and A2 using fuzzification of inputs as for simulation A2. For fusion ARTMAP,
the vigilance parameter of the ART. was set to 0.7 while the matching value for the ART,

module was varied from 0 to 0.9. The other network parameters were left unchanged.

Table III summarises the results. Note the beneficial effect in terms of the reduction of
ART,, category nodes at F*° when Pa < pc.When p, >p., the number of connections at. ART,;

is increased owing to the stricter matching condition at the global classifier that leads to the

creation of more category nodes.

12




B. Cylinder-in-the-cube

The cylinder in the cube problem generalises the idea of the circle in the square to a
three-dimensional problem. In principle, It requires a system to identify which points of a cube

lie inside, and which lie outside, a cylinder whose volume equals half that of the cube.

The motivation for developing this task was to confirm the ability of fusion ARTMAP

to classify objects using information from multiple data sources of any type [1], [2].

This task can be seen as a requirement for a system to identify a cylinder of a particular
size or volume; i.e., a cylinder whose volume is or is not equal to half the volume of the cube.
In terms of this simulation, we can think of having two sensors to find the volume of a cylinder
and allocating two channels of the fusion ARTMAP system to these sensors. Thus, one
channel receives information from an area-sensor (square units) where it is first classified into
area codes while the other gathers information from a distance-sensor (linear units) where it is
classified into length codes. The compressed area and length codes become inputs to a global
classifier which predicts the type of cylinder; i.e. appropriate size or inappropriate size. The
program that implemented this task was set up to generate two classes with approximately the

same probability.

e Simulation B1

A two-channel fusion ARTMAP system was trained to recognise whether a point
within a unit cube was inside or outside a cylinder of one-half unit volume. Thus, the cylinder
is identified implicitly. Inputs in complement coded form, equal baseline vigilance parameter
for the ART. and the ART, modules, and single and multiple training epoch were used. Both
the training and test sets consisted of 2000 input patterns each. For this simulation, the choice
parameter was set to 0.001; i.e. o = 0.001, fast learning was used; i.e. B = 1, and different
values for the baseline vigilance parameter were used. With fast learning at the Map Field, its

vigilance parameter, p,, , can be set to any value between 0 and 1 without affecting fast-learn

13




results. The fuzzy ARTMAP system was trained on the same data set and network parameters

but using a concatenated input vector.

Typical results are shown in table IV. Note that, the one-pass and two-pass algorithms
had lower accuracy on the testing set than that of fuzzy ARTMAP. Also note the difference
between what the network learned and what it predicted. Taking the ratio of the test set
accuracy to the training set accuracy gives us an indication of how good the performance of
the network is for the purpose of this analysis. For example, for one training epoch and p =
0, the one-pass gives 0.9351, two-pass: 0.9408 and fuzzy ARTMAP: 0.9545 which are
approximately equal. Also this ratio decreases as P increases. For one training epoch and p =
0.7, the one-pass gives 0.9270, two-pass: 0.9214 and fuzzy ARTMAP: 0.9382 which is not
unfavourable. However, this performance appears to be due to the way that the fusion
ARTMAP system learns. As remembered, fusion ARTMAP learns prototype from prototype
that has been previously learned in the ART. module. This is a consequence of the way ART
systems learn. ART systems learn prototypes rather than exemplars, because the re-

constructed feature vector X, rather than I itself, is learned [3]. Thus, the category prototype

in the field F; of ART, is in fact the prototype of a cluster of prototypes. Therefore, if we

have good cluster formation at field F; that represents well enough the universe of the

sample pattern, we can improve the compressed code formation at the global classifier which
will be better able to predict the actual ART, input. For better accuracy, we should increase
the training set size, or tune the network more appropriately (i.e. a combination of high
vigilance threshold at the ART, module and low vigilance threshold at the global classifier),
implement another method such as a voting strategy suitable for small or incomplete training
sets [S], or use any a priori knowledge about the inputs; i.e. fuzzification of inputs. The results

of using these alternatives are illustrated in the simulations below.

Note that, the number of ART,, category nodes is larger than that generated by fuzzy
ARTMARP. This is because of the stricter matching criterion used at both levels (see last row
results of table IV where different values of vigilance parameters between the two classifiers

were used ). Setting p, < p. results in a good combination since we can have more prototypes

14
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at F , hence better cluster formation for the input ¢ that, in turn, represents the future input

to the global classifier, and good accuracy due to the capability of the network to generalise at

the global classifier, hence fewer connection paths at ART,,. As a result, more codes are

created in field F; with fewer paths and weights in F®.

e Simulation B2

Fusion ARTMAP and fuzzy ARTMAP were trained on the same data set and network -
parameters used in simulation B1 but using fuzzification of inputs. Simulation results are

summarised in table V.

Note the improvement in the test accuracy for p = 0.7 with one and three training

epochs, where the one-pass algorithm had better accuracy than the others. Also note that, at
least one more training epoch is needed to reach 100% in the training set which implies that a
few more categories would be established and a probable improvement in the test accuracy
would be achieved. Also, the number of ART,, category nodes is reduced by a ratio of 1.4
when comparing the one-pass algorithm with fusion ARTMAP. Once again, a priori

information about the inputs improves the performance of the fusion ARTMAP system.

Simulation B3

Fusion ARTMAP and fuzzy ARTMAP were trained on data sets ranging in size from
125 to 2000 input patterns for a single epoch. A fixed vigilance value of 0.7 and the same
network parameters as for simulation B1 were used. The test set was as the same size as the

training set.

Table VI shows the evolution of test set errors as the training set is increased in size.
This shows how test set error is reduced from 33.6% to 19.95% as training size increases
from 125 to 2000 for the one-pass algorithm. Note also that, larger training sets are required

to achieved a correct prediction rate of over 80% for the one-pass algorithm. This simulation

15
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shows that a large training set size is needed for fusion ARTMAP to achieve good results on-

line.

The Two-pass algorithm behaves erratically. This appears to be the combination of the

earlier unsupervised and later supervised learning of the two-pass algorithm.

eSimulation B4

Table VII summarises simulation results that repeat the training conditions of
simulation B3 except that fuzzification of inputs was used. This table shows the evolution of
test set errors as the training set is increased in size. This shows how a test set error is reduced
from 26.4% to 8.95% as training set size increases from 125 to 2000 for the one-pass

algorithm. Better accuracy is achieved as the training set size is increased.

Note also, the reduction in ART,;, category nodes, compared with fuzzy ARTMAP, as
the training set size is increased in size. This reduction is increased from a ratio of 1.36 to 1.88
as training set size is increased from 125 to 2000 for the one-pass algorithm. Further
reductions can be achieved if the baseline vigilance between the individual and global

classifiers is selected as indicated in simulation B1; i.e. p, < p..

eSimulation B5

Fusion ARTMAP and fuzzy ARTMAP were trained on a data set of 250 patterns and
with one training epoch. Their baseline vigilance parameters were set to 0 and the other
network parameters as for the simulation B1. They were run for five independent simulations.
Each one had different randomly chosen presentation orders for the 250 training patterns. The

test set was as the same size as the training set.

Typical results are shown in table VIII. For the one-pass algorithm, the test set error
varied from 31.1% to 17.6% and for the fuzzy ARTMAP, from 13.6% to 24.8%. This shows
that fusion ARTMAP is more sensitive than fuzzy ARTMAP to training on small sets. This

table also shows that, the sampling of the training set or, as the first run, good luck in the

selection of representative samples, can dramatically alter early success rates. Observe that,

16



training on small sets illustrates the statistical nature of the learning or coding process; i.e.
from 39 to 20 ART,, category nodes for one-pass, from 30 to 16 to two-pass, and from 11 to
21 for fusion ARTMAP.

eSimulation B6

Fusion ARTMAP was trained on a data set of 1000 input patterns using fuzzification
of inputs. The vigilance parameter of the ART. was set to 0.7 while the matchin g value for the
ART. module was varied from 0 to 0.8. The rest of the network parameters were set as for the
simulation B1. Fuzzy ARTMAP was trained on the same conditions but fixing the matching
value to 0.7. Thus, it is used as a reference point when comparing with fusion ARTMAP using
different matching values between ART, and ART.. The test set was the same size as the

training set.

Table IX summarises the results. Note again, the beneficial effect in terms of the
reduction of ART,, category nodes at F® when Pa < pc. When p, >p. , the numbers of
connections at ART,, is increased owing to the stricter matching condition at the global
classifier that leads to the creation of more category nodes. Note that, when using p, =0.4 and
P=0.7, for the one-pass algorithm, a reduction of ART,, category nodes of 4.43 is achieved
as well as a good test accuracy of 88.1% (c.f. 88.8% of fuzzy ARTMAP), bearing in mind

that, there are still patterns remaining to be learned (training accuracy of 93% compared with

99.8% of fuzzy ARTMAP).

This once again shows that, a good selection for the vigilance parameters of the ART,
and ART. modules of fusion ARTMAP plays an important role in the accuracy and in the

number of compressed codes that can be created at the global classifier.

eSimulation B7

The one-pass algorithm was trained on a data set of 250 input patterns using one-
training epoch. Its baseline vigilance parameter was set to 0 and the other network parameters

were set as for the simulation B1. The one-pass algorithm was run for three and five
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independent simulations, each with a different input order. The aim of this simulations was to

apply the voting strategy proposed in [5]. The test set was the same size as the training set.

Table X shows how voting improves performance of the one-pass algorithm with one-
training epoch. In the two cases, voting performance was better than the performance of any
of the individual simulations. For example, applying voting for five runs caused the error rate

to drop to 11.2% from a five-run average of 23.52%.

C. Summary of experimental results and observations.

eSimulation results confirm that fusion ARTMAP is able to classify objects using

information from different sources of disparate type.

el arge training sets are needed to train fusion ARTMAP on-line. This is because
Fusion ARTMAP codes prototypes using prototypes that have been previously coded at the
ART. module. Therefore, it is very important to have a good representation of cluster of
patterns at field F; . Otherwise, this lack of categorisation at field F; would bropagate to the

global classifier resulting in a detriment in the accuracy.

eSimulation results show that, if previous knowledge of the inputs is available,
network training accuracy can be significantly improved. A voting strategy can also be used in
fusion ARTMAP to improve the performance of the network when small or incomplete

training sets are given.

eSimulation results show that, the threshold for p, should be lower than that for p..
This configuration allows the creation of reliable information codes for each sensor channel,
resulting in better global prediction. In turn, increased code compression can be obtained at
the global classifier owing to the smaller matching value used at this level. As noted in [1],[2],
fusion ARTMAP created the necessary numbers of codes for each channel and then the global
classifier organised them in such a manner that one intra-channel code can contribute to
several global codes. Otherwise, we would have a kind of probabilistic combination that in the

worst case would be:
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#F;node = H #F, nodes, where n: number of sensor channels

i=1

Therefore, more codes are created in F; with fewer codes in F: and hence fewer paths in F™.

eSimulation results show that the one-pass and two-pass algorithms are suitable
candidates to represent the fusion ARTMAP architecture proposed in [1],[2]. The one-pass
algorithm seems to have the more similar behaviour to that of fuzzy ARTMAP in terms of
accuracy and the monotonic decrease in test set errors as the training set is increased in size.
On the basis of this propositions and the simulation results, we can say that the predictive
accuracy of the one-pass algorithm is retained compared with that of fuzzy ARTMAP as well
as a neural network architecture than can be used for multi-channel, or multi-sensor, data

fusion.

V. Conclusions

Two algorithms have been implemented that follow the operational philosophy
described in [1] and [2]. The case of the multiple-input sensors with single-teacher channel
fusion ARTMAP architecture with individual and global classifiers using independent baseline
vigilance parameter is explored, achieving a better understanding of this system through the
development of these two algorithms and the description of some of their operations. Owing
to the lack of mathematical and algorithmic details in [1] and [2], a number of details required

derivation before successful implementation could be achieved. Among this were:
i. Definition of the compressed recognition code, z°.
ii. Definition of the compressed categorical input a to ART,.
iii. Modification to the parallel matching criterion.

iv. Development of a control strategy for using these have been successfully

implemented leading to the following results:

a. Two algorithms have been developed with acceptable accuracy compared with that
of fuzzy ARTMAP. However, the one-pass algorithm seems to be a better candidate than the

two-pass algorithm to represent the fusion ARTMAP architecture.
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b. Directions for tuning the network in terms of the selection of the baseline matching
values are given, (p, < Pc). The importance, during the training process, of the sample size
and some ways to overcome this limitation; i.e. using voting strategy if sample size is

incomplete or incorporating a priori information about the inputs if it is available, are noted.

At this point we can conclude that, fusion ARTMAP is designed to obtain a
compressed code using information (compressed recognition codes) from multiple data

sources of any type, while retaining system predictive accuracy [2]. As asserted in [1], fusion

ARTMAP creates more parsimonious codes ( in field F; ) with fewer paths and weights ( in

IF"”), than would be needed by the single-channel, fuzzy ARTMAP, recognition system.
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TABLE 1

Comparison of system performance after training for circle-in-the-square using
complement coding as input pre-processing. Training and test set size: 1000.

One-Pass Two-Pass Fuzzy ARTMAP

No.of  Accuracy (%) B' No. of Accuracy (%) E No.of  Accuracy (%) E Note
Cate-  Training Test Cate- Training Test Cate- Training Test
| gories gories gories

a: 14 95.9 92.5 0 a: 18 97.1 94.6 0 19 96.4 92.8 0 1
c: 18 22 Gpoch
a: 17 100 93.6 0 a: 21 99.6 95.6 0 24 100 95.4 0 3
c: 24 c:27 S
a: 23 94.5 90.1 05| a:18 97 93.6 05 16 97.3 948 05 1
c: 32 ¢ 27 cRock
a: 26 100 94.2 05| a23 100 958 0.5 21 100 9.1 05 3
c: 36 c:33 Fpoch
a: 25 95.8 93.3 0.7 | a:23 96.9 929 0.7 30 97.2 95 0.7 1

c: 31 c: 46 Bpoch
a: 31 100 95 07| a:28 100 944 0.7 36 99.6 954 07 3
c: 41 c: 52 epoch

TABLE II

Comparison of system performance after training for circle-in-the-square using
fuzzification as input pre-processing. Training and test set size: 1000.

One-Pass Two-Pass Fuzzy ARTMAP

No.of  Accuracy (%) E No. of Accuracy (%) 5 No. of Accuracy (%) E Note
Cate-  Training Test Cate-  Training Test Cate- Training Test

|_gories gories gories
a: 20 97.4 944 0 a: 13 97.8 96.3 0 18 97.7 95.2 0 1
c: 27 c: 23 Bpuch
a: 23 100 95.3 0 a: 16 99.8 96.5 0 30 99.3 93.9 0 3
c:24 c: 26 epoch
a: 40 98.5 96.8 0.7 | a:29 98.5 949 0.7 64 99.7 97.1 0.7 1
c: 72 c: 75 epoch
a: 42 100 97.4 0.7 | a:31 100 954 0.7 65 100 974 0.7 3
c: 77 c: 78 epoch




TABLE III

Comparison of system performance after one training epoch for circle-in-the-square
using different baseline matching parameters between ARTc¢ and ARTa and
fuzzification as input pre-processing. Training and testing set size: 1000.

B

One-Pass Two-Pass Fuzzy ARTMAP

No. of Accuracy (%) B" No. of Accuracy (%) E No. of Accuracy (%) ;
Cate- training Test Cate- Training Test Cate- Training Test

ories gories gories

a: 16 93.3 92.4 a:0 a: 13 98.1 94.3 a:0 N/A
cl:102 c:0.7 || cl: 102 c:0.7

a: 18 97.7 94.1 a:04 || a: 14 98 942 a04 64 99.7 97.1 0.7
cl: 74 _ c:0.7 || cl:85 c:0.7

a: 40 98.5 96.8 a:0.7 | a:29 98.5 949  a0.7 N/A
cl: 72 c:0.7 || cl:75 c:0.7
a: 98 95.7 95.4 a:09 | a: 64 97.7 943  a0.9 N/A
cl: 67 c:0.7 || cl1:76 c:0.7

TABLE IV

Comparison of system performance after training for cylinder-in-the-cube using
complement coding as input pre-processing. Training and test set size: 2000.

One-Pass Two-Pass Fuzzy ARTMAP

No. of Accuracy (%) E No. of Accuracy (%) E’ No. of Accuracy (%) E Note
Cate- training Test Cate- Training Test Cate-  Training Test

ories gories gories

a: 91 87.1 81.45 0 a: 77 88.65 83.4 0 26 95 9065 0 1
cl: 82 cl1: 69 pi
c2:33 c2:28

a: 168 95.55 86.4 0 a: 154 94.3 85.5 0 37 99.6 926 0 3
c1:135 ¢1: 130 epoch
c2:51 c2:40

a: 136 86.35 80.05 0.7 | a:l12 92.9 856 0.7 113 95.5 89.6 0.7 1
¢1: 99 c1: 95 epoch
€2:37 €2:33
a: 253 96 85.4 0.7 || a:203 95.3 859 0.7 124 99.9 919 0.7 3
c1: 183 cl: 153 ek
c2:57 c2:55
a: 18 99.55 8545 a:0f al9 99.5 88.25 a0 N/A 3
cl: 187 c: | cl: 216 c: epoch
c2:140 07 1 c2:165 0.7




TABLE V

Comparison of system performance after training for cylinder-in-the-cube using
fuzzification as input pre-processing. Training and test set size: 2000.

S ek |

One-Pass Two-Pass Fuzzy ARTMAP
No. of Accuracy (%) E No. of Accuracy (%) E No. of Accuracy (%) b_ Note
Cate- training Test Cate- Training Test Cate-  Training Test
|_gories gories _gories
a: 74 92.4 87.2 0 a: 38 92.4 89.4 0 25 93.75 92.3 0 1
cl: 88 cl: 52 e
c2:34 c2:24
a: 143 98.55 88.95 0 a: 110 98.3 91.3 0 58 99.2 9345 0 3
¢1:165 cl: 121 epoch
c2:59 c2:47
a: 136 95.9 91.05 0.7 | a:152 92.7 85.25 07| 256 98.9 90.35 0.7 1
cl: 122 cl: 148 epoch
c2:39 c2:44
a: 186 98.7 91.75 0.7 || a:237 98.95 87.7 0.7 261 100 90.65 0.7 3
cl: 163 cl: 214 apael
t2:52 c2:69




TABLE VI

Comparison of system performance after one training epoch on input sets ranging in
size from 125 to 2000 for cylinder-in-the-cube task using complement coding as input
re-processing. p=0.7.

One-Pass Two-Pass Fuzzy ARTMAP
Trainin | No. of % test set No. of % test set No. of % test set
fize el (_Iatego- correct incorrect C;atego- correct incorrect C_iatego- correct incorrect
ries ries ries
125 a:25 66.4 336 a: 27 76 24 26 71.2 28.8
cl1:20 cl: 29
c2:10 c2:14
250 a:45 66.8 332 a: 36 69.2 30.8 44 73.6 26.4
- cl:33 cl: 36
c2:16 c2:16
500 a:61 68.4 31.6 a: 50 80 20 64 84 16
cl:44 cl: 44
c2:20 c2:17
750 a:80 72.53 27.47 a: 57 78.67 21.33 75 84.8 15.2
cl:58 cl: 50
€2:23 c2:18
1000 a: 95 75.9 24.1 a: 81 78 22 84 87.5 12.2
cl: 70 cl: 67
c2:26 c2:25
2000 a: 136 80.05 19.95 a: 112 85.6 14.4 113 89.6 10.4
cl: 99 cl: 95
c2:37 c2:33




TABLE VII

Comparison of system performance after one training epoch on input sets ranging in
size from 125 to 2000 for cylinder-in-the-cube task using fuzzification as input pre-
rocessing. p=0.7.

One-Pass Two-Pass Fuzzy ARTMAP
Trainin || No. of % test set No. of % test set No. of % test set
fize set (?atego- correct incorrect (;ategc» correct incorrect (T“atego- correct incorrect
ries ries ries
125 a:36 73.6 26.4 a:32 68.8 31.2 49 64.8 35.2
cl:36 cl: 47
c2:19 c2:18
250 a:56 76.8 23.2 a: 43 70.4 29.2 81 70.8 29.2
cl:56 cl: 62
c2:26 c2:21
500 a:g2 79.8 20.2 a: 70 76.2 23.8 125 80.2 19.8
cl:79 cl: 96
c2:31 c2:30
750 a:98 83.6 16.4 a: 74 86.13 13.87 158 84.4 15.6
c1:90 cl: 95
c2:33 c2:28
1000 a: 107 86.6 13.4 a; 98 88.7 11.3 190 87.1 12.9
cl: 99 cl: 112
c2:34 €2:37
2000 a: 136  91.05 8.95 a: 152 85.25 14.75 256 90.35 9.65
cl: 132 cl: 148
c2:39 c2:44




Comparison of system performance after one training epoch on inputs presented in a
different random order for cylinder-in-the-cube task using complement coding as input

re-processing. Training size: 250. p=0.

TABLE VIII

Run
No.

F,
Nodes
a:29
cl:26
c2:14
a:20
cl:21
c2:12
a:39
c1:30
c2:18
a:25
cl:23
c2:14
a: 31
cl: 26
c2:16

One-Pass
% test set
correct incorrect
824 17.6
70.4 29.6
76 24
68 32
68.8 31.2

F,
Nodes
a: 16
el: 15
c2:10
a: 17
cl: 17
c2:12
a: 20
cl: 20
c2:13
a: 30
cl: 26
c2:28
a: 18
cl: 18
c2:10

Two-Pass
% test set

correct incorrect

74.4 25.6
66.4 33.6
78 22
86.13 13.87
61.6 38.4

Fuzzy ARTMAP
F, % test set
Nodes .
correct 1ncorrect
15 84.8 15.2
16 86.8 13.2
11 84.8 15.2
9 86.4 13.6
21 75.2 24.8




TABLE IX

Comparison of system performance after one training epoch for cylinder-in-the-cube
task using different baseline matching parameters between ARTc and ARTa and
fuzzification as input pre-processing. Training and testing set size: 1000.

One-Pass Two-Pass Fuzzy ARTMAP
No. of Accuracy (%) E No. of Accuracy (%) 'F_,' No.of  Accuracy (%) E
Cate- training Test Cate- Training Test Cate-  Training Test
| _gories gories gories

a: 17 88.5 83.5 a:0 a: 11 88.2 82.9 a:0 N/A
c1:137 c:0.7 (| cl: 110 c:0.7

c2:98 c2:52

a: 42 93 88.1 a:04 | a:38 92.9 839 a04 N/A
cl: 103 c:0.7 || cl: 127 c:0.7

c2:59 c2:50

a: 105 93.7 87.8 a:0.7 || a:93 92.8 86.5 a:i0.7| 186 99.8 888 0.7
cl: 100 c:0.7 || c1:113 c:0.7

c2:39 c2:33
a: 174 88.3 797  a08| a:173 87.1 78.1  a:0.8 N/A
cl: 95 c¢:0.7 | cl:122 c:0.7
c2:32 c2:30

TABLE X

Voting strategy applied to set of three and five Fusion ARTMAP (One-pass) simulations
of cylinder-in-the-cube task using complement coding as input pre-processing. Training
and testing set size: 250. p=0.

% correct Test Set Predictions

3 simulations

Average 77.06
Range 82.4%-70.4%
Voting 84.8

5 simulations
Average 76.48
Range 82.4%-68.8%
Voting 88.8
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Figure 2. Parallel match tracking mechanism. When a
predictive error occurs, parallel match tracking raises
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the ART module most likely to have caused the error.




