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Abstract

This paper presents the development of a simulation environment characterising the
dynamic behaviour of a flexible manipulator system incorporating hub inertia, payload and
4 structural damping. A constrained planar single-link flexible manipulator is considered. A
fourth-order partial differential equation model of the system, obtained through the
utilisation of Lagrange equation and modal expansion method, including a mode frequency
dependent damping term, is considered. A finite-dimensional discrete simulation of the
flexible manipulator system is developed using a finite difference discretisation of the
dynamic equétion of motion. of the manipulator. The algorithm thus developed is
implemented on a digital processor and simulation results verifying the performance of the
algorithm in characterising the dynamic behaviour of the manipulator under various

o loading conditions are presented and discussed.

Key words:  Discrete simulation, distributed parameter systems, finite difference method,

flexible manipulators.
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1 Introduction

Flexible manipulator systems offer several advantages in contrast to the traditional rigid

3 ones. These include faster system response, lower energy consumption, requirin g relatively

smaller actuators, reduced nonlinearity due to elimination of gearing, less overall mass and,

in general, less overall cost. However, due to the distributed nature of the governing

equations describing system dynamics, the control of flexible manipulators has traditionally

involved complex processes (Aubrun, 1980; Balas, 1978; Omatu and Seinfeld, 1986).

Moreover, to compensate for_ flexure' effects and thus yield robust control the design

focuses primarily on nonco]ocatéd -c'bntrollers (Cannon and Schmitz, 1984; Harishima and

Ueshiba, 1986). It is important initially to recognise the flexible nature of the manipulator

and construct a mathemétical model for the system that accounts for the interactions with

actuators and payload. Such a m;)aei can be constructed using partial differential equations.

A A commonly used apbroach for solving a partial differential equation (PDE) representing

the dynamics of a manipulator, sometimes referred to as the separation of variables method,

is to utilise a representation of the PDE, obtained through a simplification process, by a

finite set of ordinary differential equations. Sﬁch a model, however, does not always

represent the fine details of the system (HUéhes, 1987); A method in which the flexible

manipulator is modelled as a massless spring with a lum“ped mass at one end and lumped

rotary inertia at the other end has previously been proposed (Oosting and Dickerson, 1988;

Feliu et al., 1992). Unfortunately, the solution obtained through this method is also not

accurate and suffers from similar problems as in the case of the separation of variables

method The finite element (FE) method has also been previously utilised to describe the

flexible behaviour of manipulators (Usoro et al., 1984; Dado and Soni, 1986){“6 h
¢ co;nputationaj__cor_np,le)gityrand consequent software coding involved in the FE method is a

major disadvantage of this tﬁchnique.:‘;However, as the FE method allows irregularities in ¥
the structure and mixed boundary con.ditio'ns to be handled, the technique is found suitable
m apphcat]ons involving irregular structures. In applications m}fplvmg umform structures,

such as the manipulator system considered here, the ﬁmte chfference (FD) method is found

to be more appropnate Previous simulation studies of ﬂemb]e beam systems have
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dempnstrated the relative simplicity of the FD method (Kourmoulis, 1990). Dynamic
simulation is important from a system design and evaluation viewpoint. It provides a
characterisation of the system in the real sense as well as allows on-line evaluation of
controller designs. An investigation into the dynamic simulation of a flexible manipulator
system is thus presented in this paper using FD methods.

The FD method is used to obtain an efficient numerical method of solving the PDE by
developing a finite-dimensional simulation of the flexible manipulator system through a
discretisation, both, in time and space (distance) coordinates. The al gorithm proposed here
allows the inclusion of distributed actuator and sensor terms in the PDE and modification
of boundary conditions. The development of such an algorithm for a system with no
damping has previously been reported (Tokhi and Azad, 1995). However, not much work
on simulation of flexible manipulators with damping has been done. This paper presents the
development of a simulation environment characterising the behaviour of a single-link
developed is implemented digitally and simulation results verifyingm its “performance in
characterising the behaviour of the system under various loading conditions are presented
and discussed. The simulated system is constructed to provide a suitable platform for

subsequent implementation and verification of various controller designs.

2 The flexible manipulator system

A description of a single-link flexible manipulator system is shown in Figure 1, where
XO0Y and POQ represent the stationary and moving coordinates respectively, 1(t)

represents the applied torque at the hub by a drive motor, M p 18 the payload mass and I,
is the hub inertia. E, I and p represent the Young modulus, second moment of inertia
and mass density per unit length of the manipulator respectively. The gravity effects are
neglected and the motion of the manipulator is confined to the XOY plane.

The flexible manipulator system can be modelled as a pinned-free flexible beam,

incorporating an inertia at the hub and payload mass at the end-point. The model is

(28]
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developed through the utilisation of Lagrange equation and modal expansion method
(Hastings and Book, 1987; Korolov and Chen, 1989). For an angular displacement 6 and

-an elastic deflection u, the total (net) displacement y(x,z) of a point along the manipulator

at a distance x from the hub can be described as a function of both the rigid body motion

(1) and elastic deflection u(x,7) measured from the line OP:

y(x,t)= x0(t) + u(x,t) (1)

The dynamic equations of motion of the manipulator can be obtained using the Hamilton's
extended principle (Meirovitch, 1967) with the associated kinetic, potential and dissipated
energies of the system. Ignoring the effects of the rotary inertia and shear deformation, a
fourth order PDE representing the manipulator motion can, thus, be obtained as (Azad,

1994)

o’u(x,t) . 0 u(x,t)

e ox*? P or?

= - pxd 2)

To obtain the corresponding boundary conditions, the following must hold
- The displacement at the hub (u(0,¢)) must be zero,
- The total forces at the hub must be the same with the applied torque,

2
- The shear force at the end-point must be equalto M, _8_;(3;_0 (Tse, et.al, 1980).
t

- The stress at the end-point must be zero, that is, no force should be present at the

free end;
u(0,t) = 0
0’u(0,1) o'u(0,1) _
g orlox = ox? =
’u(lt) d’u(l1) ()
M ——— _EIl—2 = ¢
o ox’
2
Er o KLY . p
ox

where [ is the length of the manipulator. Equation (2) with the corresponding boundary

conditions in equation (3) represents the dynamic equation of motion of the flexible




———4ﬂ

Tokhi, MO, Poerwanto, H and Azad, AKM

manipulator system assuming no damping in the system. In practice, however, such an
effect is always present in the system.

There are several possible forms of damping within the system. These can be classified
into three groups, depending on the source: (a) The manipulator itself has structural
damping due to dissipation of energy within the manipulator material, (b) Viscous damping
and Coulomb damping (stiction/friction) associated with driving motor, (c) External effects
such as primarily air resistance as the manipulator rotates.

To incorporate damping in the governing dynamic equation of the system, a mode
9°u(x,1)

frequency dependent damping term proportional to 32701
X

can be introduced (Davis and

-

Hirschorn, 1988). Equation (2) can thus be modified to yield

2‘u(x,1) 9 2u(x,1) 9 u(x,1) "
E] . = - e 4 -
5 ox* *P or’ 5 ox’ot px )

where D, is-the resistance to strain velocity, that is, rate of change of strain and
9’u(x,t)

. ——— represents the resulting damping moment dissipated in the manipulator

ox’ot

structure during its dynamic operation. The corresponding boundary conditions can, thus,

be written as
u(0,r) = 0
2’u(0,1) 2%u(0,1)
I - El =
" oo o T
o’u(lt) d’u(l 1) (%)
M - EI =
Pooar? ox’ 0
2
£ 9 el g
ox

Note in Figure 1 that as line OP is tangential to the manipulator at the hub, point O , the

following holds

ou(0,t)
ox

— (6)

Thus, using equations (1) and (6) yield
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%‘2=W

Substituting for wu(x,t) from equation (1) into equations (4) and (5), manipulating and
simplifying yields the governing equation of motion of the manipulator in terms of y(x, )

as

Oy, Ayxt) p, Fyixt)

EI
ox* or’ 5 ox’or

= (1) (7

with the corresponding boundary conditions as

y01) =0
N 83}'(0 r) azy(O 1)
}’(1 n y(f t)
. M, or’ - )Bx3
- ' (1t
El——Z~=()
ox*

= 7t
-0 (8)

and initial conditions as

y(x,0)

X

y(x,0)=0, =0 C)]

Equation (7) gives the fourth-order PDE which represents the dynamic equation describing
[

the motion of the flexible manipulator.i To solve this equation and thus, develop a suitable

snnu]anon environment charactensmg the behawour of the system, the FD method can be

used Thus a set of equ;valent dlfference equations deﬁned by the central ﬁmte dlfference

quotlents of the FD method are obtamed by discretising the PDE in equation (7) W1th its

associated boundary and initial conditions in equations (8) and (9) 1 The process involves
d1v1d1ng the mampulator into n sections each of length Ax and con31denng the deflection of
each section at sample times Ar, see Figure 2. In this manner, a solution of the PDE is
obtained by generating the central difference formulae for the partial derivative terms of the
response y(x,#) of the manipulator at points x = i Ax,t = jAr (Azad, 1994 ; Burden

and Faires, 1989; Lapidus, 1982);
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azy(x,r) Yijs1 =2¥ 5+ Vi

or? Ar?
92y(x,1) _ Yiay o2y ¥ Yia
ox* Ax?
2>y(x,1) Y2t 2Vu i+ 2y~ Yia.j
T 2Ax° (10)
a4y(x,l) _ disaj '4yi+l,j +6y,; ; ‘4)’;'.1.;' + Vi
oxt Ax?
o> y(x,1) _ Yiga 2y 4 Yijer = Yirjor + 2Yi1j = Yir ju
orfox AxAr?
d 3y(x, D _ Yij-2y;+ Yij = Yierja +2¥; 5 - Yn1,j-1
ox’or ArAx?

where, y, . represents the response Y(x,t) at x =iAx and t = jAr or Y(x;,t;). Note that, a

H

time-space discretisation is adopted in the evaluation of the response of the manipulator.

3  Development of the simulation algorithm

A solution of the PDE in equation (7) can be obtained by substituting for

o’y o o'y . . o .
) ; Y and X from equation (10) and sim lifying to yield
9" ox° x’o1 P
E] p
'AT{ [}’j+2,;‘ - 4)’.41,; W 6)]',; - 4)".‘-1,,6 + yi-Z.j]+ 'A? [yi.jh' - 2)’:‘,;‘ + yf.j-f]
D .
_AxZSAr [)’m,j - 23’;‘,;+ Yiij ™ Yirgat 2)’,;;.; - yf'-i,j-f] = 1, j)
or

Ar®
Yigip F _p_‘c(‘ni) -C [ynz,j + yi-z,j]+ b [ym,j"' yr’-i,j]+ BVt~ Vi

(11)
+d [yfd.j - 2yi,j+ Yeay = YosngaF 23’5,_;.,' - yi-j,j.,l]
2 2 2
where = 2. SIS, gEMC_ EAP Dar
pAx pAx pAx pAx

Equation (11) gives the displacement of section i+1 of the manipulator at time step
J+1. It follows from this equation that, to obtain the displacements Ynijer @nd y, .., the

displacements of the fictitious points y,,, ., ¥,,,, and y,, 1j1 are required. These can be

obtained using the boundary conditions related to the dynamic equation of the flexible
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manipulator. The discrete form of the corresponding boundary conditions, obtained in

similar manner as above, are

Yo = 0 (12)
i
Yig = Y ¥ E]A [}’J;a,l 2)’1; + y;_;.:] + —EI_ ) (13)
2Ax°M
Ynezj = 2Vnetj” 2Vnpj+ Ynz;t TEIP‘ [yn.j-i-l - 2y,;+ yn,j-l] (14)
Yortj = 2Vnj~ Yuuiij (15)

In the following sections two cases, namely, the system with hub inertia and payload and

the system without hub inertia and payload, are considered and investigated.

3.1 The hub displacement

Note that the torque is applied at the hub of the flexible manipulator. Thus, 1(, »N=0 for

i 2 1. Using equations (11) and (12), the displacement ¥1,+; €an be obtained as
Vijer = =C [y3,j+ }’.1,,;]‘*' bJ’z,j"' ay,;i= Y+ d[)’z,j - 2y, - Yot 2y},j-1] (16)

Substituting for y,, ; from equation (13) into equation (16) and simplifying yields

Y= Ky, ;+ K, Y.t K; }’3,,'"']{4 Yt Ks Y21+ Ks T(G) (17)
where
K o SAUEI+ 2cAx],+ (a-2d)Ar’El K = . A+ (1-2d)ArEl
| = = 2
APEl+ cAxl, ’ AtEl + cAdd,
K (b+d)Ar’El K - . _ dA’El
* " APEl+ cAxl, 5 AYEl + cAxl,
2 2 2
X, cAt’El K, = cAx’ At

" APEl+ cAxd " AP’El+ cAx]
h h
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3.2 The end-point displacement

Using equation (11) for i =n—1, yields the displacement y, , ., as

Yorjs1 = € [yn~3.j *+ yn+1,j]+ b [yn,j+ yn-2,j]+ AYp.1j~ Yn1j-1

(18)
+d [yn,j “ 2%, 4% Yusj~ Yujuit 2Vnsja- yn-z,j-;]
Similarly, using equation (11) for i = n, yields the displacement y,, , as
Ynjs1 = -€ [yn-Z,j+ yn+2,j]+ b [yn+f,j+ yn—},j]+ aY,;= Ynj-1 (19)

+d [yn+l,j =2V, ;% Yorj” Yasrjat 2)’;;,,'.: £ yn-l.j-!]

The fictitious displacements y,,,; and y,,, ., appearing in equations (18) and (19), can be
obtained using the boundary conditions in equations (14) and (15). y,,,;, can easily be
obtained by shifting y,,,; from time step j to time step j-I. Substituting for y,.,. from

equation (15) into equation (18) yields the displacement y, .., as

Yarjsr = K, Yoy ¥ K, Ynzjt Ko Vo + Ky, + K Yoy F K, Ynijat Kiz ¥, (20)

where
N =R K,=-d
K, = (b+ d) K”: '” o
K, = (a+c- 2d) K”"”d' )
K,= -(2-b-d =

Similarly, substituting for y,,,; and y,,,; from equations (14) and (15) into equation

(19), and simplifying yields the displacement y, ,,, as

Ynjor = Kig Ynaj t Kis Yo+ Kis Ynjt K7 Ynj-1 (21)

where
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- 2¢cAt* ET
KM 2 3
At EI+ 2cAx*M,
4cAr® ET
K = 2 3
- At® El + 2cAx’M,
2 3
Bp= mrem—— 54 3be do s SE0M
At” EI+ 2cAx"M, At” ET
-Ar’ ET 2ch3M,,
K, = 2 3 2 %1
At El+ 2cAx"M, At EI

Equations (11), (17), (20) and (21) represent the dynamic equation of the manipulator for
all the grid points (stations) at specified instants of time ¢ in the presence of hub inertia and

payload.

3.3 Matrix formulation

Using matrix notation, equations (11), (17), (20) and (21) can be written in a compact form

as

Y, =AY,,+BY,_,+CF

i j+l . 1

where Y, ;,, is the displacement of grid points i = 1,2,--+,n of the manipulator at time step

J+1,Y,;and Y, , are the corresponding displacements at time step j and j-7 respectively.

A and B are constant nxn matrices whose entries depend on the flexible manipulator
specification and the number of sections the manipulator is divided into, C is a constant
matrix related to the given input torque and F is an n x I matrix related to the time step At

and mass per unit length of the flexible manipulator;

Mijn Nij Yija

Yain Y2, y Yaja
¢ Yi.m =1: ’ Yi,j = ¢ g = |,

Y. i+ Yii Yaja
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[ K, K, K, 0 0 - 0 07
(b+d) (a-2d) (b+d) -C 0 0 0
-c (b+d) (a-2d) (b+d) -c 0 0
A=
0 0 -C b+d a-2d b+d -c
0 0 0 Kk, Kk, K, K,
0 0 0 B B B Ry
K, K, 0 0 0 0 07
-d 2d-1 -d 0 0 0 0
0 -d 2d-1 -d 0 0 0
B = Z
0 0 0 -d 2d-1 -d 0
0 0 0 0 K, K, K,
0 0 0 0 0 0 K

3.4 The system without hub inertia and payload

In this section, the system is considered with no inertia in the hub and no payload at the
end-point. This allows investigating the effect of hub inertia and payload on the
characteristics of the manipulator. The boundary conditions for this situation are obtained
using equation (8) by setting 7, = 0 and M, = 0. Thus, using equations (17), (20) and
(21) with equation (11) yield the corresponding element values of the matrices A, B and F

for the system without hub inertia and payload as

K, = c+ (a-2d) K, = (b-2¢c + d)
K, = (b+d) K,= 24
K,=-¢c K, = -(1-2d)
K, = -(1-2d) K,=-d
Ki=-d K,= -2

K, = cAx2[EI K, = 4c
K,=-¢ K, = a+ 2b- 4c
K; = (b+ d) K, = -1

K, = (a +c- 2d)

10
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4  Simulation environment set-up

To test and evaluate the performance of the simulation algorithm the following situations

are considered:

(a) The system without hub inertia and payload,
(b) The system with hub inertia and no payload,

(c) The system with hub inertia and payload.

A bang-bang torque input with an amplitude of 0.1 Nm and duration of 0.6 seconds is used
to excite the system. This is shown in Figure 3. The total simulation time is set to 1.2
seconds and the system behaviour at the hub and end-point observed and recorded.

The simulation environment was set up to characterise a motor-driven aluminum type
single-link flexible manipulator of physical dimensions and characteristics given in Table 1.
These correspond to a physically constructed flexible manipulator system [21]. For a
reasonable }evé] of accuracy to be achieved, the manipulator was divided into 19 equal- -
length sections within the FD discretisation process. To demonstrate the effect of damping,
two typical values, namely, Ds = 0.024 and 0.148 are used. The time response as well as
the corresponding spectral density of the system under each condition are recorded and
presented to assess the effect of damping for various payloads. The damping, in the real
system, is expected not to change the resonance mode of the system and to bring the

residual movements (vibrations) to converge to zero as the energy is dissipated.

5 Simulation results

The set of results presented below show the performance of the simulation algorithm in
characterising the flexible manipulator to the excitation in Figure 3 under three situations,
namely, (a) D, = 0.0, (b) D, =0.024 and (c) D, =0.148, over a duration of 1.2 seconds.
Figure 4 shows the time-domain representation and corresponding spectral density of
end-point displacement for the system without hub inertia and payload. Figure 5 shows the

corresponding time-domain representation and spectral density of the end-point residual

11
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motion (vibrations) of the system. It is noted that with D, = 0.0 the system response is
persistently oscillatory and the oscillations converge to zero faster with increasing D, . This
is also evident in the corresponding spectral densities of the response, where the levels at
the resonant modes decease with increasing D,. The response in each case reaches the
demanded level of 178.9 mm within similar time scales. The first three resonant modes, as
noted, are found to be at 11.7 Hz, 41.6 Hz and 81.6 Hz respectively, which are reasonably
close to those of the actual system. It is important to note that the resonant frequencies as
well as the steady-state level of response of the system are not affected by the value of D,.

Figure 6 shows the time-domain representation and corresponding spectral density of
end-p;oint displacement for the system with hub inertia and no payload. Figure 7 shows the
corresponding time-domain representation and spectral density of the end-point residual
motion of the system. A comparison of these with Figures 4 and 5 reveals that inclusion of
hub inertia results in an increase in the level of vibrations at the resonant modes. Thus, the
system response settling time increases. Moreover, the frequencies at the resonant modes |
decrease with the inclusion of hub inertia. As noted in Figures 6. and 7, the first three
resonant modes are located at 11.6 Hz, 31.7 Hz and 61.7 Hz respectively. It is further
noted that inclusion of the hub inertia has resulted in a drop in the steady-state level of
system response from 178.9 mm (see Figure 4) to 176.4 mm.

To study the effect of payload on the characteristics of the system, the simulation
algorithm was tested with a payload of 10 grams at the end-point. Figure 8 shows the time-
domain representation and corresponding spectral density of end-point displacement for the
system with hub inertia and the 10 grams payload. Figure 9 shows the corresponding time-
domain representation and spectral density of the end-point residual motion of the system.
A comparison of these with the results in Figures 4 to 7 reveals that the level of vibrations
at the resonant modes decrease with the inclusion of a payload. Moreover, the steady-state
level of response of the system has deceased with the inclusion of the payload.
Furthermore, it is noted that the frequencies at the resonant modes have decreased. This
effect is seen to be more pronounced at the higher modes. To illustrate the effect of hub

inertia and payload on the characteristics of the system quantitatively, the results obtained

12
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from Figures 4 to 9 are summarised in Table 2. It is seen that inclusion of hub inertia and
payload both result in a decrease in the frequencies of the resonant modes and a reduction
in the steady-state level of system response. The level of vibrations at the resonant modes,
on the other hand, increase with the hub inertia but decease with a payload. These effects
are further evidenced consistently in Figures 10, 11 and 12 which show the response of the
system as monitored at the hub for the three situations considered above.

Incorporating a payload at the end-point, as noted in Figures 8, 9 and 12, affects the
characteristics of a flexible manipulator. This includes the frequencies of the resonant
modes, steady-state level of response of the system and level of vibrations at the resonant
modes. The extent of these effects will vary with the amount of payload. To investigate
this, the algorithm was set up with various amounts of payload and the effect on the
response of the system was monitored. Figures 13 and 14 show the time-domain
representation and the corresponding spectral densities of end-point displacement,
respectively, for various payloads with D, = 0.024 . It is noted that the steady-state level of
response of the system as well as the frequencies of the resonant modes decease with
increasing payloads. A similar trend is observed with the level of vibrations at the second
and higher resonant modes in relation to the payload. However, the effect on the level of
vibrations at the first resonant mode does not appear to follow this general trend. These
observations are important from a control viewpoint in a practical environment where a

manipulator will usually be subjected to various amounts of payload.

6 Conclusion

A numerical method of solution of the governing PDE describing the characteristic
behaviour of a flexible manipulator system incorporating the effects of hub inertia, payload
and damping has been presented and discussed. A finite difference simulation algorithm
characterising the behaviour of the system has initially been developed without hub inertia
and payload. The simulation algorithm has then been extended to include the effect of hub

inertia and payload.
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Simulation results with and without the effects of the hub inertia show that the steady-

state level of system response is slightly reduced with the hub inertia. The levels of

A vibration at the resonant modes of the system, on the other hand, have been found to
increase with the hub inertia leading to a longer settling time in the system response.
Moreover, the frequencies at the resonant modes of the system have been found to
decrease with the inclusion of hub inertia.

It has been demonstrated that incorporating a payload at the end-point of the system
results in a reduction in the steady-state level of response as well as in the resonant
frequencies of the system. The level of vibrations at the resonant modes, however, vary
with varying payloads; a decreasing trend at lower payloads and an increasing trend at
higher payloads has been observed.

It has been demonstrated that incorporating a mode frequency dependent damping
term within the governing dynamic equation of the flexible manipulator leads to a more
realistic characterisation of the behaviour of the system. As expected, the damping term
thus incorporated has been shown to have no effect on the resonant frequencies and steady-
state level of response of the system. The oscillations in the system response, however,
converge to zero with time; the settling time becoming shorter with increasing amounts of
damping. The results of this investigation have shown that a reasonably accurate simulation
environment characterising the behaviour of a flexible manipulator system for use as a test
and verification platform of controller designs can be developed using finite difference

discretisation methods.
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Table 1: Parameters and characteristics of the flexible manipulator system.

Parameter Value
. Length 960.0 mm
Width 19.008 mm
Thickness 3.2004 mm
Mass density per unit volume 2710 kg/m®

Second moment of inertia, [

51924x10™" m*

Young modulus, E

71x10° N/m?

Moment of inertia, J,

0.04862 kgm?

- Hub inertia, /, 5.86x10™ kgm?
First flexible mode 12.137 Hz
Second flexible mode 36.132 Hz
Third flexible mode 88.86 Hz

=

Table 2: System response characteristics with hub inertia and payload.
MODE 1 MODE 2 MODE 3
Condition D, D(mm) | F(Hz) | Res(mm) | F(Hz) | Res (mm) | F (Hz) | Res (mm)
Without hub | 0.000 178.9 11.7 39x 107 41.6 25%10™ 81.6 50%10°
inertia and 0.024 178.9 11.7 39x10°? 41.6 L8x10™ 81.6 6.8x107
payload 0.148 178.9 11.7 L0x107 41.6 30x10°° 81.6 9.0x10™
With hub 0.000 176.4 11.6 10x10°7 31.7 40x10™ 61.7 39x10™
inertia and 0.024 176.4 11.6 65x107 31.7 32x10™ 61.7 60x10°
no payload 0.148 176.4 11.6 17x107 L7 13x10™ 61.7 26x10°°
] With hub 0.000 148.6 11.6 38x10™ 31.6 L1x10™ 58.3 30x10™
inertia and 0.024 148.6 116 26x107 31.6 32x10™ 583 20x10°
4 10g payload | 0.148 148.6 11.6 80x10™ 316 80x10°* 58.3 L6x107
D, :Damping constant.
D :End-point displacement.
F  : Frequency of the resonance mode
Res : End-point residual movements (vibrations).

17




Tokhi, MO, Poerwanto, H and Azad, AKM

Figure 1: Description of the flexible manipulator system.
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Hub angle displacement of the flexible manipulator with hub inertia

Figure 11
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Figure 12: Hub angle displacement of the flexible mani

pulator with hub inertia and

0.024, (c) D, =0.148 .

(2) D, =00, (b) D,

10 grams payload;
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Figure 13: End-point movement of the flexible manipulator for various payloads.




Speciral Dermty of End-point Mowemeants with hub-insria ard 10 gme payioad, wih demping De=0.024
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Spectral density of the end-point movement of the flexible manipulator




