This is a repository copy of An Incremental Adaptive Network for On-Line Supervised
Learning and Probability Estimation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/80070/

Monograph:

Lim, Chee Peng and Harrison, R.F. (1995) An Incremental Adaptive Network for On-Line
Supervised Learning and Probability Estimation. Research Report. ACSE Research
Report 585 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An Incremental Adaptive Network for On-line,

Supervised Learning and Probability Estimation

Chee Peng Lim and Robert F. Harrison

Department of Automatic Control and Systems Engineering
The University of Sheffield
Mappin Street, Sheffield S1 3JD
United Kingdom
E-mail: c.lim@sheffield.ac.uk, r.f.harrison@sheffield.ac.uk

Research Report No. 585
June 1995

DATE OF RETURN

Abstract

In this paper, a novel hybrid utilisation of the Fuzzy ARTMAP (FAM) neural
network and the Probabilistic Neural Network (PNN) is proposed for on-line
learning and probability estimation tasks. There are two distinct advantages of
the hybrid network. First, FAM is used as an underlying clustering algorithm to
classify the input patterns into different recognition categories during the
learning phase, resulting in a significant reduction of pattern nodes required in
the PNN. Second, a non-parametric posterior probability distribution
estimation procedure, in accordance with the PNN paradigm (i.e. the Parzen-
window estimator), is employed during the prediction phase, where a
probabilistic interpretation corresponding to the Bayes decision theorem can be
provided for the predictions of FAM. In addition, several modifications are
addressed to integrate both the networks effectively into a unified platform for
enhancing generalisation. This hybrid approach also realises an incremental
learning system in which the necessity to specify a static network configuration
a priori is eliminated, as the network is able to “grow” to accommodate new
input patterns sequentially and can thus operate in non-stationary environments.
The performance of the network is evaluated with benchmark classification
tasks and the results are compared with other approaches. Simulation results
indicate that this hybrid network is capable of asymptotically approaching the
Bayes optimal classification rates.

Keywords: Fuzzy ARTMAP, Probabilistic Neural Network, Bayes
strategy, pattern classification, on-line supervised learning,
probability estimation

THE UNIVERSITY LIBRARY
SHEFFIELD

06NOSCERE

ST GEORGE’S LIBRARY

Class No. é

629.8.(3)

=

Book No. &CQISHQ&SQ

___;

1 Introduction and Motivation

Systems architects continually strive to design machines with increasing capabilities of
human-like autonomy and intelligence. Unfortunately, one of the main obstacles to
successful machine learning is the memory erosion problem in real-time, potentially non-
stationary environments. The fundamental issue is how a learning system is able safely to
adapt to new information without corrupting or forgetting previously learned information.
In essence, this is the so-called stability-plasticity dilemma addressed by Carpenter and
Grossberg (1988, pp 77).

In this work, our goal is to design a generic autonomous learning system for general
classification and probability estimation tasks. In general, discriminant analysis and Bayes
decision theory have been studied for many years in the field of pattern recognition and
classification.. The basic idea behind many of the approaches is to find an unknown
discriminant function that best separates different classes from sample patterns, and the risk-
weighted Bayes decision criterion is then employed to minimise the overall misclassification
rate. Here, we adopt the neural-fuzzy approach to design an on-line learning classification
system implemented in a neural network paradigm. The objective is to develop a Bayes
optimal classifier that operates autonomously, on-line, in a non-stationary environment
using neural networks and fuzzy set theory. The novelty of the network lies in its
architecture which is able to “grow” autonomously and to accommodate input patterns
sequentially, without any special hand-crafted architectural design. In addition, the network
is capable of adaptively formulating complex non-linear decision boundary that
asymptotically approach the Bayes optimal discriminant function, on-line, in non-stationary
environments without prior knowledge of impending changes. In the following section, the
issues associated with feedforward neural networks in on-line operation are discussed and
an overview of two neural network architectures that are suitable for incremental learning is
presented.

Feedforward networks, in particular the Multi-Layered Perceptron (MLP) and the
Radial Basis Function (RBF) networks, have been extensively investigated for pattern
classification and discrimination tasks. This is because they are able to form an input-output
mapping from a set of exemplars and operate, in principle, as autonomous learning systems
for function approximation. Theoretical results indicate that these networks possess
architectures which are rich enough to approximate any arbitrary smooth enough function
to an arbitrary degree of accuracy (Cybenko, 1989; Girosi and Poggio, 1990). Thus, it is
likely that feedforward networks can offer a solution to the problem of developing a one-
from-many classifier, and this is indeed the case as evidenced by the successful applications
of such systems in various areas, e.g. Sejnowski and Rosenberg, 1987; Gorman and
Sejnowski, 1988; Bounds er al., 1990; Chen er al., 1993a. However, there are several
pracucal issues regarding how well a feedforward network can learn a discriminant function.
In general, it is usually not known what finite size of network, i.e. number of hidden units,
should be used to solve a given problem (Fujita, 1992). If the network is too small, it is not
capable of forming an accurate approximation to the underlying function. On the other
hand, if the network is too large, the network may specialise to the training samples and the
solution obtained is likely to be a poor estimate of the actual function. Without any a priori
information of the problem in hand, the trial-and-error method is usually used to “optimise”
the performance of the network whilst some validity tests are conducted to verify its
performance.

20029235

i

Another problem associated with the feedforward networks is that they are staric
after training. A feedforward network is generally trained off-line with some input-output
data pairs. Once the training cycle is completed, no further learning is permitted when the
network is in operation mode. Such an approach is viable when there is good reason to
believe that the data environment is stationary and the data sample used in training is
sufficiently representative. However, if the environment is non-stationary, it is necessary to ‘
repeatedly train the network whenever the environment changes, which is, of course, not a
satisfactory approach. One way out of this dilemma is to determine the size of the network
on-line in which the network is allowed to sequentially grow by itself in order to best
approximate the underlying function in an incremental manner. In fact, this is the main
principle of several augmented feedforward network architectures proposed in the literature
(Chen er al., 1993b; Kadirkamanathan and Niranjan, 1993; Fritzke, 1994; Shadafan and
Niranjan, 1994, Sharkey and Sharkey, 1994).

The family of the Adaptive Resonance Theory (ART) networks is another example
of incremental learning architecture which self-organises and self-stabilises in response to an
arbitrary sequence of sample patterns in stationary and non-stationary environments
(Carpenter and Grossberg, 1987a, 1987b). The key feature of the ART networks lies in its
design of a novelty detector which measures the similarity between the prototype patterns
stored 1n the network and the patterns presented to the network against a threshold. When
the criterion is not satisfied, a new node is created to encode the input pattern as its
prototype pattern. As a result, the number of nodes grows with time, subject to the novelty
criterion, in an attempt to learn a good network configuration autonomously and on-line.
As different tasks demand different capabilities from the network, this learning
methodology, thus, avoids the needs to specify a pre-defined static network size or to re-
train the network in non-stationary environments.

Bayesian decision theory is a classical statistical approach in pattern classification
domain. The decision is expressed in probabilistic terms based on the criterion of
minimising the overall misclassification rates weighted by some loss or risk factors (Fu,
1968; Duda and Hart, 1973). To implement the Bayes rule, it is necessary to assume that
all the information on probabilities, namely the conditional probability densities and prior
probabilities, are available. This information is then used to compute the a posteriori
probabilities of a pattern belonging to a particular class. Unfortunately, the assumption that
the forms of the underlying density functions are known is doubtful in most applications.

One solution to overcome the uncertainty is to estimate the unknown probabilities
and probability density functions from the data samples. Several techniques have been
developed, for instance the parametric methods that attempt to fit the samples to some
parametrised functions and reduce the problem from one of function estimation to one of
parameter estimation; and the non-parametric methods that directly estimate the functions
from the samples by defining a continuous kernel function on every sample (Duda and Hart,
1973). In this context, feedforward networks, such as MLP and RBF, have also been
extensively studied and their outputs have been shown implicitly to estimate the Bayesian a
posteriori probabilities (White, 1989; Wan, 1990; Richard and Lippmann, 1991).

The Probabilistic Neural Network (PNN) (Specht, 1988, 1990) is a neural network
architecture that applies the non-parametric method and implements the Bayes strategy in
its paradigm. The PNN uses Parzen windows (Parzen, 1962) to estimate the probability

—

3

density functions from input-output data pairs. Training the network amounts to generating
a node to code the input sample and associating it with its target class. Thus, the main
advantage of the PNN is its speed, i.e. the ability to learn the training samples in one-pass
and asymptotically achieve the Bayes optimal decision boundaries (Specht, 1990). In
addition, once new information is available, the decision boundaries can be modified on-line
without having to re-train the network. This autonomous learning property is comparable
to that of ART.

There is a close similarity between the network connections of the PNN and Fuzzy
ARTMAP (FAM), a variant of the supervised ART architectures. This similarity can be
exploited to form a new system for on-line classification and prediction tasks. This paper
focuses on the issues of how to integrate the PNN and FAM, together with some necessary
modifications. in order to alleviate the shoricomings of each network and, at the same time,
to preserve (":ir self-organising and incremental learning properties. The advantages of the
integration a-¢ two-fold: first, FAM is used as the underlying clustering algorithm to reduce
the number ¢: pattern nodes required in the PNN; second, the PNN is used as the
probability esumation algorithm to provide probabilistic predictions from FAM. The
objective is to design a hybrid network that is capable of classifying arbitrary input patterns
into different categories on-line and to give a probabilistic interpretation of the predicted
classes so that the Bayesian decision criterion can be applied in order to achieve optimal
classification rates.

The structure of the rest of this paper is as follows: in section 2, the architectures of
FAM and PNN are reviewed. In section 3, a hybrid system based on these two networks is
presented, along with some proposed modifications and their rationale. In section 4, some
simulation studies are included to demonstrate the capabilities of the hybrid network in on-
line settings and to compare the performance with other approaches. This is followed by a
summary and conclusions in section 5. 7

2 Fuzzy ARTMAP and Probabilistic Neural Networks

2.1 Fuzzy ARTMAP (FAM)

ART evolved from the analysis of how biological brains work to cope with changes in the
environment in real-time and in a stable fashion. This neural network architecture was first
proposed by Carpenter and Grossberg and, to date, the family of ART networks includes
ARTI, ART2, ART3 and Fuzzy ART for unsupervised learning (Carpenter and Grossberg,
1987a, 1987b, 1990; Carpenter ez al., 1991a) and ARTMAP, Fuzzy ARTMAP, ART-
EMAP and Fusion ARTMAP for supervised learning (Carpenter er al., 1991b, 1992,
1993b; Asfour er al., 1993a, 1993b). In this paper, we concentrate on the FAM network
because it has a robust architecture encompassing both fuzzy logic and the properties of
ART, and is capable of handling analogue or binary input vectors, which may represent
fuzzy or crisp sets of features.

(Figure 1 The FAM architecture)

FAM consists of two Fuzzy ART modules, ART, and ART,, which are linked by a
map field, Fas. Figure 1 shows a schematic diagram of the FAM network. Each fuzzy ART
module has two layers of nodes: F;u, is the input layer whereas Fza25 is a dynamic layer in
which the number of nodes can be increased when necessary and every node encodes a
prototype pattern representing a cluster of input samples. Fa0s is 2 pre-processing layer in

which the input vectors are normalised between 0 and 1. The size of the input vectors must
be kept constant in order to avoid the category proliferation problem (Moore, 1988;
Carpenter er al., 1991a). One of the recommended normalisation techniques is
complement-coding, where the on-response and off-response amplitude information in the
input vectors is preserved (Carpenter et al., 1991a, 1992)

The notation used in this paper is as follows: M, is the number of nodes in Fiq and
N, is the number of nodes in Fz,; X, = (X,_1,...»X,-u,) is the Fj, activity vector or the Short

Term Memory (STM) traces and y, = (Y,_;»++-s Ye-n,) i the Faze activity vector;
W, = (We s Wo i,)% J =1,...,N, is the jth ART, weight vector or the Long Term

Memory (LTM) traces. All these symbols apply to ART, when the subscripts a and b are
interchanged. In the map field, x, & (X4 .- Xy,) 1S the Fas activity vector and

W = (Wejises W,), j =1,...,N, is the weight vector from the jth F2, node to F.

In general, the FAM algorithm can be divided into four phases:
(a) Initialisation
In a Fuzzy ART module, the weight vectors subsume both the bottom-up and top-down
weight vectors of ART1 (Carpenter er al., 1991a, 1992). In ART,, each F, category node
weight vector fans-out to all the nodes in Fi,. These weight vectors are initialised to unity,
ie.

w, 1 (0)=..=w, (0)=1 ji=1..,N, e
To operate in the conservative mode where recoding during learning will be minimised, the
choice parameter, & ,, should be initialised close t0 0, i.e. 0., = 0. The learning rate, B,
and the baseline vigilance parameter, p,, of ART,, are set between O and 1. The vigilance
parameter is a threshold which regulates the coarseness or fineness of the category
prototypes to be formed. The same initialisation procedure is also applicable to ART,. In
the map field, the vigilance parameter, p,,, , is also initialised between 0 and 1, whereas the
weight vectors from F2, to Fos are set to unity, R

Wo 1(0) == wy i, (0) =1 J=luaadN, (2)
Note that the number of nodes in F. is the same as the number of nodes in F2, and there is
a one-to-one permanent link between each corresponding pair of nodes.

(b) Activities in fuzzy ART

During supervised learning, ART, receives an input vector and ART, receives the
associated target vector. After pre-processing, let A denote the pattern vector registered in
F ., which is then transmitted to Fa, through the weight vector. A fuzzy choice functon is
used to measure the response of each F3, prototype node as follows:

lA AW,

T.(A)= j=1...,N, (3)

a,+

W

a-j
The fuzzy MIN operator (A) and the size l . 1 are defined as: (x A y)l, = min(x;.y‘.) and
= 2 |x,| (Zadeh, 1965). -

The maximally responsive node is selected as the winner, denoted as node J, while
all other nodes are shut down in accordance with the winner-take-all competition. The
winning node then sends its weight vector to Fiq and a vigilance test is performed to test the

similariry between the F, activity vector and the input vector against the vigilance
parameter:

x, IA AW, _ _,| "
'A] i IAI 2 pa ()

where w,__, is the weight vector of the Jth winning node in F, . If this novelty test is
satisfied, resonance is said to occur and learning takes place. However, if the test fails, the
winning node is inhibited and A is re-transmitted to F, to search for a new winner which is
able to fulfil the vigilance test. If such a node does not exist, a new node is recruited to
code the input vector. The same search cycle for the target vector goes on simultaneously
in ART, where a prototype node in F3, that best matches the target vector will be found. In
general, an independent Fuzzy ART module is employed as ART) to self-organise the target
vectors. However, in one-from-N classifications, ART), can be replaced by a single layer
containing N nodes. Then, the N-bit teaching stimulus can be coded to have unit value
corresponding to the target category and zero for all others.

(c) Activities in the map field

Assuming that both ART, and ART, are active, a prediction from the F,, winner is sent to
F3» via the map field. A map field vigilance test is then performed to determine the
prediction, i.e.

Ixa.b| = be A wab-J’l
lybt bel
Note that if K is the winning node in F,, then the activity vector
Your =1 k=K, v, ,=01if k#K ;k=1,..,N,. Thus, if the prediction is correct,
|x,b| =1, orelse |.r@ =0. A correct prediction will lead to learning in ART,, ART, and the

map field. On the other hand, an incorrect prediction will initiate an activity called match-
tracking in which a search cycle in ART, is triggered. Match-tracking raises p, to a value

2 Pa (3)

slightly greater than (x, /|A! in order to cause the ART, vigilance test to fail. A new node

will then be chosen as the winner in F,, and a fresh prediction is sent to F,,. In other
words, match-tracking provides a means to select a node which satisfies both the ART, and
the map field vigilance tests. If no such node exists, Fz, is shut down and the input vector
will be ignored.

(d) Learning
Once search ends, the winning F, weight vector is updated according to:
wor) =B (AAwWID)+ (=B)w?) (6)

A node without any participation in learning is known as an uncommitted node. It will
become a committed node when information is encoded in the LTMs. Fast learning
corresponds to setting B, =1 in equation (6) at all time while fast-commit, slow-recode
learning corresponds to setting B, = 1 for an uncommitted node and B, <1 for a
committed node. Note that equation (6) is also applicable to ART, with obvious
modifications. During fast learning, the map field weight vector is assigned thus

Wa; = X,,. This means that the Jth winning node in F, is linked to the K'th winning node
in F2, via the map field and their association is permanent.

2.2 Modified Fuzzy ARTMAP

In our previous work, we indicated that FAM is unable to establish one-to-many mappings,
1.e. forming an association from an F, prototype node to more than one F3, target output
via the map field (Lim and Harrison, 1994). In statistical pattern classificaton tasks,
overlapping regions frequently occur in the input space in which a particular cluster may
belong to more than one target output subject to different probabilities of class membership.
This scenario is not significant with real-valued input vectors. This is because the
probability of having two identical, real-valued patterns, whether from the same category or
not, in a finite training set is vanishingly small. In other words, it is rarely the case to have
two identical patterns belonging to different outputs in the data set, thus one-to-many
mappings as described above would not occur. However, in cases of discrete-valued input
vectors, especially binary-valued patterns of low dimension, the same input vector may be
associated with distinct outputs with different probabilides.

We therefore propose a constraint on p, , during match-tracking, as follows:

o< p, <1 A%l 5 | ™
£ P, 2w lr——%
pa k |Al)

where & is a small positive value that will lead to a search in ART,. The effect of this
constraint is to recruit a new node in F3, to code the input vector instead of ignoring it as
would occur in the original algorithm, thus establishing two similar prototype nodes to map
to different outputs. In addition, a frequency measure scheme which records the number of
correct predictions made by the nodes in F3, is also introduced and this information is used
to facilitate the selection of the winning node (Lim and Harrison, 1994).

2.3 The Probabilistic Neural Networks (PNN)

The PNN is a neural network architecture that can be used directly to implement the Bayes
strategy in its learning paradigm for pattern classification problems. The PNN learns orders
of magnitude more quickly than the MLP with back-propagation learning (Specht, 1990).
The algorithm is able to form complex non-linear decision surfaces that will converge to the
decision boundaries found by the Bayes optimal classifier (often the definition of
optimality), when given sufficient training data. More importantly, it is possible to alter the
decision boundaries on-line, thus, making the PNN suitable for incremental learning and
real-time applications.

The key feature of the PNN is its ability to estimate the required probability density
functions (pdfs) by using “Parzen windows” (Parzen, 1962) based on the data samples, i.e.,
a non-parametric density estimation procedure. Let x,,...,x, denote a sequence of samples
of a one-dimensional, statistically independent random variable with unknown pdf, f(x).
Parzen (1962) showed that f (x) can be estimated from the samples as:

f=13 k=% ®)

nia A

i=]

where K(.) is a kernel estimator centred on each sample and A, is a smoothing parameter
that depends on the sample size, n. Several constraints have to be satisfied for the
estimation to asymptotically approach the true underlying function (Parzen, 1962; Specht,
1990). Cacoullos (1966) further extended Parzen’s results to cover multi-dimensional

cases. Assuming that Gaussian kernel functions are chosen, the multivariate estimate for a
sequence of M-dimensional vector random variables, x,,...,x,, can be expressed as:

1 : (x=x,) (x=x,)

where O is the smoothing parameter of the kernel function.

(Figure 2 The PNN architecture)

The PNN realises the pdf estimator in a feedforward neural network architecture.
Figure 2 depicts a schematic diagram of the PNN network for binary classification. It
consists of four layers of nodes, namely input layer, pattern layer, summation layer and
output layer. The input layer receives an M-dimensional vector, X, and distributes it to all
the nodes in the pattern layer. The nodes in the pattern layer are divided into different
categories depending on their output classes. These nodes perform a non-linear
(exponential) ransformation on dot-product as:

Z,=x-W, (10)

; 2

21, an
(0]

where g(z;) and w, are the activation function and weight vector of pattern node i. If x

8(z,)=exp(

(x—w,.)'(x—w,.)\

and w, are normalised to unit length, g(z,) is equivalent to cx;{— which

is the same form as the exponental part in equation (9).

The summation nodes sum the activation levels of the pattern nodes corresponding
to each class. To implement the Bayes decision criterion, the posterior probability,
p(C,|x), can be computed according to:

p(Cylx) = p(xIC,) p(C)(C,IC)) (12)
where the class pdf, p(xIC,), is weighted by the prior probability, p(C .), and the risk or
loss factor, I(C, IC,) (the risk of choosing C, when C, is the actual class, j # k), and

assuming that the probability that x occurs is unity. While the prior probabilities can be
estimated from the relative frequency of data samples used, the loss factors have to be
determined beforehand to reflect the significance of incorrect decisions. The output node
then selects te maximum a posteriori (MAP) probability to give a prediction of the target
class. On the other hand, in a risk-weighted classification, one can assign different loss
factors to each of the incorrect decisions to reflect the significance of misclassifications. In
this case, the minimum-risk class computed by the Bayes rule is selected as the predicted
target category (Melsa and Cohn, 1978).

Training the PNN is accomplished by generating a pattern node, connecting it to the
summation node of the target category and assigning the input vector as the weight vector.
Note that in addition to Gaussian kernel estimators, many alternative forms of kernel
functions have been described by Specht (1990, 1992), such as the Euclidean distance, the
“city-block” distance and the dot-product function which accommodates input vectors of
varying lengths. Although the training procedure is very rapid and non-iterative, the
number of pattern nodes required is the same as the number of training samples. While this
is not an issue for small training sets, it will result in an explosive number of pattern nodes if

large or unbounded data sets are employed. Besides, the storage requirement and
computational burden increase corresponding to the size of the data sets.

3 A Hybrid Network—Probabilistic Fuzzy ARTMAP (PFAM)
By inspecting Figures 1 and 2, it is clear that there is a close similarity in the network
structure between FAM and PNN. The F, and F3, layers of FAM correspond to the input
and pattern layers of PNN, respectively, whereas the map field layer, F,s, corresponds to the
summation layer. In essence, in one-from-N classifications, each node in F3, is permanently
associated with only one node in F, via the map field weights. This is then linked to the
target output in F,. Thus, the F,, nodes can be used to sum outputs from all the F, nodes
connected to a particular target category, taking the role of the summation nodes in the
PNN. Itis this observation of the structural correspondence between the two networks
which provides the basis for the proposed architecture.

A drawback of the PNN is the need to recruit a new pattern node for every input
vector. As suggested in the literature (Burrascano, 1991; Specht, 1992; Musavi ez al.,
1992a, 1993), this problem can be alleviated by using a clustering technique to reduce the
number of pattern nodes required. The idea is to find a set of reference vectors, or
prototypes, to represent sets of samples clustered in the input space. Instead of using all the
input samples, the prototypes are used to situate the kernel functions. Consequently, the
storage and computational burdens can be lightened while the ability to estimate the pdfs is
maintained.

In general, ART networks implement a learning paradigm similar to the sequential
leader clustering algorithm (Hartigan, 1975). This algorithm selects the first input pattern
as the prototype of the first cluster. The next pattern is compared to the first prototype
against a threshold of a similarity measure. If this criterion is not satisfied, a new cluster is
established, where the input pattern is assigned as the new cluster prototype. This
algorithm enables the number of clusters to grow with time to accommodate new input
patierns sequentially. In view of the suitability of the learning algorithm and the similarity
of the network structure, FAM provides a platform whereupon the PNN and FAM
networks can be integrated. As a result, we propose a Probabilistic Fuzzy ARTMAP
(PFAM) network for on-line applications, which operates in two phases. In the learning
phase, FAM is utilised as the underlying, supervised, clustering algorithm to categorise
similar input samples into clusters and the F2, nodes are used to code the prototype
samples. Subsequently, in the prediction phase, the PNN is utilised to perform probability
estimation of the input vectors in relation to different output classes. Bayes’ decision
theorem may then be applied to select the maximum a posteriori output, or to implement
some risk-weighted classification rules. Nevertheless, some modifications are essential so
that the hybrid network can achieve better performance. The following section presents the
necessary alterations and explains the rationale behind the procedures. It should be noted
that Carpenter er al. (1993a) have examined the capabilities of FAM in probability
estimation with various learning modes for the two noisy, nested spirals problem. However
our work here investigates the integration of FAM and PNN for on-line learning and
prediction tasks where the Parzen-window technique is applied for probability estimation.

2

3.1 Map Field Activity
In FAM, only one of the elements of the map field weight vectors, w,,_;, j=1,...,N,, has

unit value which in turn indicates the link between category prototypes in F, to their
outputs in F;,. However, in order to accommodate clustering, the connections between the
pattern nodes and the summation nodes have to be increased correspondingly (Specht,
1992). Thus, if the jth F2. node successfully predicts and classifies an input pattern, the link
should be incremented by one. Then, the kernel activation can be weighted by w,,_; to

represent the strength of each prototype. Besides, summing w,,_; provides useful

information on the prior class probabilities. In order to implement the above modifications,
the STM vector, x,,, in equation (5) is replaced by:

X, =Y, A e 2 (13)
'“"&—Ji
during map field prediction and the vigilance test, and assume that both ART, and ART), are
active. Once the prediction is confirmed, the map field weight vector is updated according
to:

W SW, $X, (14)
In addition, the frequency of data samples from each category can be calculated according
to:

N,
S, = de,_ﬁ (15)
Stoat = 3.5, (16)

k=]
Therefore, the prior probabilities of each of the categories can be estimated from the ratio of
equations (15) and (16), i.e.:

a7

3.2 Centre Estimation
The weight vectors in FAM do not reflect the centres, or means, of the input clusters
represented by the F, nodes. As the algorithm utilises the fuzzy MIN operator in its
learning rule in equation (6), the weight vector is a monotonically decreasing quantity and
settles at the lower bound of the input vector or the weight vector (A A w,__;). In
complement coding, the category boundaries have a hyper-rectangular shape where the
lower vertices are represented by the weight vectors while the upper vertices are
represented by the complement-coded part. The size of these hyper-rectangles grows with
time but is governed by p, (Carpenter er al., 1991a, 1992). Figure 3 shows some of the
possible category formations by the weight vectors.

(Figure 3 Category formation by complement-coded input vectors)

In PFAM, the weight vectors are suitable for fuzzy operations in the learning phase.
However, during the prediction phase, since the weight vectors do not encode the proper
locations of the cluster centroids in the input space, the accuracy of the pdfs approximated
by the kernel functions may be affected. To obviate this shortcoming, the use of the
Kohonen self-organising feature map learning algorithm (Kohonen, 1989) is proposed as

this method has been demonstrated to possess the ability to form “code-book” reference
prototypes in vector quantisation.

A new set of weight vectors is introduced from F, to F;, in PFAM and is called the
kernel centre weight vectors,

W B W W) j=1..N, (18)

a=)
During the learning phase, the original weight vector (hereafter referred to as category
weight vector) of the Jth F, winning node is adaptively modified using equation (6),
whereas its kernel centre weight vector is updated according to the Kohonen rule:
was ™ = w0 +n@(A-wi5) (19)
where 11 (¢) is a monotonically decreasing scalar learning rate. These kemnel centre vectors
will be used in the prediction phase for the kernel functions to construct the pdfs.

3.3 Width Estimation

The widths or variances of the kernel functions play an important role in the Parzen-window
probability estimation. They define the influence of receptive fields interpolated by the
kemnel functions from the centres and, hence, regulate the smoothness of the pdfs. In the
PNN, a general smoothing parameter, G, is used for all the kernels, which means that all the
Gaussian kemnels have the same covariance matrix, Z;; the covariance matrix is diagonal,
and the eigenvalues are equal such that £, = ¢l . In classification tasks, since it is essential

for the kernel functions to maintain the local properties of the input space, the above
assumptions may not yield optimal performance (Musavi e al., 1992a, 1992b).

Musavi er al. (1992a, 1992b, 1993) propose that the Gram-Schmidt
orthogonalisation technique can be used to estimate the widths of Gaussian kernel
functions. The idea is to find the widths such that the amount of overlapping of kemnel
functions from distinct classes is minimised so that local neighbourhoods are preserved. In
general, a Gaussian kernel function can be described as:

)
¢(nx—c,-")=-—:——xexp(-l(x-€.)'zf](x—c.-)i (20)
2r) %z . /
where M is the dimension of the input space, x is the input vector, I, and ¢, are the
covariance matrix and cluster centre of the ith kernel respectively. The parameter that
needs to be estimated is the covariance matrix. In a multi-dimensional space, the loci of
points of constant density, i.e. the constant potential surfaces, as defined by equating
equation (20) to a constant, are hyper-ellipsoids. The eigenvectors of I, define their
principle axes whereas the square-root of the corresponding eigenvalues define the lengths
of the principle axes. While kernels from the same category are allowed to overlap, it is
crucial to separate kernels from distinct categories in order to avoid any significant
overlapping, thus generalising the capability of the network to discriminate distinct classes.

One solution is to constraint the extension of kernels from the centres to the M
nearest samples of other classes. The Gram-Schmidt orthogonalisation method can be used
to construct X, by finding the M nearest distinct neighbour. First, the covariance matrix for
the ith kernel is decomposed as:

I =0A0 (21)

11

where the diagonal entries of A, contain the eigenvalues of Z,, and the columns of Q,
contain its eigenvectors. Then, the eigenvectors and eigenvalues are determined from the
following procedure. The first normalised axis can be formed by setting (Musavi et al.,
1992a, 1993)

y =x -¢, el:“i_lll (22)
1

where x, is the nearest sample from other classes and ¢, is the centre of the ith kernel.

Note that ||y, | and e, constitute the first eigenvalue and normalised eigenvector

respectively. The second axis is formed by searching the next nearest sample of other
classes that satisfies two conditions: it has the shortest normal to e, and its projection to e,

has to be less than [|y,| . In general, for M-dimensional input space, the M axes can be
obtained by using equations (22) and (23):

Jj=1

yi=(x;—e)- Y e(x,~cle, j=2,..M (23)

k=1
For all the (J-1) eigenvectors, the following projection criterion has to be met:

les(x; el <y k=1...j-1 (24)
Once the eigenvalues and eigenvectors are found, Z, can be constructed subject to certain
constraints. The details of this procedure is explained in Musavi er al. (1992a, 1993).

The above approac: employs a vector of smoothing parameters to adjust the
window width of each kerne! function. However, the storage requirement increases
significantly compared with using a general smoothing parameter in the PNN, i.e. each
prototype vector requires M> memory locations to store the covariance matrix. Besides,
the algorithm is significantly more complex and demands more computational time. We
have also found that the approach can sometimes result in an ill-conditioned covariance
matrix especially when there are many centres from distinct classes clustered together in a
small region of the input space. The constraint on the input vectors to be in the range of 0
to 1 further aggravates the situation. This phenomenon is described in Musavi er al (1992a)
as “‘conservativeness in meshed clusters” where small widths are formed to prevent large
overlapping. One way out of this problem, as proposed in Musavi er al. (1992a), is to set
the eigenvalue as:

el -
F

where x ; is the farthest neighbour of other classes from the centre ¢,and is an

“overlapping parameter”. Equation (25) yields an enclosing hypersphere around each
prototype centre, instead of a hyper-ellipsoid using the Gram-Schmidt orthogonalisation
procedure. It provides a solution to preserving local neighbourhoods and, at the same time,
reduces the computational and storage requirements. Note that to achieve 50% of the
maximum value of a Gaussian function, one can assign r = 2In{ , where 1< £ <2 (Musavi

etal., 1992a). Another method of choosing r is to define the probability density enclosed
by the hypersphere so that overlapping of neighbouring kernels can be controlled. As
proposed in Musavi er al. (19922, 1993), a transformation process has to be performed to
evaluate the Gaussian function in order to obtain the value of r. According to equation
(25), a different scalar smoothing parameter (instead of a vector) is used for each kernel,
i

12

o=l (26)
where 62 = A.. Equation (20) is thus reduced to
1 (x-c) (x=c,))
—elh=———exp - : | 27
e S @)

where calculation of the determinant and inversion of the covariance matrix can be avoided.

Since PFAM operates in on-line settings, the kernel functions have to be re-
evaluated whenever a new sample is learned by the network. This is to ensure that the pdfs
constructed can best discriminate the input samples based on the current knowledge in the
network. Consequently, to reduce the computational burden and to increase the speed of
response in real-time applications, equation (27) is adopted. In addition, the local
properties of individual clusters is still maintained to increase the generalisation of the
network. Thus, a trade-off between generalisation and computational as well as storage
overhead is achieved.

3.4 Fuzzification and Defuzzification

To combat the category proliferation problem, complement-coding is recommended and
widely used in FAM. In fact, the problem is avoided as long as the size of the input vector
is kept constant (Carpenter er al., 1991a, 1992), i.e. fory >0,

M
al=Y]Al=v (28)

i=]
However, normalised vectors can sometimes obscure some crucial informaton, for
example, co-linear vectors will become indistinguishable after normalisation (Wasserman,
1993). In practical applications, it is not unusual to encounter situations involving a few
tens or even hundreds of features coded as an input vector. With complement-coding, the
input space is doubled in size. In the context of density estimation, substantially more data
samples are required to approximate high-dimensional pdfs accurately, and in fact increase
in dimensionality often causes the estimation procedure to become intractable (Duda and
Hart, 1973; Silverman, 1986). For example, in an experiment to approximate a standard
multivariate Gaussian function using Gaussian kernel functions at the origin of a multi-
dimensional space, in order for the relative mean-square-error of both the actual and
estimated functions to fall below 0.1, one would require 4 data samples in 1 dimension, 19
data samples in 2 dimensions and 842,000 data samples in 10 dimensions (Silverman, 1986).
It is, therefore, obvious that dimensionality can lead to severe difficulties in probability
estimation in high-dimensional space.

Since FAM is developed based on the concept of fuzzy set theory, it thus motivates
us to use fuzzy representation of features. In general, fuzzy set theory is developed as a
means to represent and utilise uncertain information that is usually expressed in linguistic
terms. To date, researchers have investigated the possibilities of incorporating neural
networks and fuzzy logic into hybrid systems (Nie and Linkens, 1992; Lin, 1994; Wang,
1994). The aim is to automate and realise the integration of low-level learning ability of
neural networks and the high-level, human-like expression and reasoning ability of fuzzy
logic systems. FAM is an implementation of such system. Therefore, we propose to
incorporate the fuzzification and defuzzification procedures into PFAM. The advantages of
this approach are two-fold: the fuzzification process enables fuzzy representation of crisp
features for classification during the learning phase; whereas the defuzzificaton process

13

allows the input space to be maintained for probability estimation during the prediction
phase.

3.4.1 Fuzzification

A crisp set is a representation of variables whose membership function only takes two
values {0,1}). A fuzzy set, however, is a generalisation of a crisp set where the membership
function can take on any value from 0 to 1. Let Y be a collection of features, for example
Y = R", and be called the universe of discourse. A fuzzy set F in Y is characterised by a
membership function m, :Y — [0,1], wherem, (y) represents the grade or degree of
membership of y € ¥ in the fuzzy set F.

(Figure 4 Fuzzy rembership functions)
Figure 4 depicts three membership functions of fuzzy set, namely “small”, “medium” and
“large”. The process of fuzzification performs a mapping from a crisp point into the
membership functons, each containing different degree of membership in the interval [0,1].
For an m-dimensional input vector, A = (a,,...,a,,) , fuzzification transforms the element in
each dimension into a point in an i-dimensional unit hypercube, I* =[0,1)’. In the above
example, where i = 3, the input vector is decomposed into a 3m-dimensional membership
vector, i.e.

A=[m,.,(a).m q4.(a), M iarge (@))seees My (@)M (8, Miarge (a,)] (29)

It should be noted that in this case, the number of nodes in F,, increases
proportional to the number of fuzzy partitions, i.e. M, = 3m. However, the size of the
input vector should be kept constant in agreement with equation (28). Thus, the total value
of all the membership functions is constrained by Z’". (y) =Y, Vi,Vy, where i denotes the
fuzzy set, “small”, “medium” or “large”, and y denotes the element of input vector,
a;,j=1,..,m. During leamning, the membership vector is presented to the network for it to
self-organise into different recognition categories, and is encoded in the F,, nodes according
to the algorithm of the learning phase. The category weight vectors, w,, determine the
category formation whereas the kernel centre weight vectors, wf , Store the centroids of the
membership functions.

(Figure 5 Fuzzy centroid defuzzification)
3.4.2 Defuzzification
As mentioned in section 3.2, wX encodes the centroid of each prototypical category of F,.
to situate the kernel function. However, with fuzzification, the input space increases in size
linearly with the fuzzy partition used to represent the input vector in F,,. This presents a
problem for the accurate approximation of the pdfs, as described at the beginning of this
section. Thus, to avoid the increase in dimensionality, defuzzification of w* is carried out
to restore the membership vector in F,, into a new set of kernel centre vectors confined to
lie within the universe of discourse, in F,. These are called the defuzzified kernel centres,
d;;=),,...d¥,) j=1..,N,. During the prediction phase, the defuzzified kerel
centre and the input vector are transmitted from Fy, to F;, directly, to perform the kernel
estimation, bypassing the F, layer.

There are two commonly used defuzzification schemes, namely maximum-
membership defuzzification and fuzzy centroid defuzzification (Kosko, 1992). The former

method selects the maximal membership of the fuzzy sets used, i.c. max(m, (y)),Vi . This is

not suitable for the kernel estimator as it does not reflect the cluster centroid. As a result,
the latter method is adopted. The fuzzy centroid defuzzification scheme computes the
centre of mass of the fuzzy seti, i.e.:

[ym,)y
¢, =5
[may

where the limits of integration correspond to the range of the fuzzy set i in the universe of
discourse. To obtain the scalar centroid from three combined fuzzy sets of “small”,
“medium” and “large”, the following equation can be used (Kosko, 1992):

) =Zws'ci]; Vi
ZWJIJ

where I, = _[m,(y)dy and c, are from equation (30) and w, represents a user-selected

(30)

1%

(31)

weighting parameter. Here, w, = 1,Vi. Figure 6 depicts a defuzzified centroid output from
three fuzzy membership functions. The defuzzified centroids constitute a prototype vector
1o situate the kernel function for pdf estimation, i.e. for the jth F2, node, the defuzzified
kemnel centre vector is

di.=v, k=L..M,

It should be noted that the fuzzification and defuzzification procedures are an
alternative to employing a purely fuzzy representation of input features for classification, in
order to exploit the potential of FAM thoroughly, as well as to preserve dimensionality for
probability estimation. If these procedures are excluded, then wX, instead of d, can be

used as centroids for the kernel estimator to approximate the pdfs.

(Figure 6 The PFAM architecture)
3.5 Summary of the algorithm
Figure 6 illustrates the network structures of PFAM to realise the hybrid utlisation of FAM
and PNN in two different phases. The entire algorithm of the proposed PFAM for on-line
learning and probability estimation is as follows:

Learning Phase:

(i) Fuzzify the input vector from Fo, t0 Fia

(i) Feed forward the fuzzified vector from F, to F3, via w,, compute the match function
as in equation (3), then select the winning node (denoted as node J)

(iii) Feed back the prototype of the winning node from F3, to F, and perform the
vigilance test as in equation (4)

(iv) If the vigilance test fails, trigger the search cycle and go to step (ii).
Else go to step (V)

(The above cycle goes on in ART, simultaneously)

(v) Send a prediction from F, to Fa and perform the map field vigilance test as in
equation (5)

15

(vi) If the map field vigilance test fails, rigger match-tracking and go to step (ii)
Else go to step (vii)

(vii) Learning: update the LTMs w,_,, w_,_, and w_ ,, according to equations (6), (14)
and (19); update the LTM of the winning node in ART, according to (6)

Prediction Phase:
(i) Register the input vector at Fo,, defuzzify w) ;,j=1,...,N, to obtain the defuzzified

kernel centre vectors, d, ;,j=1,...,N,, and send to Fy,

(i) Feed forward the input and defuzzified centres from Fj, to the kerne! functions in F,,
bypassing the F;, layer

(iii) Compute the width estimation and the kernel functions as in equations (25) and (27)

(iv) Sum the kernel estimates from F;,, weighted by w_, , to the corresponding categories
in the map field to obtain the pdfs

(v) Compute the posterior probabilities for each category p(C,lx) according to equation
(12).

(vi) Select the maximum a posteriori (MAP) or the minimum-risk estimate according to
the Bayes rule and predict the target output in ART,

Note that equation (7) should be taken into consideration in PFAM to implement
one-to-many mappings, especially when dealing with binary input vectors. The fuzzification
and defuzzification steps are optional operations depending on the nature of the problem in
hand.

4 Simulation Studies

4.1 Statistical Pattern Classification

To evaluate the capabilities and effectiveness of PFAM, the experiment on separation of
two Gaussian sources has been selected. Kohonen et al. (1988) formulated this experiment
as a benchmark study for statistical pattern recognition with neural networks. The
difficulties of the experiment are three-fold, namely large overlapping of the class
distributions, high degree of non-linearity in the decision boundaries and high dimensionality
of the input space. In their demonstration, two classes of Gaussian variables are generated,
where classes C, and C, are represented by multivariate normal distributions with mean
vectors, W, = (0,...,0) and p, =(£,0,...,0). The variances of C, and C, are set equal to 1
and 4 respectively for all dimensions. Then, two sets of simulations, with { = 2.32 (“easy
task”) and { =0 (“hard task™), were performed and the input dimension was increased
from 2 to 8. Several networks, such as the MLP with back-propagation learning (BP), the
Boltzmann machine (BM) and learning vector quantisation (LVQ), have been used and their
results compared with the theoretical (Bayes) limits (Kohonen ez al., 1988).

In our demonstration, we have selected the “hard task™ with 8-dimensional input
samples as this represents a benchmark experiment in high dimension for statistical
classification problems. The same experiment has been reported by Musavi er al. (1993),
using a minimum error neural network (MNN), a PNN-like network structure with
implementation of the Gram-Schrmidt orthogonalisation, where the performance is
compared with that of the PNN. Throughout the simulations, both ART, and ART, operate

S T

16

in conservative and fast-learning mode, i.e. @, =, =0.001,and B, = B, =10. The

respective vigilance parameters are p, =03, p, =10, p,, =10. The overlapping
parameter used in the prediction phase is set to 0.8. All the simulations employ a single-
epoch, on-line learning approach with the operational cycle proceeds as follows: an input
sample is first presented to ART, with its target output to ART,. Then, a prediction is sent
to ART, according to the algorithm of the prediction phase. The prediction is confirmed
with the answer in ART,, thus producing a classification result. Learning ensues to
associate the input sample with its target output according to the algorithm of the learning
phase.

Classification performance is assessed with a 1000-sample window to calculate the
on-line results, e.g. the accuracy at sample 2000 is the percentage of correct predictions
from trials 1001-2000. In all the simulations, a data set of 10000 input samples, i.e. 5000
samples for each class, are generated and the results are averages of 5 independent runs. It
should be noted that in a stochastic process, a single time history characterising a random
phenomenon is referred to as a single realisation. Each realisation represents only one of
the many possible outcomes that may have occurred. Thus, to make a general statement
about performance, averages must be taken across the ensemble, which should ideally be an
infinite set of realisations. In addition, even though the problem under scrutiny may itself be
stationary, the on-line predicted outcomes form a non-stationary process owing to the
build-up of templates, especially in the early stages of classification (the so-called finite-
operating-time problem). Nevertheless, we have empirically demonstrated that the
windowed time average result is able consistently to approach the ensemble result and lie
mostly within its 95% confidence interval (Lim and Harrison, 1994, 1995). During the
simulations, the input vectors are fuzzified to three membership functions, as described in
section 3.4.1, before they are presented to the PFAM network. As for FAM, the input
vectors are first scaled between 0 and 1, and then complement-coded in the F, layer.

4.1.1 Results
(Table 1 Comparison of performance with various networks)

Table 1 illustrates a performance comparison of various networks, such as BP, BM2
(Boltzmann machine with binary-coded input vectors), LVQ (Kohonen et al., 1988), MNN
and PNN (Musavi er al., 1993), as well as the results of FAM and PFAM from our
simulations. All the networks, except FAM and PFAM, employed the off-line training
method with different network configurations. The results of MNN and PNN in Musavi et
al. (1993) used different training set sizes, but we tabulate the 300-sample case as it shows
the best performance. They also mentioned that the performance of PNN could be
improved by fine-tuning its smoothing parameter and an error-rate of 22% was achieved by
Specht (Musavi er al., 1993).

From Table 1, BM2 shows the best result, where the input range was divided into
20 subranges in each dimension and encoded with a binary coding scheme. As described by
Kohonen er al. (1988), this is a “brute-force” approach and requires a massive network
configuration and processing time. The performance of LVQ and MNN is comparatively
equal, but is slightly inferior to that of PFAM. Likewise, PNN and FAM have similar error
rates, whereas BP gives a better result compared to that of the two networks.

17

(Figure 7 On-line results of the Gaussian sources separation simulations)

Figure 7 depicts a comparison of on-line performance between FAM and PFAM.
The results are an average of 5 runs where the standard deviations are represented by error
bars. Although the standard deviations are estimated from a small sample size, it serves as
an indication of the extent in which the results tend to vary. In general, PFAM shows an
improvement in accuracy as the number of input samples increases and it asymptotically
approximates the Bayes limits. Besides, the dispersion of the standard deviation becomes
smaller with increasing number of samples. It can be seen that PFAM outperforms FAM,
with a difference of 15% at the end of the experiments. However, PFAM also creates
substantially more committed F,, nodes than FAM, wit: a total of 293 and 88 nodes
respectively. This may be due to the increase in dimension after the fuzzification process.
Since the number of committed nodes represents “knowiedge” stored in the network, in
order to “fairly” compare the performance of both networks, additional experiments were
conducted with a higher value of the vigilance parameter so that more prototypes can be
established by FAM. By increasing p, of FAM from 0.3 to 0.69, the two networks have a
similar number of F2, nodes throughout the experiments as depicted in Figure 7.
Nevertheless, despite having an equivalent number of prototypes, there was no significant
improvement in the performance of FAM.

4.2 Waveform Recognition

The waveform recognition task is introduced by Breiman er al. (1984) and is extensively
evaluated with the decision tree classifiers advocated in their book, Classification and
Regression Trees (CART). This domain is selected because it represents a high-dimensional
task in a noisy environment, and it has also been recognised as a “difficult concept to learn”
(Murphy and Aha, 1995). It is a three-class problem based on three triangular waveforms,
w, (1), w, (1) and w,(r). These waveforms are represented by 21-dimensional measurement

vectors, x = (Jc1 ,...,xu), with random noise added. Each class is a combination of two base

waveforms as depicted in Figure 8. To obtain a measurement vector, a uniformly
distributed random variable, u, and 21 normally distributed random variables with mean 0
and variance 1, €,,...,€,,, are generated. Class 1 waveforms are represented by (Breiman er
al., 1984, pp. 49-55):

Class 1 X, =uw @O +(A-wWw,)+, i=1,..,21

Similarly, waveforms of classes 2 and 3 can be generated with the above procedure, i.e.:
Class 2 X, = pw () +(1-wWw,(H+g,, i=1,.,21
Class 3 x, = pw,)+ (1= pw)w (i) +g,, i=1,.21

Another version of the recognition task is to add the waveform data with an
additional 19 noise variables. Hence, the input dimension is increased to 40, with the last 19
elements being normally distributed random numbers with mean 0 and variance 1. An
analytic expression can be derived for the Bayes rule to yield an error rate of 0.14 (Breiman
et al., 1984). The two waveform generation programmes are obtained from the UCI
repository of machine learning databases and domain theories (Murphy and Aha, 1995).

The performance of CART and the Nearest Neighbour (NN) classifiers are assessed
with off-line experiments, namely using a training set of 300 samples and a test set of 5000
samples. In our simulatons, we employ the on-line learning approach (as described in
section 3.1) with 5000 samples. The samples are generated with equal prior class

18

probabilities. Likewise, a window of 1000-samples is used to calculate the on-line
classification accuracy. Both FAM and PFAM operate in conservative, fast-learning mode
with the baseline vigilance parameter, p,, set to 0.25 and the overlapping parameter of
PFAM set to 5.0. The input vectors are fuzzified for PFAM and are scaled between 0 and 1
and complement-coded for FAM.

4.2.1 Results
(Table 2 Comparison of performance with NN and CART)

The misclassification rates of CART and NN classifiers (Breiman ez al., 1984, pp.
168-171), as well as the on-line results (average of 5 runs) of FAM and PFAM at the end of
the 5000-samples presentation, are presented in Table 2. Although the performance of the
NN classifier is good with waveform data, the addition of noise significantly deteriorates its
classification ability. The performance of the other three systems is little affected by the
presence of noise. By using a higher value of p,, FAM was able to achieve the same results
as that of CART. Overall, PFAM yielded the best approximation to the Bayes limits in both
waveform and waveform-plus-noise simulations. Furthermore, it should be noted that the
number of committed nodes (prototypes) created by both FAM and PFAM was less than
that used in training both NN and CART, i.e. 300 samples. In the waveform simulations,
there were an average of 74 and 31 committed F, nodes in PFAM and FAM; while in the
waveform-plus-noise simulations, the average number of F», nodes were 102 and 29
respectively.

(Figures 9 and 10 Results of the waveform and waveform-plus-noise simulations)

Figures 9 and 10 compare the performance of FAM and PFAM. The average
accuracies and number of F, nodes resulted from 5 runs were plotted against increasing
number of input samples, along with some indications of the standard deviation shown as
error bars. The performance of FAM and PFAM is quite consistent with or without added
noise. In general, PFAM demonstrated significant improvements in classification accuracy
compared to FAM and achieved a closer proximity to the Bayes limits for the two data sets.
Again, FAM created less number of F3, nodes than PFAM for equal value of the vigilance
parameter. Raising the vigilance parameter of FAM from 0.1 to 0.66 (waveform) and from
0.1 to 0.56 (waveform-plus-noise) resulted in an increase in the number of committed nodes
to a number close to that for PFAM, as shown in Figures 9 and 10. Nevertheless, the
improvements in accuracy were only 4% and 5% respectively at the end of the simulations.
In both cases, FAM performance fell below that of PFAM by 10% and 12% respectively.

5 Summary and Conclusions

A promising approach is proposed which exploits both the advantages of neural networks
and those of fuzzy logic systems is to integrate them onto a unified platform, such that the
low-level learning ability of neural networks and the high-level, human-like expression and
reasoning ability of fuzzy logic systems can be thoroughly incorporated. In fact, this is
implemented in the FAM architecture in which a synthesis of neural information processing
and fuzzy set theory is realised. However, in the statistical classification domain, the
prediction of FAM could not provide an estimate of probabilities of the target categories.
Therefore, the PNN paradigm is utilised to compensate for the deterministic characteristics
of the predictions from FAM.

19

In view of the suitability of the learning methodologies and the similarity of network
connections, we have integrated both FAM and the PNN to form a new hybrid network for
on-line applications. The PFAM network incorporates the benefits of FAM and the PNN
and, at the same time, alleviates the drawbacks of both the networks. It offers an
autonomous learning system for general classification and probability estimation tasks. The
autonomy leads the network continuously to achieve better performance with time,
analogous to human learning behaviour in natural environments. The advantages of PFAM
lie in its autonomous leaming and probability estimation abilities. On one hand, the network
is able to adapt to changes in the environment by self-growing and self-organising the
incoming patterns sequentially. It, therefore, eliminates (i) the need to specify a static
network size a priori since it is capable of establishing a good network configuration
incrementally, and (ii) the re-training problem when the environment is non-stationary. On
the other hand, PFAM is also capable of adaptively formulating complex non-linear decision
boundaries that asymptotically approach the Bayes optimal on-line, in non-stationary
environments. In addition, the probabilistic predictions from PFAM enable the application
of the Bayes decision criterion to select the maximum a posteriori decision or to implement
some risk-weighted classifications in order to minimise the overall misclassification
overhead.

To optimise the performance of PFAM, several modifications have been proposed to
integrate both FAM and the PNN efficiently and to enhance the generalisation capability of
the hybrid system. These include procedures for centre and width estimation. The
Kohonen learning algorithm is employed to fine-tune the prototypes for them to home-in to
the centroids of the category clusters formed by the FAM algorithm. The width estimation
procedure controls the overlapping of kernel functions using the nearest sample of other
classes in order to preserve local neighbourhoods of distinct clusters. In addition,
fuzzification of input patterns is proposed to allow fuzzy representation of features, thus
exploiting the full potential of FAM. Then, the defuzzification process allows PFAM to
maintain dimensionality in probability estimation using the Parzen-window approach.

To evaluate the capabilities of PFAM, several benchmark classification tasks in high-
dimensional, noisy environments have been conducted.. The first experiment assesses the
performance of PFAM using two densely overlapping Gaussian sources. Comparing
performances of various networks, PEAM produces a better result in handling this task, as
tabulated in Table 1. However, it should be noted that PFAM leamns on-line with only one
pass through the data and requiring little in the way of architectural desi gn. In addition,
according to the Parzen-window theorem, the estimated probability functions would more
precisely converge to the actual underlying function when a larger sample size is provided.
PFAM empirically exhibits this property where its performance is able to approach the
Bayes optimal classification rates as the prototype samples increase.

In the second experiment, the waveform simulations posed an evaluation in a high
dimensional, noisy environment. The results obtained are comparable to other approaches
like the nearest neighbour and tree classifiers, although requiring less computation and
lower network complexity. As expected, the increase in dimension in the waveform-plus-
noise simulations by adding noise to the waveform data results in a larger network
configuration. Nevertheless, the network still maintains performance levels even under
noisy conditions.

20

From the simulation studies, convincing results have been obtained. These results
indicate empirically that the hybrid structure of PFAM is suitable for on-line classification
and probability estimation tasks. Owing to PEAM’s autonomously learning capability, the
network is able to learn the incoming patterns incrementally and continuously, rather than
by being trained on a fixed set of samples, thus it might be expected to approach theoretical
classification limits as time goes on.

References

Asfour, R.Y., Carpenter, G.A., Grossberg, S., Lesher, G. W. (1993a). Fusion ARTMAP: A
Neural Network Architecture for Multi-channel Data Fusion and Classification. Proc.
of World Congress on Neural Networks, Vol. 11, pp 210-215.

Asfour, R.Y., Carpenter, G.A., Grossberg, S., Lesher, G. W. (1993b). Fusion ARTMAP:
An Adaptive Fuzzy Network for Multi-channel Classification. Proc. of the third Int.
Conf. on Industrial Fuzzy Control and Intelligent Systems, pp 155-160.

Bounds, D.G., Lloyd, P.J., Mathew, B.G. (1990), A Comparison of Neural Network and
Other Pattern Recognition Approaches to the Diagnosis of Low Back Disorders.
Neural Networks, 3(5), pp 583-592.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classificarion and
Regression Trees. Belmont: Wadsworth Inc.

Burrascano, P. (1991). Learning Vector Quantization for the Probabilistic Neural Network.
IEEE Trans. on Neural Networks, 2(4), pp 458-461.

Cacoullos, T. (1966). Estimation of a Multivariate Density. Annals of the Institute of
Statistical Mathematrics (Tokyo), 18(2), pp 179-189.

Carpenter, G.A., Grossberg, S. (1987a). A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics and
Image Processing, 37, pp 54-115.

Carpenter, G.A., Grossberg, S. (1987b). ART 2: Stable Self-Organizing of Pattern
Recognition Codes for Analog Input Patterns. Applied Optics, 26, pp 4919-4930.

Carpenter, G.A., Grossberg, S. (1988). The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network. /EEE Computer, 21, pp 77-88.

Carpenter, G.A., Grossberg, S. (1990). ART 3: Hierarchical Search using Chemical
Transmitters in Self-Organizing Pattern Recognition Architectures. Neural Nerworks, 3,
pp 129-152.

2]

Carpenter, G.A., Grossberg, S., Rosen, D.B. (1991a). Fuzzy ART : Fast Stable Learning
and Categorization of Analog Patterns by an Adaptive Resonance System. MNeural
Nerworks, 4, pp 759-771.

Carpenter, G.A., Grossberg, S., Reynolds, J.H. (1991b). ARTMAP: Supervised Real-time
Learning and Classification of Nonstationary Data by a Self-Organizing Neural
Network. Neural Networks, 4, pp 565-588.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B. (1992) Fuzzy
ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of
Analog Multidimensional Maps. IEEE Trans. on Neural Networks, 3(5), pp 698-712.

Carpenter, G.A., Grossberg, S., Reynolds, J.H. (1993a). Fuzzy ARTMAP, Slow Learning
and Probability Estimation. Proc. of World Congress on Neural Nerworks, I, pp 26-
30.

Carpenter, G.A., Ross, W.D. (1993b). ART-EMAP: A Neural Network Architecture for
Leaming and Prediction by Evidence Accumulation. Proc. of World Congress on
Neural Networks, I, pp 649-656.

Chen, S., Mulgrew, B., Grant, P.M. (1993a) A Clustering Technique for Digital
Communications Channel Equalization using Radial Basis Function Networks. JEEE
Trans. on Neural Networks, 4(4), pp 570-590.

Chen, Y. Q., Thomas, D.W., Nixon, M.S. (1993b). Generating-Shrinking Algorithm for
Learning Arbitrary Classification. Newral Networks, 7(9), pp 1477-1489.

Cybenko, G. (1989). Approximation by Superposition of a Si gmoidal Function.
Mathematics of Control, Signals and Systems, 2, pp 303-314.

Duda, R.O., Hart, P.E. (1973). Parern Classification and Scene Analysis. New York:
John Wiley & Sons.

Fritzke, B. (1994). Growing Cell Structures—A Self-organising Network for Unsupervised
and Supervised Learning. Neural Networks, 7(9), pp 1441-1460.

Fu, K.S. (1968). Sequential Methods in Partern Recognition and Machine Learning. New
York: Academic Press

Fujita, O. (1992). Optimization of the Hidden Unit Function in Feedforward Neural
Networks. Neural Networks, 5, pp 755-764.

Girosi, F., Poggio, T. (1990). Networks and the Best Approximation Property. Biological
Cybernerics, 63, pp 169-176.

Gorman, R.P., Sejnowski, T.J. (1988). Learning Classification of Sonar Targets using a
massively parallel network. /EEE Trans. on Acoustics, Speech and Signal Processing,
36(7), pp 1135-1140.

22

Hartigan, J.A. (1975). Clustering Algorithm. New York: John Wiley & Sons.

Kadirkamanathan, V., Niranjan, M. (1993). A Function Approach to Sequential Learning
with Neural Networks. Neural Compuzation, 5(6), pp 954-975.

Kohonen, T., Barna, G., Chrisley, R. (1988). Statistical Pattern Recognition with Neural
Networks: Benchmarking Studies. Proc. IEEE Int. Conf. on Neural Networks, 1, PP-
161-168.

Kohonen, T. (1989). Self-organization and Associative Memory (3rd. Edition). Berlin:
Springer-Verlag.

Kosko, B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs: Prentice-Hall
Inc.

Lim, C.P., Harrison, R.F. (1994). Modified Fuzzy ARTMAP Approaches Bayes Optimal
Classification Rates: An Empirical Demonstration. To appear in Neural Network.

Lim, C.P., Harrison, R.F. (1995). Minimal Error Rate Classification in a Non-stationary
Environment via a Modified Fuzzy ARTMAP network. Proc. of Int. Conf. on Artificial
Neural Nerworks and Genetic Algorithms, pp. 503-506.

Lin, C.T. (1994). Neural Fuzzy Control Systems with Structure and Parameter Learning.
Singapore: World Scientific.

Melsa, J.L., Cohn, D.L. (1978). Decision and Estimation Theory. Tokyo: McGraw-Hill
Kogakusha Ltd.

Moore, B. (1988). ART1 and Pattern Clustering. Proc. of 1988 Connectionist Models
Summer School, pp 174-185.

Murphy, P.M., Aha, D.W. (1995). UCI Repository of Machine Learning Databases,
[Machine-readable Data Repository]. Irvine, CA: University of California, Department
of Information and Computer Science.

Musavi, M.T., Ahmed, W., Chan, K. H., Faris, K.B., Hummels. D.M. (1992a). On the
Training of Radial Basis Function Classifiers. Newral Networks, 5, pp 595-603.

Musavi, M.T., Kalantri, K., Ahmed, W., (1992b). Improving the Performance of
Probabilistic Neural Networks. Proc. IEEE Int. Conf. Neural Networks, 1, PP 595-600.

Musavi, M.T., Kalantri, K., Ahmed, W., Chan, K.H. (1993). A Minimum Error Neural
Network (MNN). Newral Nerworks, 6, pp 397-407.

Nie, J.H., Linkens, D.A. (1992). Neural Network-based Approximate Reasoning:
Principles and Implementation. Inz. Journal of Control, 56(2), pp 399-413.

Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. Annals of
Mathemarical Staristics. 33, pp 1065-1076.

23

Richard, M.D., Lippmann, R.P. (1991). Neural Network Classifiers Estimate Bayesian a
posteriori Probabilities. Neura! Computation, 3, pp 461-483.

Sejnowski, T.J., Rosenberg, C.R. (1987). Parallel Networks that Learn to Pronounce
English Text. Complex Systems, 1, pp 145-168.

Shadafan, R.S., Niranjan, M. (1994). A Dynamic Neural Network Architecture by
Sequential Partitioning of the Input Space. Neural Computation, 6(6), pp 1202-1223.

Sharkey, N. E. and Sharkey, A.J.C. (1994). Understanding Catastrophic Interference in
Neural Nets. Research Report-CS-94-4, Department of Computer Science, University
of Sheffield, UK.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. London:
Chapman and Hall.

Specht, D.F. (1988). Probabilistic Neural Networks for Classification, Mapping or
Associative Memory. Proc. IEEE Int. Conf. Neural Networks, 1, pp 525-532.

Specht, D.F. (1990). Probabilistic Neural Networks. Neural Networks, 3, pp 109-118.

Specht, D.F. (1992). Enhancements to Probabilistic Neural Networks. Proc. IEEE Int.
Conf. Neural Nerworks, 1, pp 761-768.

Wan, E.A. (1990). Neural Network Classification: A Bayesian Interpretation. JEEE Trans.
on Neural Networks, 1(4), pp 303-305.

Wang, L.X. (1994). Adaprive Fuzzy Systems and Control. Englewood Cliffs: Prentice
Hall.

Wasserman, P.D. (1993). Advanced Methods in Neural Computing. New York: Van
Nostrand Reinhold.

White, H. (1989). Learning in Artificial Neural Networks: A Statistical Perspective.
Neural Compuation, 1, pp 425-464.

Zadeh, L. (1965). Fuzzy Sets. Informarion and Control, 8, pp 338-353.

ART,
Target vector

ART,
vigilance

+
Pe

F;QO :'O

Map field

2, gein ponl 5, MAP FIELD ('j
» F .
[Fe O--- O-- Map field \O*

vigilance

=

match
trackmg

Input vector
ART,

Figure 1 A schematic diagram of the Fuzzy ARTMAP (FAM) network.

Predicted Output

Output Node
fa(x) fa(x)

@ @ Summation Nodes
g(z)

Category A Nodes Category B Nodes

@@ @@ ... | Pattern Nodes
Zi = XoW

="
O O O Input Nodes

'[x

Input vector

Figure 2 A schematic diagram of the Probabilistic Neural Network (PNN).

Figure 3 With fast learning and complement coding, the rectangles enclose all the
samples that have activated the corresponding categories without reset, and
the weight vectors are encoded by the vertices of the rectangles.

membership 4
function

[small medium large

universe of discourse

Figure 4 Membership functions for three fuzzy sets, namely “small”, “medium” and
“large”.

membership,
function

nd

universe of discourse

defuzzified centroid output

Figure 5 Defuzzification combines the membership functions to yield a centroid
output in the universe of discourse.

‘uonewinss uonouny Ansuap Lipiqeqoud 105 s103094 adK10101d [RUCISUAWIP- OYUT [[eISUI-aI 0) PayrZZznjop
I sanua9 [y Ay ‘aseyd uondipad sy Suumg "uonEeOYISSEID J0j 103994 diysiaquisw [BUOISUWIP-MIE B OWI PALJIZZNJ ST JOJIIA
ndut reuorsuswirp-w ue ‘aseyd Sujures| oy Suung “pomidu (INVAd) dVINLYY Azzny ansiiqeqold o jo weiSerp onewayds v

9 N3t

aseyq uondipaid (q)

LAV
103294 Induj

aseyq Sururear (e)

LAV
101934 Induj

81, =7
awE-.—MB:uu":
JEws, = ¢

aTaid dVvin F

LAV 0} uo1pipasq

souey3ia
LAV

reusgis
dunyjoen S N,
yorew

oueIdia

[0nuod ured
PRY depy

a1 dVIN
M pleY depy

LAV

Accuracy (%)

Figure 7

100 - — , 300
Bayes limit

250

o=
-
-

e
-

20 cm ms -.-—’_'—___'..,--.
_____ —=""" FAM (p~=0.69) ——— 4 50
10 | ‘_____,.._‘----’” FAM (p=03) ——
il PFAM (p.=0.3) ——
|] 1 |
2000 4000 6000 8000 10000

No. of Input Samples

On-line classification results (with error bars) and growth pattern of F;, nodes
(without error bars) of the Gaussian source separation experiment. Increasing
P, from 0.3 to 0.69 causes an equivalent number of committed nodes in FAM
and PFAM, but the improvement of FAM result is insignificant.

W (I) M"Z(t)

AN I I
T 1 1 1 7

. -

|

1
1 3 5 7 9 11 13 1517 19 21
(a) Class 1

0 —!r T T T 1 S

1 3 5 7 9 11 13 15 17 19 21
(b) Class 2

6

wa(t) wy(1)

0 T] { ! % l I !

1 3 5 7 9 11 13 15 17 19 21
(c) Class 3

Figure 8 Three classes of waveform, each class is a combination of two types.

100 T T T

%0 [~ Bayes limit 1200

Accuracy (%)

No. of F,, Nodes

F e

R) FAM (p=0.66) === 20
i - FAM (p=0.1) ——
PFAM (p~0.1) ——

1000 2000 3000 4000 5000

No. of Input Samples

Figure 9 On-line classification results (with error bars) and growth pattern of F,, nodes
(without error bars) of the waveform experiment. FAM shows an improvement
of 4% in its performance when p, is raised from 0.1 to 0.66, but this is still
10% less accurate than PFAM.

-
B 100
%0 I Bayes limit r-'//t

- S
® e
s !
] i
g ‘s
< &
Z
._.____/__,./--""’ """ T FAM (p=056) ——— {20
i e FAM (p=0.1) ——
PEAM (p.=0.1) ——
1000 2000 3000 4000 5000

No. of Input Samples

Figure 10 On-line classification results (with error bars) and growth pattern of F,, nodes
(without error bars) of the waveform-plus-noise experiment. FAM shows an
improvement of 5% in its performance when p, is raised from 0.1 to 0.56, but
this is still 12% less accurate than PFAM.

Table1 Comparison of performance of various networks in terms of misclassification rates -

expressed in percentages
Bayes BP BM2 LVQ MNN PNN FAM PFAM
Error Rate (Binary)
9.0 18.9 9.4 134 13 25.69/22 249(p,=03) 10

(different o) 228 (p, =0.69)

Table2 Comparison of performance of various classifiers in terms of misclassification rates

expressed in percentages
Data Set Bayes NN CART FAM PFAM
Error Rate
Waveform 14 2 28 32(p,=01) 18
28 (p, =0.66)
Waveform-plus-noise 14 62 28 33(p,=01) 16

28 (p,=0.56)

