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Abstract

Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure.
Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species
composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed
ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the
biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159
leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship
between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic
positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the
ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged
forest than in unlogged forest but changes in abundance of individual species were not related to trophic position,
providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged
forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly
between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged
forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without
trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in
logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse
in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking
in the face of some forms of anthropogenic disturbance.
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Introduction

Trophic organisation defines the flow of energy through

ecosystems [1,2] and can have far-reaching effects on ecosystem

properties and processes, and on the conservation of biodiversity

[3,4,5,6]. Describing and understanding how anthropogenic

disturbance affects trophic organisation is therefore a major

concern [7,8]. The impacts of disturbance depend upon any

differences in the relative abundance of each species between

undisturbed and disturbed ecosystems, combined with any shifts

in the position of each species within the food web. However,

evidence for such changes is ambiguous and incomplete. For

example, large-bodied vertebrates with high trophic positions

(species at the top of the food chain) tend to have small

population sizes and require large areas for foraging, and are

also influenced by variation in prey populations, making them

particularly susceptible to anthropogenic pressure [9,10,11,12].

This prediction is supported by analyses on the threat status of

mammals [13], but smaller-bodied organisms can also attain

high trophic positions (e.g. compare [14] with [15]), and

a negative relationship between trophic position and suscepti-

bility to disturbance may not occur when these other taxa and

different forms of disturbance are considered [16]. Studies

comparing the trophic positions of species in disturbed and

undisturbed ecosystems have generated similarly ambiguous

results, with decreases [17], increases [14,18] and no difference

in trophic position found between habitats [19,20].

By collecting data on both the relative abundances and the

trophic positions of species, several recent studies have tested

community-level hypotheses concerning the impacts of distur-

bance. The dynamic constraints hypothesis, which predicts that

disturbance should reduce food chain length [21,22], has received

particular attention because variation in food chain length

influences key ecological processes [23,24]. Again, however,

evidence for a link between disturbance and food chain length is

conflicting (see [25,26] for reviews). Moreover, this evidence comes

largely from freshwater ecosystems: in a recent meta-analysis, only
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one study quantified the effects of disturbance on food chain

length in a terrestrial habitat, emphasising the need to broaden the

scope of research into the causes and extent of variation in food

chain length [26].

Here, we focus on selective logging, which represents the most

widespread form of forest disturbance in the tropics, with over 400

million hectares of forest in the permanent timber estate and at

least 20% of the tropical forest biome selectively logged between

2000 and 2005 [27]. Selective logging involves the removal of

commercially valuable trees above a threshold size, and the

process of felling and extracting trees can cause severe residual

damage via the labyrinth of logging roads [28], soil compaction,

and high mortality of non-harvested trees [29]. These changes lead

to significant shifts in abundance across a range of taxa

[30,31,32,33] and have prompted urgent calls for a greater

understanding of the impacts of logging on the structure and

functioning of rainforest ecosystems [34,35]. We investigate how

selective logging affects the relative abundance of species within

a tropical rainforest, and we use the numerical measures of trophic

positions provided by stable isotope ratios (expressed as d15N;

[36,37]) to quantify any shifts in the trophic positions of species.

We then combine these pieces of species-level information to

evaluate any shifts in trophic organisation that are associated with

logging disturbance.

Our study region is the Sundaland biodiversity hotspot in

Southeast Asia [38,39], which has experienced some of the highest

timber extraction intensities globally [40,41]. We focused on the

leaf-litter ant assemblage, because it is highly abundant and

diverse, and because ants exert a key influence on ecosystem

functioning through several types of trophic interaction that are

reflected in the trophic positions of each species (e.g. as seed

dispersers and predators [42,43,44]). Furthermore, the assemblage

has undergone significant shifts in composition following logging,

and although many species currently persist [45], the conse-

quences of these changes in composition for trophic organisation

have not been studied. Accordingly, we first investigated species-

level changes by testing two predictions: (i) there is a negative

relationship between the trophic position of a species in unlogged

forest and its change in abundance following logging, and (ii)

changes in community composition and habitat structure that

follow logging are accompanied by shifts in the trophic positions of

species that persist in logged forest. We then examined commu-

nity-level changes by testing two further predictions: (iii) the

frequency distribution of trophic positions differs between

unlogged and logged forests, and (iv) disturbance reduces food

chain length.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. Approval and permits were provided by Yayasan Sabah,

the Danum Valley Management Committee, Sabah Chief

Minister’s Department, the Economic Planning Unit of the Prime

Minister’s Department and the Sabah Forestry Department.

Study Site
Fieldwork was conducted within the 1 million ha Yayasan

Sabah logging concession in Sabah, Borneo (4u 589N, 117u 489E)
which is one of the most biologically important areas of lowland

rainforest in Borneo [46]. We compared the unlogged forests of

the Danum Valley Conservation Area and Palum Tambun

Watershed Reserve (45,200 ha) with the contiguous Ulu Se-

gama-Malua Forest Reserve, which is a 238,000 ha area of

production forest. Unlogged forests in the concession are

dominated by commercially valuable trees of the family Dipter-

ocarpaceae [47]. Production forests in the concession have un-

dergone two rounds of selective logging (first rotation: 1987–1991,

second rotation: 2001–2007), producing total timber yields of

,145 m3 ha21, some of the highest rates of timber removal

globally (see [41] for further details).

Sampling
In unlogged forest, we established eight transects $500 m apart

(Figure S1). In logged forest, we grouped transects into four sites,

each comprising two transects separated by 500–800 m and

spaced such that the unlogged forest was central between two

logged sites to the south-east and two logged sites to the north-

west. Distances between logged forest transects (28.363.7 km)

were similar to those between logged and unlogged forest transects

(23.660.5 km). Ants were sampled from seven 1 m2 census points

separated by 25 m and on alternate sides of each transect (56

sampling points in each type of forest) using the Winkler method

([48], see [45] for details). The Winkler method is unreliable when

the leaf litter and soil are damp, so we did not sample for two days

following any heavy rainfall. Minor workers were stored in 95%

ethanol, identified to genus using online keys [49], and pre-sorted

to morphospecies based on external characteristics. Where

possible, morphospecies were assigned species names using

published keys, online image resources (www.antbase.net, www.

antweb.org), and reference collections at the Natural History

Museum (London) and Universiti Malaysia Sabah (Kota Kina-

balu). Voucher specimens of each species and morphospecies are

housed at the Forest Research Centre, Sabah.

To establish baseline d15N values for each transect [37], pairs of

leaves were collected from two understorey plants every 15 m

along the transect ( = 20 plants per transect), dried in a plant press,

and stored in a sealed dry room [50]. All fieldwork took place

between May and September 2007 and May and September 2008:

three transects in unlogged forest were sampled for ants and

baseline material in 2007 and the remaining 13 transects were

sampled for ants and baselines in 2008. There is little seasonal

variation in climate within the study region [51], and sampling

years were similar in terms of environmental conditions (no mast-

fruiting, droughts or floods). Repeat sampling from the same

locations also indicates that annual variation in ant community

composition is low [52].

Stable Isotope Analysis
A single isotope analysis was conducted to represent all

conspecific worker ants from the same sampling point, because

these were considered to be from the same colony and therefore

non-independent, and because variation in nitrogen isotope ratio

values amongst conspecifics from the same point was low

[14,50,52]. Ants were prepared by removing gasters [14] and

oven-drying at 50uC to a constant mass, and plant material was

dried in a plant press and ground into a fine powder using a mixer

mill. Samples were analysed on a Eurovector 3028HT elemental

analyser coupled to a GV Isoprime continuous flow mass

spectrometer. Samples and standards were combusted in pure

oxygen (N5.0, BOC, UK) injected into a stream of helium at

1020uC. Water and carbon dioxide were removed from the gas

stream using magnesium perchlorate and Carbosorb respectively

(Elemental Microanalysis, UK). d15N was calculated as ([Rsample/

Rstandard]21)6103, where Rsample is the 15N:14N ratio of the

sample and Rstandard is the 15N:14N ratio of the N2 reference gas.

Sample d15N values were calibrated against the international

d15Nair scale using the ammonium sulphate standards USGS-25

Selective Logging and Trophic Organisation
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(230.4%) and USGS-26 (+53.7%) interspersed every 8–12

samples. In addition, an internal yeast check standard was

repeated several times in each column and produced standard

deviations of 0.1–0.3%, with a long-term average of

20.5560.28% (1SD) from 265 analyses across all columns. Ant

d15Nair values were corrected for baseline variation [37] by

subtracting the mean d15N of leaf samples collected from the same

transect to give a baseline-corrected value (d15NBC):

d15NBC= d15Nsample – d15Nplant mean for transect (see [50] for further

details).

Calculation of Stable Isotope Metrics
Trophic position was calculated as l+(d15NBC/E), where l is the

trophic position of the organism used as the baseline (l=1 for

plants) and E is the enrichment in d15N per trophic level (for ants,

E = 3.0; [53]). Leaf-litter ants span almost the full range of trophic

positions within the soil food web, from granivores to specialised

predators [54], and so we used the colonies with the highest

trophic positions in each forest type (top 5% of colonies) as

a measure of the realised food chain length [23,55]. Although

specialised predatory ants might occasionally be consumed, the

definition of realised food chain length integrates all energy flow

pathways through the food web [23,25] so such infrequent events

have little effect on estimates of food chain length.

Statistical Analysis
We first tested for a relationship between the trophic position of

a species in unlogged forest and its change in abundance by using

Linear Mixed Effects models (LME) with ‘ant subfamily’ as

a random effect to account for phylogeny [56]. We then

investigated whether or not the trophic positions of ants differed

between unlogged and logged forest by using a LME (including all

isotope analyses) with ‘subfamily’ as a random effect, and ‘species’

nested within subfamily to account for repeated measures. We also

used General Linear Models to test for differences in trophic

position between unlogged and logged forest in each of the

commonest species (n$10 in both types of forest).

Differences between unlogged and logged forest in the trophic

organisation of the assemblage were investigated by using

Kolmogorov-Smirnov tests to compare the frequency distribu-

tion of trophic positions of colonies in each type of forest. We

first examined the location and shape of the distributions, and

then focused only on the shape by centring each distribution

around a mean of zero. Changes in the location of the

distribution would indicate a systematic increase or decrease in

trophic positions of the assemblage, whilst changes in the shape

of the distribution would indicate that colonies become more or

less concentrated within the food web. This approach compares

differences in trophic structure without considering species

identity. It is thus focused on summarising how each colony

contributes to the overall trophic structure of the assemblage.

Lastly, we used a LME to compare food chain lengths – defined

from the 5% of colonies with the highest trophic positions in

each type of forest – between unlogged and logged forest. As

with previous analyses, each sample was used as a separate

measure of trophic position, and ‘subfamily’ and ‘species’ were

treated as nested random effects.

Results

We obtained trophic positions for 1427 samples of 159 ant

species, comprising 841 samples of 142 species in unlogged forest

and 586 samples of 125 species in logged forest. The assemblage

was largely carnivorous (mean trophic position of all spe-

cies = 3.0760.01 S.E.) but trophic positions of individual species

ranged from 2.00–4.43 (Figure 1; Figure S2; Table S1). Trophic

positions for ant species sampled in 2007 in unlogged forest did not

differ from those for species sampled in 2008 in unlogged forest

(2007mean = 3.0260.02, 2008mean = 3.0460.02; LME: F6,

831 = 0.03, p.0.5). We found no relationship between the trophic

position of a species in unlogged forest and its change in relative or

absolute abundance (LME: F1, 44 = 0.1, p.0.5 in both cases).

Furthermore, the mean trophic position of species found only in

unlogged forest did not differ from the shared species mean for

unlogged forest (LME: F1, 132 = 0.05, p.0.5; Figure 2). However,

the mean trophic position of species found only in logged forest

was marginally significantly lower than the shared species mean

for logged forest (LME: F1, 116 = 2.76, p = 0.099), suggesting

a slight influx of species with trophic positions below the average

for logged forest.

With respect to prediction (ii), we found strong evidence for

increases in trophic positions amongst species that were shared

between both types of forest (mean unlogged forest = 3.0360.01,

mean logged forest = 3.1360.02; LME: F1, 1197 = 43.9, p,0.0001;

Figure 2). In addition, the trophic positions of four of the 14 most

prevalent shared species (n$10 occurrences in each forest type)

were significantly higher in logged forest than in unlogged forest.

These four species combined accounted for 12% of all ant

occurrences, and we also found a marginally significant increase in

a fifth species (Figure 3). As a consequence, the mean trophic

position of ants was significantly higher in logged forest than in

unlogged forest (LME: F1, 1261 = 41.2, p,0.0001) by an average of

0.160.03 trophic levels.

The higher trophic positions of species in logged forest

translated into shifts in overall trophic organisation, with

a significant difference between forest types in the frequency

distribution of the trophic positions of colonies (z = 1.86,

p = 0.002). When distributions were centred around zero, trophic

organisation was marginally significantly different between forest

types (z = 1.29, p = 0.071). We also found a significant increase in

mean food chain length in logged forest based on the trophic

positions of the top 5% of colonies (mean unlogged for-

est = 3.8960.04, n= 42 colonies; mean logged forest = 4.1060.04,

n = 29 colonies; LME F 1, 29 = 10.3, p = 0.0032). This finding was

repeatable using the top 10% of colonies (mean unlogged

forest = 3.7360.03, n= 84 colonies; mean logged forest = 3.9360.03,

n = 58 colonies; LME: F 1, 91 = 22.6, p,0.001).

Discussion

Our results indicate that selective logging significantly alters the

trophic organisation of the leaf-litter ant community in tropical

rainforests. The change in trophic organisation was not caused by

shifts in the relative abundance of different species, but instead was

the result of increases in trophic positions amongst species found in

both unlogged and logged forest. Higher trophic positions in

logged forest resulted in food chains that were 0.2 trophic levels

longer and in significant differences between forest types in the

distribution of ant colonies through the food web (Figure 1).

Species-Level Responses to Disturbance
The trophic ecology of most leaf-litter ant species found in

tropical rainforests is poorly known, but our results are consistent

with knowledge for better-studied species (e.g. Anochetus graeffei,

Mystrium camillae, and Cerapachys spp. were highly carnivorous [54]).

Also as would be expected, the Ponerinae generally had higher

mean trophic positions than the Myrmicinae (Figure 2). We are

thus confident that our stable isotope protocol has measured

Selective Logging and Trophic Organisation
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trophic positions accurately, and consequently that the informa-

tion provided for the many small and cryptic leaf-litter ant species

for which diets are largely unknown is also reliable (Table S1).

Increases in trophic positions may result directly from changes

in diet or indirectly from changes in the diet of prey species [57].

Both mechanisms probably operate to some degree, although

changes in prey diet cannot explain increased trophic positions in

ant species that feed exclusively on plant material and/or obligate

herbivores. Direct changes in diet are therefore the most likely

explanation for the elevation in trophic positions of ant species

with a position of ,3 in unlogged forest (48 species: Table S1).

Although [58] found no difference in the trophic positions of ant

genera between forest remnants and pastures, increases in trophic

positions in disturbed forest have been detected for weaver ants

(Oecophylla smaragdina), which switched from the consumption of

homopteran exudates and nectar in primary forest to a greater

dependency on predation and scavenging in secondary forest

regrowth [14]. Furthermore, the higher trophic positions of small

mammals in disturbed ecosystems [59] suggest that our findings

may be mirrored in other taxa.

Species with high trophic positions are thought to be more

susceptible to anthropogenic disturbances such as fragmentation

[4,60] because high trophic position is intrinsically linked to factors

such as low population size, high population variability and high

Figure 1. Trophic organisation of ant communities in unlogged and logged forest. Trophic positions of (a) colonies and (b) species in
unlogged and logged forest are grouped into trophic categories of 0.5 trophic levels (,2.25, 2.25–2.75, 3.25–3.75 etc.). Bubble sizes represent the
proportion of colonies or species in each trophic category for each type of forest (i.e. expressed as a percentage of the total number of colonies [a] or
species richness [b] for each forest type).
doi:10.1371/journal.pone.0060756.g001
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dependence on prey populations [9,10,12]. However, we found no

evidence for a negative relationship between the trophic position

of a species in unlogged forest and its change in abundance

following logging. This implies that for leaf-litter ants, either the

above factors do not influence susceptibility to intensive logging

disturbance and/or these factors are not linked to trophic position.

Whilst the potential for cascading effects following the loss of large-

bodied top predators is a cause for serious concern [6], the

prediction that trophic position is an important determinant of

susceptibility to anthropogenic impacts thus may not hold

generally [16,61,62]. This has important conservation implications

in terms of understanding what makes a species vulnerable to

anthropogenic disturbance, as well as for informing simulations

that model the consequences of realistic extinction sequences on

food webs (e.g. [63]).

Figure 2. Causes of differences in trophic organisation of ant communities between unlogged and logged forest. Mean trophic
positions6S.E. are shown for species found in both unlogged (UL) and logged (L) forest, for species found only in logged forest, and for species found
only in logged forest. Means are based on all samples and presented for all species, and for the two commonest ant subfamilies (Myrmicinae and
Ponerinae).
doi:10.1371/journal.pone.0060756.g002

Figure 3. Trophic position of species commonly sampled in unlogged and logged forest. Mean trophic position6S.E. are shown for all
species sampled at least 10 times in both types of forest. p values are: *#0.05, **#0.01, ***#0.001. From left to right, species are: Lophomyrmex
bedoti, Hypoponera sp1, Ponera sp4, Anochetus graeffei, Pachycondyla sp3, Pheidole rabo, Tetramorium sp2, Oligomyrmex sp1, Hypoponera sp7,
Pheidole tjibodana, Paratrechina sp2, Strumigenys sp1, Strumigenys fuarda, Eurhopalothrix jennya.
doi:10.1371/journal.pone.0060756.g003
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Community-Level Responses to Disturbance
The differences in trophic positions of individual species

translated into significant differences in food chain length between

unlogged and logged forests. However, our results are in the

opposite direction from that predicted by the dynamic constraints

hypothesis [21,22], with food chains approximately 0.2 trophic

levels longer in disturbed forest. Nonetheless, our estimates of food

chain length for the soil food web in both types of forest (3.73–

4.10) are similar to those for other ecosystems (2.70–4.35;

[17,19,20,64]). Moreover, the magnitude of change in food chain

length falls within the range of values documented by studies used

in a recent meta-analysis to test the effects of disturbance [26].

While disturbance can reduce food chain length in some

circumstances [17,65], our study thus supports previous research

[19,20] indicating that disturbance does not have a consistent

negative impact on food chain length in complex communities (see

also [26]).

Previously documented positive effects of disturbance on food

chain length have been attributed to increases in the abundance of

early successional organisms [18]. Life history trade-offs mean that

these organisms are often more palatable and experience higher

herbivory rates [66,67], and so more energy is available at the base

of the food web, which then cascades upwards to lengthen food

chains [18]. A similar mechanism could explain our results, with

the flush of fast-growing understory plants in regenerating forest

[32] providing greater energy to support species at higher trophic

positions. In this hypothesis, disturbance is, effectively, influencing

food chains by causing changes in local productivity, reflecting the

more consistently documented positive relationship between

productivity and food chain length [26].

Shifts in trophic organisation also occurred through the rest of

the food web, with fewer colonies at low-intermediate trophic

levels in logged forest (Figure 1; Figure S2). Whilst inferences of

changes in ecosystem functioning following disturbance should be

made with caution when direct measurements of the relevant

processes are lacking, these results nonetheless imply that the

balance between low trophic level functions (e.g. seed dispersal)

and high trophic level functions (e.g. predation) in leaf-litter ant

communities is modified by anthropogenic disturbance.

Conclusion
Our results provide strong evidence that trophic structure differs

between unlogged forest and forest regenerating from intensive

selective logging, and that this difference is caused by changes in

the trophic positions of ant species common to both types of forest.

Combined with the significant reduction in colony abundance and

shifts in community composition detected in heavily logged forest

[45], our findings provide further evidence for anthropogenic

disruption of the structure and functioning of rainforest ecosys-

tems. Longer-term research will be necessary to determine if and

how these changes influence the vulnerability of rainforest food

webs to future disturbance (e.g. fire or subsequent logging cycles)

and whether or not they are part of a recovery trajectory towards

the trophic organisation of undisturbed forests. Importantly,

however, there was no evidence for a collapse in trophic

organisation similar to that documented following some other

forms of anthropogenic disturbance [4]. Our results therefore add

empirical evidence to a body of theoretical research [68,69]

suggesting that complex food webs possess a degree of flexibility in

the face of some types of anthropogenic disturbance, in this

instance effectively bending without breaking.
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