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Abstract

This paper presents specific new techniques for coding of speech representations and a
new general approach to coding for compression, which directly utilises the multi-
dimensional nature of the input data. Many methods of speech analysis yield a two-
dimensional pattern, with time as one of the dimensions. Various such speech
representations, and power spectrum sequences in particular, are shown here to be
amenable to two-dimensional compression using specific models which take account of a
large part of their structure in both dimensions.

Newly developed techniques, namely, Multi-step Adaptive Flux Interpolation (MAFI)
and Mult-step Flow-Based Prediction (MFBP) are presented. These are able to code

- power spectral density (PSD) sequences of speech more completely and accurately than
conventional methods, and at low computational cost. This is due to their ability to model
non-stationary, piecewise-continuous, signals, of which speech is a good example.

MAFI and MFBP are first applied in the time domain and then to the encoded data in |
the second dimension. This approach allows the coding algorithm t‘o exploit redundancy in
both dimensions, giving a significant improvement in the overaJI compression ratio.
Furthermore, the compression may be reapplied several times. The data is further

compressed with each application.

Key words: Adaptive flux interpolation, flow-based prediction, speech coding.
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1 Introduction

The advantage gained in making use of the two-dimensional structure of speech

. representations' for coding depends on the nature of the pattern and on the availability of
an adequate model of the pattern. This paper addresses this problem by adopting
approaches based on variable frame-rate (VFR) coding. VFR coding is often advocated as
an efficient method for reducing the transmitted data rate in speech communication
systems (Holmes, 1974; Papamichalis and Barnwell, 1983; Viswanathan et.al, 1977). In
this approach, blocks of a variable number of frames (or vectors) are represented by a
single set of parameters. In most cases, these parameters are simply one or more vectors
takex.l from the block. The omitted vectors are then reconstructed (if needed) based on
some model of speech dynamics. The sizes of the blocks are chosen to maintain a desired
accuracy when the reconstructed vectors are compared to the original vectors, or to
maximise the overall accuracy, subject to a constraint on the number of vectors transmitted
(Dupree, 1984; Papamichalis and Barnwell, 1983).

VFR coding can also improve the accuracy of automatic speech recognition (ASR)
systems by removing redundant observation vectors (Peeling and Ponting, 1989). In any
case, the ability to identify and remove the longest possible runs of data is desirable.
Current methods are only able to achieve significant compression ratios during quasi-
stationary periods. This is because the underlying model used to identify critical vectors of
data is too rigid; it only models the changes in values of individual elements within the
vectors. They do not identify similar forms of redundancy in the other dimension, or model
the more complex forms of redundancy observed in, for example, speech power spectra

& during non-stationary, but smoothly and predictably evolving, periods.

Techniques which can model such smooth spectral evolution have previously been
described (Baghai-Ravary et.al, 1995; Beet et.al, 1994). these, however, have only been
applied to estimation of individual vectors of data, not extended sequences of many
vectors, as would be required for VFR coding. Furthermore, they have been applied in the
temporal direction, and thus have not removed redundancy in the transverse (frequency)

direction.
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2 Linear models of signal evolution

An autoregressive (AR) linear model can be used to regenerate omitted vectors. This can

¥ be generalised as:
N
: o, =ZC,-(n)on_,-+v (1)

where, o, is the current parameter vector, Ci(n) is a (possibly time-dependent)
coefficient matrix, o,,_; is the i preceding observation vector, and v,, is the n™ vector
of the innovation (or prediction error) sequence. N determines the order of the model.

The model implicit in a zero-order hold system, which would be appropriate for piecewise-

constant data, can be obtained by setting N =1 and Ci(n) =1in equation (1), where I is
the identity matrix!. In VFR coding, Vv, is assumed to be zero during each block, and thus
the reconstructed vectors are held equal to the first vector of the block. The reconstructed

" data has a step-wise form, which is not always acceptable. A smoother form of data can be

generated with a first-order hold?, corresponding to N =2, Ci(n)=2I and Cy(n)=-

in equation (1). In this manner, when v, is held at zero during VFR blocks, the model

gives linear interpolation between the corresponding elements in consecutive transmitted
vectors. This is more acceptable, but still imperfect.

While a first-order hold may be appropriate for short quasi-stationary spectral
sequences derived from (for example) steady-state vowels, neither of these models can

allow for migration of features from one element of the parameter vector to another. In the

case of PSDs, this means that changes in frequency cannot be modelled, except by rap:dly
fading one frequency component out, while fading a new one in.

# Some improvement can be obtained by optimising the coefficient matrices, and
allowing them to be of arbitrary structure. The Ci(n) are chosen to match the signal

statistics and minimise E(]v n|2). Unfortunately, the estimation of values for these matrices

is only tractable for the first-order case, and even then it either requires prior knowledge

Here, the vy, sequence is equivalent to the delta coefficients used in many ASR systems.
In this case, vy, forms the delta-delta, or ‘acceleration’, coefficients used in more sophisticated ASR
systems,

B
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about signal statistics3 or extended periods of pseudo-stationarity in the signal so that they

can be estimated locally (Boram, 1990).

3  Non-stationary models

In practice, no AR model based on fixed coefficient matrices can fully simulate the form of
observed speech spectrum dynamics. This is illustrated in Figure 1 which shows the
spectrogram and corresponding spectrographic of a short segment of speech.
Spectrographic flow. Spectrographic flow links the features of successive vectors
optimally, with the darkness of the lines representing the value of the respective elements
in the preceding vector. As can be seen, in Figure 1, the features within the vectors change
position and value with respect to time. The direction of flow of any features through any
specific element also changes with time. A fixed AR coefficient matrix, however, will

" produce a fixed direction of flow for each element. Thus, it would be more realistic if the
coefficient matrix \n;ould adapt to cope with those changes. Two approaches which are
able to handle, for example, steadily changing frequencies and amplitudes in PSD
representations are introduced here. These are Flow-Based Prediction (FBP) (Beet et.al,
1994) and Adaptive Flux Interpolation (AFI) (Baghai-Ravary et.al, 1995).

FBP estimates the flow of features from their current positions, forward into the
future. Conversely, AFI identifies optimal links (termed lines of flux) between the features
of the immediate neighbours of the unknown vectors and interpolates along them.
However, both methods assume that the positions and values of any features within the
parameter vector change linearly with time. This corresponds to C;(n) matrices which
evolve during each block. The evolution, however, is systematic and defined only by a pair

of vectors. Both methods fit into the framework described below:
A block of M observation vectors, o, to On+ M-1. Can be estimated by prior

knowledge of two of those vectors, o, and op , by assuming that (within the block) links

In ASR applications this training can be achieved by tying the model's coefficient matrices to
individual states within a hidden Markov model (HMM), to give a linear predictive HMM (Kenny
et.al, 1990).




Baghai-Ravary L, Beet SW and Tokhi MO

exist, joining similar values in successive vectors. In the methods described here, it is

assumed that these lines are straight, and that the values of the parameter vectors evolve
linearly along them. Mathematically, if a link passes through element i of 0y, and element

J of op, then the corresponding element, k, of o, will be given by

L-a)

vk = (g =)

_fr-a).. .
- a)(’ )

If o, and og precede o, the model is essentially a predictor. In particular, in the

(2)

special case when ¥ = B +1=0 +2, one-step-ahead prediction is performed, as in FBP. If

oy lies between oy and op, it is an interpolator and if B=y+1=0+2, one-step
interpolation results, as in AFL In both these (one-step) special cases, the set of non-
crossing links which minimise |v,1|2 can be found efficiently using dynamic programming,
yielding estimates of the Cy(n) and C,(n) matrices of equation (1).

4  Multi-step estimation

Unfortunately, if the known vectors o , og and the unknown o, are separated by more

than one vector, a paradox becomes apparent; if links are non-parallel, they will cross at
some point. If all links have to pass exactly through the elements of all three vectors, the
crossing will often happen within the block, causing a re-ordering of features which is not
normally appropriate. Furthermore, some elements of the vectors to be estimated can be
left ‘hanging’, that is, with no links passing through them. It is, therefore, not possible to
maintain straight links for extended periods if they are constrained to intercept all the
elements of all the vectors they cut. This is illustrated in Figure 2, where the size of the
dots represent the values of the corresponding elements of the (vertical) vectors of data
and the links have been calculated between the two known vectors and extrapolated to the
end of the block. Where links merge, the data value has been taken to be the average of
the individually predicted values. It can be seen in Figure 2 that a single peak in the

original (known) vectors has evolved into two separate peaks. This is unlikely to have
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occurred in a real observation sequence. Furthermore, the third element from the bottom
of the Figure has become detached and would require additional algorithms to allow its
value to be estimated.

The solution proposed here involves two parts. Firstly, by always estimating the links
between the vector to be estimated and one of its immediate neighbours, no elements of
the vector being estimated will be bypassed by the links. Thus, no eleméms will be
undefined. Secondly, by only ever performing ‘one-step’ estimation, any effects due to
crossovers of features are minimised. To allow a one-step estimator to perform multi-step
estimation, it is applied recursively; each new estimated vector is used as one of the known
vectors of a subsequent estimation. This is shown in Figure 3, with which the problems
illustrated in Figure 2 can be seen to have been avoided completely. In this example the
peak in the known vectors rapidly dies out, but the flow of features throughout the block
- is always intuitively reasonable, and no implausible predictions are generated. This

principle can be applied in a number of different ways, depending whether an interpolative
or predictive approach is adopted. Some of the available options are discussed in the

following section.

4.1 Recursive estimation algorithms

In these methods, the links between the two adjacent vectors (one of which is the
unknown vector to be estimated) are restricted to avoid cross-overs and to remain within
the bounds of the available data, that is links which would extend beyond the ends of the

vectors are disallowed.

Recursive MFBP estimates o, using the two preceding observation vectors. Thus,
Y =B +1=0+2, as described earlier. If the block starts with 0y, then o, and o,,; are
used to form the first estimate, 0,5, which is then used with the true observation vector,
Opn41, to calculate o,,3. This recursive estimation is then continued so that each
observation vector is predicted by the previous two estimates until 0n+ M -1 1s found from
the predictions 0, 3 _ and o, yy_3. Using this approach, two vectors are transmitted

to encode each complete block. The process is illustrated in Table 1 and in Figure 4. In
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Figures 4 to 8, dark colour indicates transmission, light colour, estimation, and the arrows
originate from the input vectors of the estimator and point to the respective output.

A saving on transmitted data can be achieved by using the last estimated vector of the
previous block as if it were the first vector of the block currently under consideration. This
is illustrated in Table 2 and in Figure 5. In this manner, the number of vectors needed to
describe each block can be halved, since only the first vector of each block need be
transmitted. However, any error which accrue from the previous block will carry over and
affect the quality of the current block's estimates.

Recursive MAFI also transmits only one vector per block, but errors do not carry

over from block to block in the same way as for the ‘single-vector’ recursive MI'BP.

Recursive MAFI estimates both o0,,; and o0,,3_» simultaneously using observation
vectors 0, and o, ps_1. The estimates, 0,1 and 0, ps_> , are then used to find the next
two vectors 0,5 and 0, js_3 and so on, until the block is completed (see Table 3 and
Figure 6.).

All the recursive approaches ensure that the assumptions of the MAFI and MFBP

models are maintained locally.

4.2 Non-recursive estimation algorithms

Recursive methods require repeated computation of local distance matrices within each
block, which would not be necessary if equation (2) could be applied directly. Although
the considerations outlined earlier indicate that a recursive approach is necessary, a close
approximation can be made by considering the links between an unknown vector and its
immediate neighbour (whether known or unknown). The links are assumed to extend to
the known vectors according to equation (2), which are then used to estimate the values of
the unknown elements. Any implied reordering of features or omission of links through
elements in other vectors are ignored. Figures 7 and 8 show the equation of non-recursive
MFBP and MAFI, respectively. Since the links are calculated separately for each unknown

vector, there is no enforced consistency between the links used to estimate the values of
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consecutive vectors. In practice though, this is rarely noticeable in terms of its effect on the
estimated values of the vectors.

As in the case of the recursive algorithms described earlier, non-recursive MFBP can
be implemented in either one or two-vector per block versions. However, as the
performance of recursive and non-recursive approaches are so similar (shown later), only
the single-vector version is discussed here. Non-recursive MAFI also operates in a similar
way to recursive MAFI, with each known vector being used in reconstruction of pairs of

consecutive blocks.

4.3 VFR coding

In the experiments described here, the magnitude of error in an estimation is assessed by a

normalised form of mean square error for each vector. This is defined as

. _ EITor power

S . - x100%
signal variance + noise power 3)

VFR encoding is then implemented by incrementing the estimation block len gth from one
vector upwards, until the peak estimation error exceeds a threshold, &,y . At this point
the last pair of known vectors to have satisfied the error criterion, are transmitted (unless,
as in the MAFI cases, one of them has already been sent) and the system is reinitialised.
Along with the transmitted vector(s), an integer is transmitted to indicate the size of the
respective block. The decoder then applies the same form of interpolation to regenerate

estimates of the omitted vectors,

5 Two-dimensional coding

Having encoded the speech representations by removing redundant vectors, further
compression can be achieved by, for example, removing redundant frequency slices (in the
case of spectrographic representations). This is to say that the two-dimensional pattern
representing the speech can be encoded, transposed, and compressed further by the same

algorithm (see Figure 9). In the case of PSD representations of speech, the re-codin g in the
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transverse direction removes frequency regions which can be easily estimated from their
neighbours. The use of MAFI/MFBP estimation allows this estimation to occur even in
frequency bands which contain temporal changes of frequency (for example rising and
falling formants). Having removed redundant frequency slices, it is sometimes possible to

remove more temporal slices, so that the whole process can be repeated ad infinitum.

6  Speech representations

To evaluate the capability of MAFI and MFBP, a number of experiments have been
performed using a diverse range of speech representations. The parameters and methods
used to generate these representations were chosen to be consistent to give valid
comparisons (Baghai-Ravary et.al, 1994). Most of these analysis methods have auditory
counterparts, where the frequency resolution and the frequency and loudness scales of the
human auditory system are applied. These were also implemented. The methods described

here include the pre-processors described below.

6.1 Periodogram

This is the most common method for visualising speech signals. It is formed by taking the
DFT of a windowed segment of speech, and finding the modulus squared of each complex

output value;

N-1
Discrete Fourier Transform = X (m) = 2 x(n)h(n)exp(—ﬂﬂ: nTmJ
n=0

Periodogram =|X (m)? 4)

In this manner, it provides an estimate of the PSD which is only degraded by the spectral
effects of the temporal window, h(n). The frequency resolution of the periodogram is
inversely proportional to the length of the input frame (for a given window shape), and
cannot be controlled independently.

The choice of window is restricted by the expected dynamic range of the elements in

each PSD estimate, and the required degree of temporal continuity. To give temporal
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continuity across pitch-pulses, with adult male speech, this method can only give a narrow-
band spectrogram, clearly resolving individual pitch harmonics. Such data has a
complicated flow structure, since the frequency of the pitch harmonics may, for example,
rise, while the formants are falling.

As with most of the representations presented here, the most obvious difference
between the periodogram and its auditory version, is the frequency warping; at low
frequencies, the auditory representation is stretched, while at high frequencies, it is
severely compressed. In this case, however, the changing bandwidth of the auditory
representation has a further effect on the representation. At low frequencies, where the
auditory bandwidths are small, individual pitch harmonics are clearly resolved. However,
even during high-pitched segments, the pitch harmonics are suppressed at high

frequencies.

6.2 Blackman-Tukey power spectrum

One method for controlling the resolution of a periodogram is to window an estimate of
the autocorrelation function, rather than the data itself. This allows the frequency
resolution 10 be reduced without losing temporal continuity. However, the window must
have a non-negative Fourier transform for negative PSD estimates to be avoided. In the
work reported here, the window was made equal to the autocorrelation function of a
suitable prototype window, simultaneously ensuring that the created window has finite

duration and a real, and non-negative, Fourier transform.

N-1
Autocorrelation function = A, (m) = % Zx(n)x(n +m)
n=0

N-1
Window = A (m) =-§; > h(n)h(n+m)
n=0

Blackman - Tukey PSD estimate = DFT(A, (m) Ay (m)) )

This method can thus give a broad-band spectrogram, characterising formant structure
rather than pitch. The particular window used here gave a spectral resolution of 400Hz, to

ensure that even the highest female pitch was suppressed. However, since the resonances
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of the vocal tract are generally narrower than this (Deller et.al, 1993), the resulting
spectrum is somewhat blurred. Furthermore, the change in frequency resolution due to the
auditory transformation is minimal; most auditory filters have bandwidths less than the

400Hz ‘blurring’ introduced by the autocorrelation window.

6.3 Maximum entropy power spectrum

The power spectrum of an AR process can be obtained by calculating the parameters of
the AR model from the autocorrelation function of the signal. This has been done here
using Burg's method. The maximum entropy method (MEM) PSD estimate is then
obtained by multiplying the innovation power by the transfer function of the implied
recursive filter;

2

Innovation power =@
. 1

AR transfer function = H4p(F) =
4 . F
1+ Y apexp —jam—m

m=1 s

=

Maximum Entropy PSD = GleAR(F)‘Z 6)

where, Fj is the sampling frequency. Since speech can only be loosely approximated as an
AR process, the resulting PSD estimate tends to be "peaky", with occasional false peaks
(so-called “peak splitting”). Nonetheless, it can make formant tracks very clear, both in the

conventional and the auditory versions.

6.4 Maximum likelihood power spectrum

- This is variously referred to as the minimum variance PSD estimate, the maximum
likelihood method (MLM) or Capon's method. It involves the design of an FIR filter for
each frequency where an estimate of the PSD is required. These filters have unity gain at
the design frequency, but are designed to give minimal output power. The technique
attempts to attenuate all but the frequency component of interest, and can be considered as

a data-adaptive periodogram.

10
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The order of the filters determines the maximum number of frequency regions which
can be attenuated, and is chosen according to the application. To resolve formant structure
while suppressing pitch information, the filter order should be chosen so as to be slightly
more than twice the maximum number of formants, as in linear prediction analysis.

The power from each filter is calculated from the AR model for the signal, without
explicitly implementing the filters (Musicus, 1985);

02

4 F
Y u(k)exp(jZn—k)
k=—p F

§

Maximum Likelihood PSD =

where p(k) = pzk(N +1-[k|-2i)apa,, +fx| and ag =1
m=0 ™
The MLM method generally has frequency resolution comparable with, or slightly
better than, that of the Blackman-Tukey method, and has superior temporal continuity.
The latter cfféct is due to the Blackman-Tukey method's need for data windowing, which
is avoided in the maximum likelihood approach, being based (in this example) on Burg's

method of AR parameter estimation.,

6.5 Cepstrum

Since speech can be considered as the product of a source spectrum and a vocal tract
transfer function, pitch information can be separated from formant structure by
homomorphic filtering. A log-power periodogram is formed and then inverse-Fourier
transformed to give a cepstrum containing formant data in its lower coefficients, with pitch

being apparent at the higher end;

Cepstrum = DFr'l(ln[DFr(x(n)h(n)fJ -

In practice, it is computationally more efficient to use an inverse discrete cosine
transform (DCT) rather than an inverse DFT, since the periodogram is, by definition, real

and, if the original speech signal is real, symmetric about zero frequency.

11
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The first cepstral coefficient is equivalent to the log signal power, and thus has a wider
range than the rest. The remaining coefficients describe the overall spectral shape. Thus, all
but the first coefficient tend to change smoothly and with consistent ‘flow’. The higher
coefficients (which characterise pitch) evolve especially smoothly in the conventional
cepstrum, but are almost non-existent in the auditory version (because the pitch harmonics

are rendered aperiodic by the non-linear frequency warping).

6.6 Linear prediction coefficients

Autoregressive modelling of speech signals can give a very concise description of the vocal
tract transfer function. The results of this analysis are often presented as coefficients of a
ladder filter which can be used to predict one step ahead of the speech waveform.
However, they can exhibit abrupt changes even when the speech sound is changing
smoothly. It is difficult to identify meaningful structure in them, and they only appear
smooth during unvoiced sounds. There is little evidence of migration of features between

one coefficient and another.

6.7 Reflection coefficients

Burg's method for calculating linear prediction coefficients is based on the calculation of
reflection coefficients, which can be viewed as parameters of an acoustic-pipe model of
speech production (Rabiner and Schafer, 1978). These always have values between -1 and
1, and thus have somewhat different numerical properties from those of standard linear
prediction (ladder) coefficients. They also tend to evolve slightly more smoothly than

ladder coefficients, and do exhibit slight migration of features.

6.8 Vocal tract area functions

The shape of the acoustic pipe implied by a set of reflection coefficients can be calculated

by adding successive log area ratios or alternatively, by multiplying the area ratios and then

taking the log;

12
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-k )
Area 0fsectioni=A,.=A,._]:Tk'- ; 1Si<p A =1

1+k

m=]

2 Log area of section i = ln(H 1=k, J
(€))

This gives a set of parameters which are loosely related to the cross-sectional area of the
vocal tract, and therefore obey rules of motion similar to those of the real vocal tract. For
example, as the tongue moves a constriction forward and backward, values of the vocal
tract area function will move within the data vector, while the opening and closing of the
mouth will affect the magnitude of the values at the respective end of that vector. This
type of representation is much smoother than either reflection coefficients or linear

prediction coefficients, and exhibits noticeable migration effects.

6.9 Autocorrelation function

The preceding methods are closely related to the autocorrelation function (ACF) of the

speech signal. Therefore, it seems logical to evaluate this function as well. The most
efficient method of estimating the ACF is to take the inverse Fourier transform of the
periodogram (or the inverse DCT of the positive-frequency part of the periodogram). This
results in an ACF estimate which is distorted by the initial windowing of the speech, but

exhibits good temporal continuity.

7 Results

The different forms of MAFI and MFBP variable frame-rate coding described in sections 4
and 5 were implemented and mean compression ratios computed for all the pre-processors
discussed in section 6. A summary of the results are shown in Figures 10 to 13. These are

discussed below.

7.1 Multi-step estimators for coding

For the results described in this section, the maximum likelihood method was used to

generate broad-band spectrograms. This form of data is well-suited to the assumptions of

13
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MAFI and MFBP, but gives broadly comparable trends to those observed for other forms
of data.

Figure 10 shows the variation in the compression ratio of each coding method's with
the transmission threshold, € max » used to specify the maximum allowable distortion. To
illustrate the level of distortion implied by this threshold, Figures 11(a)-(c) show a typical
spectrogram of a spoken sentence, the reconstructed version after one application of
recursive. MAFI, and the error magnitude of the reconstruction, respectively, for a
transmission threshold of 20%. Thus, a threshold of 20% corresponds to a barely-
noticreable coding distortion, but, even so, it can give a compression ratio of over 50%.
Thus half of the original data vectors are redundant. Increasing the threshold consistently
increases the compression ratio, albeit at the expense of reduced accuracy. However, the
most significant observation concerning these results is that recursive and non-recursive
MAFI perform almost identically at all levels, while the MEBP approaches give roughly

30% lower compression ratios.

7.2 Multi-dimensional coding

Again, these results concentrate on the maximum likelihood broad-band spectrogram, but
the observations made here are also applicable to other Tepresentations, to varying
degrees. Figure 12 shows the compression ratios achieved after varying numbers of
applications of MAFI and MFBP in orthogonal directions. In all cases, & max was set to
20% to give a small coding error. It is clear that significant redundancy is still present after
one application of these coding methods; the second application of each method generally
increases the compression ratio by a further 30 to 40%. An example of the quality of the
coding after two applications is shown in Figures 11(d)-(e), where the reconstructed
version of Figure 11(a) and the error magnitude are shown, respectively. Beyond two
applications, the compression continues to increase until, after about 6 applications, little
further compression is obtained. It is worth noting that although the difference between the

MAFI methods and MFBP ig around 30% after one application, this has dropped
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significantly after two applications. However, MAFI is still noticeably better than MFBP in

all cases.

7.3 Representations

As mentioned above, MAFI yields greater compression ratios for a particular transmission
threshold, & ., , than MFBP, and there is negligible difference between the recursive and
non-recursive forms. Therefore, for these experiments, recursive MAFI was selected and
applied repeatedly (in orthogonal directions, as described in section 5) to all the speech
representations of section 6.

In all cases, subsequent applications of the MAFI algorithm gave increased
compression of the various speech representations, as summarised in Figure 13. However,
the additional compression yielded by subsequent applications varies considerably,
depending on the representation. In particular, the ‘time-domain’ representations, namely,
the cepstrum; autocorrelation function, linear prediction coefficients and reflection
coefficients, are only noticeably compressed in the temporal dimension. All the other
representations are compressed by broadly comparable amounts in each dimension.

In general, compression levels of around 80 to 90% are achieved with most
representations after two applications. The exceptions to this are the ‘time-domain’
techniques mentioned before, and the periodogram, which exhibits a more complex
structure than the others, with different aspects of the spectral features often moving in
different directions (that is, pitch harmonics can rise while formants are falling, or vice
versa). It is of interest to note that the auditory periodogram does not suffer from this
problem to anything like the same extent; at high frequencies, its resolution is restricted by
that of the human auditory system, while at low frequencies, the frequency scale is
expanded, making the spectral features broader, and thus easier to predict (in the

frequency-domain).
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8 Conclusion

MAFI and MFBP have been presented as new methods for compressing various
representations of speech. Variants of each of these methods have been outlined and
evaluated by comparative experiments. These have shown that both recursive and non-
recursive methods of implementing MAFI give virtually identical performances. This
implies that the non-recursive form would be preferred since it is computationally more
efficient. However, it has been observed informally that any coding artefacts introduced by
the recursive form have been less obtrusive than those resulting from the non-recursive
algorithm. Thus, the choice might not always be so straightforward,

It has also been shown that, as expected, MAFI out-performs MFBP, since
interpolation is inherently more robust than prediction. Surprisingly, however, there is little
difference in the compression ratios of the single-frame and two-frame variants of
recursive MFBP. This implies that the single-frame ‘error carry-over’ effect can be quite
severe, so that the average block length is halved relative to the two-frame case.

As far as the issue of dimensionality is concerned, it is clear from the results presented
here that all representations, except those with both dimensions representing time, benefit

from a multi-dimensional approach to coding.
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Table 1: Predictor inputs and transmitted data
(shaded) for ‘two-vector’ recursive MEBP

First input Second input Prediction
% op o
6,3 ) Op_1

oy On+1 )
On+1 642 0p43
0+ M-3 Sn4M_2 Op+M-1
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Table 2: Predictor inputs and transmitted data (shaded) for
‘one-vector’ recursive MFBP

First input
Op

Second input

B

Prediction

op On+1 0p42
On+1 Op42 043
Op+M-3 Op+M-2 On+M-1
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Table 3: Predictor inputs and transmitted data
(shaded) for recursive MAFL

First
Oq

input Second input

op

Prediction

Op42

On+1

On+ M
On+M-1

Op+M-2

Op+M-2

On+M-1

Op+1
On+2

043

6n+M——3
Op+M-2

20




Baghai-Ravary L, Beet SW and Tokhi MO

(a)

Figure 1: A short segment of speech;
(a) Maximum likelihood spectrogram.,
(b) Spectrographic flow.
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SPURIOUS PEAK

PREDICTED PEAK
ORIGINAL PEAK

*———t—t—o—o—o

|
KNOWN | PREDICTED
< =

Figure 2: An example of the problems caused by inappropriate application
of the basic FBP model.

l
KNOWN | PREDICTED
=

Figure 3: Avoidance of the problems illustrated in Figure 2 by
recursive ‘one-step’ estimation (links implied, but not
explicitly calculated, are shown dotted).
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Figure 4: Two-vector recursive MFBP process
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Figure 6: Recursive MAFI process.
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Figure 7: Non-recursive MAFI process.
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Figure 8: Non-recursive MFBP process.
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& Figure 9: Procedure for 2-dimensional coding.
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Figure 10: Maximum likelihood spectrogram compression as a function of
threshold, & .4 , after one application of recursive MAFI.
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(a)

(b)

©)

(d)

(e)

(2) Maximum likelihood spectrogram of a sentence spoken by a female.
(b) The reconstructed spectrogram after one application of MAFL

(c) The corresponding reconstruction error.

(d) The reconstruction after 2 applications.

(e) The error corresponding to (d).
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Figure 12: Maximum likelihood Spectrogram compression as a function of number

COMPRESSION (%)

of recursive MAFI application for € max = 20%.
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Figure 13: Compression ratios achieved for various preprocessors.
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