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Abstract

System developers have found that exploiting parallel architectures for control systems is
3 challenging and often the resulting implementations do not provide the expected
performance advantages over traditional uni-processor solutions. This paper presents a
generic method and a suite of design tools for the implementation of control algorithms on
parallel architectures. These tools allow a developer to translate a control system algorithm
into efficient executable code, via a highly automated route, for a class advanced parallel
architectures. The tools are demonstrated and discussed by developing several case-study
algorithms to full implementations with an emphasis on the problematic areas leading to

performance degradation common to parallel systems.

Key words: Heterogeneous architectures, parallel processing, real-time control.
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1 Introduction

The computational performance of sequential processors is no longer increasing at the
explosive rate seen over the last two decades. Bounded by the physical constraints of
manufacture and operation, it is unlikely that substantial increases will be observed in the
future. Following this, a performance gap is emerging between the current hardware and
todays demanding algorithms. In search of alternatives, parallel processing has been
adopted by many as a solution for a variety of demanding applications. For example,
recently available parallel processors such as the Inmos Transputer and the Texas
Instruments TMS320C40 (C40) have generated considerable excitement in the field of
control systems.

The key feature that distinguishes parallel processors from conventional processors are
their dedicated communication hardware and links. These hardware features allow the
construction of co-orporating networks of processors with the links providing inter-
processor communication. Theoretically the processing power is scalable, additional
processors can be introduced into a network to provide the computational performance
required. However, as many engineers have discovered, this is far from the truth. The
burden of inter-processor communication ultimately prevents any further improvement in
the computational power by adding more processors. In addition, the communication
overheads are often further increased by a poorly designed or inappropriate algorithm
structure.

This is a particular problem for the control systems domain. Here, algorithms are often
constructed from a large number of computationally undemanding tasks with, in
comparison, a significant communication demand. The combination of these characteristics

- and the fast cycle times required often lead to parallel processing being intractable for
algorithms in this form. In practice single processor solutions are often favourable for
development simplicity and for the elimination of inter-processor communication.

Addressing the imbalance of computation and communication demand has been found
to be challenging as a number of highly interacting issues are responsible for this

performance degradation. However, tractable parallel solutions for control algorithms can
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be afforded with careful consideration during the development of a parallel implementation.
For example, the use of well-understood modem control theory permits the restructuring of
an algorithm whilst preserving its transfer properties, thus allowing the algorithm to be
tuned to the hardware (Baxter et.al, 1994a). Later, in the development, the algorithm can
be further tuned within the software engineering domain.

This paper will continue with an introduction to the generic design approach used here
and the design tools. Subsequently the case-study algorithms used throughout this paper
are described, followed by a discussion of the class of target architectures considered. A
discussion of the design tools follows, with particular attention to development difficulties
and how the design tools are used to address them. Several implementations are developed
and discussed, at various stages of development, within this section to illustrate the points

. raised. Finally the paper ends with the concluding remarks.

2 A generic approach and the design tools

A number of complex and interacting issues need to be addressed if the development of a
parallel system is to be successful. To effectively exploit parallel architectures the
algorithms hardware demands and the available hardware resources must be closely
matched. An approach to this involves the profiling of the application algorithm to identify
the demands, and the characterisation of each of the processors available to build the
architecture (Ghafoor, 1993). This information can then be used to distribute the algorithm,
in an efficient manner, to an appropriate configuration of processors. However, in practice
this is difficult to achieve as the profiling of an algorithm must be performed with respect to
certain types and quantity of computation, for example, degree of vectorism or the floating-
point operations (FLOPs) required. These are metrics associated with the software domain
and cannot be easily applied within the application domain. Moreover, the hardware
characterisation is also difficult to achieve. This, effectively, requires extracting an accurate
model of the processor behaviour by using benchmarking techniques, which are known to

provide only a rough estimate of performance (Dongarra et.al, 1987).




Baxter, MJ, Tokhi MO and Fleming PJ

The above approach, however, can be simplified providing the application algorithms
are primarily constructed from a small number of computational block types. For example
transfer functions, state-space equations, integrators, gains and adders are all commonly
found in control system algorithms. Digital signal processing algorithms are also, in general,
built from a small number of blocks and this characteristic can be found in a broad range of
application domains. An efficient distribution of tasks to processors can then be based on
advance knowledge of the execution times of these task sets. These requirements can be
determined by benchmarking techniques that will be described later.

This approach has been encapsulated within the in-house developed suite of design
tools used for the basis of this research investigation (Bass et.al, 1994). Figure 1 illustrates
the development cycle the design tools are based upon. Here, an application oriented
editor, in this case Simulink (The Mathworks, 1992a), provides an entry method for the
algorithm into the design tools. Although conventionally Simulink is used to simulate
dynamic systems it has also been found useful for the purpose of an editor. This editor is
augmented by a set of transformation tools (Tts) (Baxter et.al, 1994a). These TTs allow the
algorithm to be restructured, while preserving the transfer properties, in order to tune the
algorithm to the available hardware. The algorithm is then parsed and imported into the
software domain where it is represented as a data-flow diagram (DFD). The algorithm in
this form is architecture independent. Each node in the DFD represents a block of the
algorithm. The mapper subsequently appends an annotation to the DED, of the task to
processor mapping and determines the task execution order. From this information the
code generator creates the source code for the implementation which is then compiled. The
code generator utilises a library of code fragments, described as templates, which represent
the typical building blocks of the application domain for the generation of the source code.
The final stage is the performance analysis which assesses whether the implementation
fulfils the original specification. Although the design tools greatly simplify the development
process through automation, the user can intervene at many stages in order to tune the

system performance.
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3  Case study algorithms

Two control algorithms are considered in this paper for the illustration of the tools and
techniques described. The first is the VAP flight control law, a linear MIMO algorithm.
This algorithm has been entered into Simulink as can be seen in Figure 2. The inputs are
pitch rate (g), barometric height error (hb), vertical acceleration(h) and airspeed error (ua).
The outputs are elevator rate demand (nd) and throttle demand (vd). The second algorithm
is the Turnip flight control law, also a linear MIMO algorithm as can be seen in Figure 3
and is used later in this paper. These algorithms are the starting point for the development,
and will appear in different forms at several stages during implementation.

It should be noted that neither of the algorithms are sufficiently demanding to warrant
a parallel approach. However, they are of sufficient complexity, possessing significant

- cross-coupling terms, to be a non-trivial exercise for a parallel implementation.

4  The target architecture

There are a wide variety of architecture classes that can be described as parallel, for
example these can range from systolic arrays to clusters of workstations. This research
programme is primarily focused on heterogeneous architectures, where a number of closely
coupled and computationally disparate processors are integrated into a single network via
point-to-point communication links. This is in contrast with the more conventional
homogeneous architectures that employ only identical processing elements, an example of
this would be a network of T8 transputers. The inherent nature of a heterogeneous
architecture can provide three significant advantages over other solutions: performance,
fault-tolerance (through hardware diversity) and cost. The computational demands of
algorithms are often found to be heterogeneous and the use of a heterogeneous architecture
may release a significant improvement in the real-time performance. Furthermore, the
computational demands of modern control and digital signal processing (DSP) algorithms
are increasing rapidly and may outpace the performance advancement of conventional

hardware solutions. It is here that heterogeneous architectures may become an efficient and
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cost effective method of providing such performance. However, the use of a heterogeneous
architecture introduces further complexity in the design when compared to a homogeneous
system.

A heterogeneous architecture can be constructed from various types of processors.
The system here is developed for control and DSP applications with the real-time
performance being of prime importance. The hardware, as illustrated in Figure 4,
incorporates three C40s and a transputer configured as a fully connected network. Serial to
parallel converters connect the transputer links with the C40 comports, here off-the-shelf
hardware is used for simplicity. The hardware is hosted by a Sun workstation. A
homogeneous language approach using 3L Parallel C for both processor types is used (3L,
1991,1992). Here the source code can be compiled for either processor type and thus

reduces the complexity of mixed languages.

S Design tools and implementation

This section discusses the development of parallel implementations of the case-study
algorithms described earlier. The tools used at each stage of development will be described,
with concentration on many of the issues that must be addressed to avoid unnecessary
performance degradation. The starting point of the development is the VAP flight control
law and the fixed heterogeneous architecture described earlier. The VAP was entered into
Simulink in preparation for the development. Based on the previously outlined development
approach the next stage for consideration are application domain transformations. Later the
variants of the VAP control law and the Turnip control law will be discussed for further

illustration of the techniques described.

5.1 Application domain transformations

Control system algorithms are typically constructed out of a number computational blocks
with data flowing between them. This can be viewed as a data-flow diagram. The usual

approach to implementing such an algorithm on a parallel architecture is through
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algorithmic parallelism. Here, each computational block is assigned to a processor of the
architecture and the communications between blocks are routed via communication
channels, either on-chip or through hardware links to other processors.

The application algorithm, however, would normally have been developed without
consideration of the target hardware. The implementation of the algorithm in this form may
lead to significant degradation of the expected performance. This is mainly due to the large
communication demand of the algorithm and contrastingly poor performance of the
communication infrastructure of the hafdware. However, other characteristics such as task
to processor matching are also significant, especially in heterogeneous architectures. Many
developers have found that recasting an algorithm into an alternative structure can lead to
significant  performance gains. This can be performed by application domain
transformations that restructure an algorithm into a form intended to be more appropriate
for the target hardware whilst preserving its transfer characteristics. Therefore,
consideration of algorithm transformation should be an essential phase of any parallel
implementation.

Obviously, transformations of an application algorithm are application domain
dependent. However, modern control theory has a wide range of well understood
mathematical techniques for the manipulation of control algorithms. Some of these have
formed the basis of the available transformations within the design tools. The TTs augment
the Simulink simulation environment, and Matlab is used with the Control System Toolbox
for many of the transformation operations (The Mathworks, 1990, 1992b).

The TTs are driven using a graphical user interface (GUI) as can be seen in Figure 5.
The TTs also bcrfon’ns the graphical restructuring of the algorithm in Simulink. To perform

5 a transformation the user simply clicks on the appropriate blocks to be transformed in the
Simulink block diagram, selects the transform options and clicks on “Transform' in the
graphical user interface. The Simulink diagram is then redrawn, incorporating the
transformations. Using the original Simulink diagram, which gives a useful display of the
structure and complexity of the algorithm, recasting will give an immediate indication of the

suitability of the recast algorithm.
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Although many typical control system transforms have been identified and a software
toolbox constructed, an open structure has been used to allow the user to integrate other
transforms as they are required. The transforms that are supported by the toolbox currently

arc:

e Representation Domain: transforms from transfer function to state-space, and vice-
versa.

e Parallelisation: single large grained tasks can be decomposed into several finer-grain
parallel tasks.

e Serialisation: single large tasks can be decomposed into a serial chain of blocks, useful
for partitioning a block containing different types of calculation so that it can be
mapped across several types of processor.

e Minimisation: a group of blocks that have complex interconnections can be reduced
into a single larger block.

e Time Domain: conversions from the continuous to the discrete time domain, and vice A

=

versa.

Although performing the transformations is clearly straightforward, the nature of what
constitutes a good algorithm structure is not well understood. However, several issues
should be considered during transformation and the first is granularity. Consider the VAP
algorithm in Figure 2. The diagram contains a significant number of computationally simple
blocks, such as gains and additions and integrators with complex interconnections. This
results in a large quantity of communication in comparison to the computation. The
granularity of the tasks in this case are described as fine-grained. Alternatively, if the
computation was large when compared to the communication it would be described as
coarse-grained. Granularity can be defined formally for both task and processor as
(Maguire, 1991)

computational requirements

Task granularity = (1)

communication requirements
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computational performance
communication performance

(2)

Processor granularity =

For task granularity, equation (1), computational requirements are the number of
FLOPs in each cycle of the task, and the communication requirements are the quantity of
communications for each cycle of the task. It is essential, of course, that both of these
requirements are based on the same word length. Using the above equation a measure of
granularity for each block can be determined. These measures of granularity give the first
indication of how profitable a parallel processing approach may be for the algorithm in
hand. The measures may show the algorithm is unsuitable for a parallel implementation, and
this cﬁn then lead to the restructuring of the algorithm into a form that is more suitable. For
processor granularity a similar expression arises, equation (2). The computational
performance comprises processor FLOPs and the communication performance comprises
the data rate transfer of the communication links. This assumes that FLOPs are the main
contributors to the processing time.

Table 1 shows the task granularity of selection of the blocks in the VAP algorithm of
Figure 2. However, task granularity is only really useful when a measure of processor
granularity is also available. For example, assume the hardware granularity is unity and
constant throughout the processors in the architecture. This value of unity means that
FLOPs are executed at the same rate as communication, however note that it is usually
found that communications and computation do not occur concurrently. If the above tasks
were mapped onto this architecture, it would be expected that for task "G1' that the
processor would spend three times more time computing than communicating. However,
for the finer-grained tasks such as Ge, a gain block, the time spent communicating is twicé
that of computing and would be expected to perform poorly in terms of execution time.

Consider Figure 6, this represents the first transformation performed with one simple
operation of the TTs, it is the independent path transfer function representation of the
original VAP algorithm of Figure 2. Clearly the number of blocks has been significantly
reduced and this has resulted in a very significant reduction in the communications. It is

also noticeable that all the transfer function blocks can now be executed concurrently,
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improving the parallelism the algorithm expresses. The computational demands of each
block has increased, this has effectively increased the task granularity which may be found
to be advantageous. Consider the task granularities in Table 2, they are significantly larger
than those of the original algorithm.

As a further illustration to this technique, consider a further transformation, here into a
highly parallelised variant of the last transform, as can be seen in Figure 7. Here the
resulting transfer function tasks can all be executed in parallel, with a final summation. This
algorithm is highly parallel, and contains a number of fine-grained tasks as the
computational requirements are small but have significant communications. This would in
general be inappropriate for many architectures as the communications would become
burdensome. The task granularities of this algorithm can be seen in Table 3, and the values
do not vary so wildly as those of the preceding algorithms showing the algorithm has
become more homogeneous.

The transforms Teported here have retained the transfer function representation,.
However, the algorithm may also benefit transformation into alternative -representations,
such as state-space for example which ultimately results in matrix computation. This will
change the method by which the algorithm is evaluated and can be used to tune , for
example, the regularity of an algorithm to a particular processor. Regularity is a term used
to describe the degree of uniformity in the execution thread of the computation. For
example the evaluation of a state-space equation is very regular, whereas for a transfer
function it is less regular. If a vector processor was available, such as the powerful Intel
80i860, the regular matrix structure of state-space blocks would be a particularly
appropriate representation. Algorithm transformation has a strong relationship with
partitioning. Partitioning is the phase at which an algorithm is cut into smaller parts suitable
for the target architecture. Algorithm transformation therefore permits more flexible
parallelisation strategies as a number of starting points are available, the original algorithm
and its transformations.

The true effectiveness of these transformations can be seen later in this paper after

executable codes have been developed. However, as demonstrated here transformations
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can be used to restructure the algorithm and tune the task granularities whilst preserving

the transfer characteristics.

5.2 Software domain representation and algorithm development

Once the system developer is happy with the algorithm structure within the control system
domain, the algorithm can be translated into the software domain using the design tools. A
powerful computer aided software engineering (CASE) tool, called Software through
Pictures (StP), is used here. This is the environment used to further develop the algorithm.
Here it is represented as a data-flow diagram as can be seen in Figure 8, for the
independent path variant of the VAP control law of Figure 6. The blocks of the simulink
diagram are converted into nodes, and the connectivity into directed arcs. This one to one
relationship is conceptually simple, efficient and preserves the structure of the algorithm.
The transfer into the software domain permits the subsequent development phases to
be applied to the algorithm, namely the mapping, scheduling and code-generation. The
subsequent stage to be addressed, in this design approach, is the combined mapping and
scheduling of the nodes of the task graph to processors in the architecture and will be
described simply as mapping. Currently, the target architecture is specified textually,
however, future developments will lead to a more flexible specification of the architecture.
The final phase is then the generation of source code and configuration files that can be

compiled into an executable code for the architecture.

5.2.1 Mapping tools

Mapping is the allocation of the tasks that represent the parallelised algorithm onto the
processors in the architecture. Mapping is probably the most critical stage in the entire
implementation, as a badly mapped algorithm is unlikely to be well matched to the
hardware and ultimately leads to the degradation of the real-time performance.

Mapping has been found to be computationally hard (NP-complete) (Shirazi et.al,
1990). Therefore, to obtain an efficient mapping a heuristical approach must be used.

Although a significant amount of consideration has been given to the development of

10
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mapping heuristics for homogeneous architectures by numerous researchers (Thoeni,
1994), the development of mapping heuristics that take account of the special
characteristics of heterogeneous architectures is still in its infancy. Only a few research
groups have addressed the issues of heterogeneity in mapping (Baxter et.al, 1994b;
Menasce et.al, 1991a,b; Tripathi and Menasce, 1992). However, it is clear that to minimise
the run time overheads of an algorithm, the mapping must be performed off-line (static
mapping). This reduces the performance penalty that a dynamic mapping policy would
introduce, and appropriate when the tasks composing the algorithm are not required to be
dynamically reallocated or the task precedence changed during run-time.

The heterogeneous mapping problem is simple in concept. A data-flow diagram (DFD)
represents the algorithm to be mapped across a network graph of the parallel architecture,

g where each node of the DFD must be mapped to a single node of the network graph. A
mapping is considered good if it results in a low cycle time of the algorithm, and bad if it is
high. Unfortunately the upper and lower bounds of the cycle time are difficult to estimate.
Thus, only measures of relative goodness can be made. However, there are several
important facets of this problem that influence the value of goodness.

Firstly, since the parallel architecture is heterogeneous it is found that the execution
time of a task will vary depending upon which processor type it is mapped on. Therefore,
some tasks may execute faster on processor type "X' than on type “Y'. However, for other
tasks the faster processor may be type “Y'. This disparity can be explained in terms of how
well-matched the task-pfocessor pair are, for example, a task with a significant proportion
of matrix computation may be best matched to a vector processor. A naive approach to the
heterogeneous mapping problem could therefore be to place each task on the processor

< that achieves the minimum task execution time.

However, there are other factors that influence the cycle time of the algorithm. The
most important of these, as described earlier, is communication time. It has been found that
the interprocessor communication overheads in real-time parallel systems often dominate
the actual computing time. The other extreme approach to mapping could be to map all

tasks onto a single processor, thus reducing the inter-processor communication time to

11
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zero. This is obviously a poor policy as there is no exploitation of any inherent parallelism
and this would, in general, lead to a large cycle time of the algorithm. Also, the tasks would
be constrained to the restrictive computational resources of a single processor type.

Therefore, there is a trade-off between the time advantage of mapping tasks to the
most appropriate processor and the potentially devastating overhead of communications
that may be incurred. Furthermore, it is also important to note that a DFD has precedence.
Tasks cannot be executed until their predecessors have completed. The mapping must take
account of the precedence to minimise processor idling while tasks are waiting to receive
input or to send output data. Also of significance are interference costs. These are the costs
(which are permitted to be negative) that occur when the combination of several tasks on a
processor affect their expected execution times. These effects arise from architectural
features such as instruction pipes, cache memory and multi-level memory.

In this design method the task execution order(schedule) is determined by simple rules,
based on the preccc'lence of the tasks and this is performed off-line. The scheduling is
performed as an integral part of the mapping process.

The alternative mapping policies used in the design tools are discussed below.

5.2.2 The mapping heuristics

The design tools currently integrate two distinct heterogeneous mapping methods. The first
is a simple heuristic drawn from previous research and the second is an experimental and
in-house designed genetic algorithm (GA) approach (Baxter et.al, 1995). The mapping
algorithms require a measure of execution time and two methods are used to calculate this:
a simulation model and the use of the hardware in the loop. The available permutations of

algorithms using these methods are:

e The modified Menasce (MM) heuristic.
e A simple genetic algorithm (GA) with a model architecture.

e A simple GA with the hardware-in-the-loop.

12
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The modified Menasce approach This is a simple heuristic that constructs a mapping in a
single pass. This is based on average task execution times for each processor, the
communication costs and the precedence of the tasks.

This approach is an extension to the one of the heuristics developed by Menasce et al,
who have presented a methodology for systematically building static heuristic processor
mapping algorithms (Menasce et.al, 1991a; Tripathi and Menasce, 1992). A mapping
algorithm was considered to be composed of two parts: an envelope and a heuristic. The
envelope is responsible for selecting, at each step, the subset of tasks (called the task
domain) and the subset of processors (called the processor domain) to be considered by the
heuristic. The heuristic selects a task and processor pair from the task and processor
domains. A simple deterministic simulation of the execution of a parallel job is performed,

" " and assumes that task execution times are deterministic and equal to their estimated
average values. In this manner, a heuristic is used to select the appropriate task and
processor pair from the corresponding domain. These pairs are selected for mapping, at .
each instance of the simulation process, until either the task domain or the processor
domain are empty. At this point the simulation clock is set to the time of the next event: the
completion of the executing task. Then task domain is updated, based on the precedence of
the tasks, and the processor domain based on the set of processors which are not executing
any task at this time of the simulation process. This iterative procedure ends when all tasks
have been mapped and scheduled, meaning that they have all been executed during this
simulation. The strengths of this approach include accounting for the computational
demand of the tasks and the precedence of the data-flow diagram. However, the initial
implementation of the algorithm was found to perform poorly as it did not take account of
the communication overheads. The algorithm was subsequently modified to consider the

implications of communication and thus resulted in the MM algorithm.

The genetic algorithm approaches Genetic algorithms (GAs) are optimisation algorithms
They are also engineering metaphors for the natural processes that are termed evolution

(Goldberg, 1989). It is the simplicity of the central evolutionary mechanisms, of which

13
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there are three, that make GAs so effective. These operators are: selection, crossover and
mutation.

GAs employ a population of individuals. Each individual is represented by a data
structure (a chromosome in biological terms) that encodes the parameters that are to be
tuned by the optimisation process. Therefore, each individual represents a single point in
the search space (a solution). The above operators are iteratively applied to each generation
of individuals. The first operation is called selection. This will choose individuals for mating
based on their objective value. The objective value represents how good that solution is and
usually requires some form of function to be evaluated. The second operation, crossover,
will take these pairs and exchange elements of the data structures. The crossover may result
in the progeny having a higher or lower objective value as compared to the parents. The

é final operation, mutation, will periodically modify parts of the data structure of an
individual and therefore making it represent a different point in the search-space. Mutation
drives the GA into exploring alternative areas of the search-space.

Unlike many traditional optimisation techniques GAs do not require a knowledge of
the search-space. Only an objective value for each individual is required. GAs have been
found to be robust and particularly appropriate when the shape of the search-space is not
well understood. This makes GAs an appropriate optimisation method for the
heterogeneous mapping problem.

The same GA is used for both these approaches. The difference being the objective
function they use. The first objective function was a model of the architecture, whereas the
second integrated the real hardware giving more accurate values of the cycle time. The GA
used a simple encoding strategy, where the chromosome length was equal to the number of
tasks in the algorithm. The value of each element of the chromosome corresponds to the
processor to which that task is mapped to.

A selection of attributes need to be specified for the GA, which are optimisation
problem dependent. The number of individuals in each generation was set at 50. This value
is loosely based on the length of the chromosome (i.e. the number of tasks) which for the

application algorithms to be mapped was up to 34. Linear ranking and a selection pressure

14
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of 2 were used. The selection strategy was stochastic universal sampling with a generation
gap of unity, meaning the whole population is replaced at each generation. The crossover
was the standard dual point crossover with a rate of 0.7. Finally, the mutation rate was set
to 0.7 per individual. This GA can be used with both the model and the hardware-in-the-

loop. Thus resulting in two variations in approach.

5.2.3 Benchmarking

An accurate determination of the load of each task on each processor is used by two of the
mapping policies investigated. Moreover, the communication costs across the links in the
architecture is also required. The process of determining these costs is described here as
benchmarking. The mapping tools assume the execution times of each of the tasks are
deterministic, and unaffected by the interactions of other tasks on the same processor.
However, it has been found that several tasks on a single processing element can lead to
competition of architectural resources. These are described as interference costs.
Interference costs are not well understood but can be attributed to on-chip memory or

cache contention, for example.

Communication benchmarking Two types of communication links are used in the
experimental heterogeneous architecture, transputer to C40 and C40 to C40. The
implemented algorithms exclusively use a 32 bit representation of data. Therefore, the
message passing capability of the links were benchmarked using 32 bit packets. The
benchmarking source code was compiled by the 3L Paralll C compilers for both
processors. Tha results are shown in Table 4. The performance of both communications is
v in the order of IMbit/sec for 32 bit sized packets. The manufacturer specified
communication performance of these devices is in stark contrast to these results. The C40
links are quoted to be capable of 160Mbits/sec for a SOMHz device (Texas Instruments,
1991). The C40 to transputer links are known to be constrained by the parallel to serial
converter that electrically interfaces these devices and would be expected to achieve a data

rate of around 8Mbits/sec. However, the software also has an implication on this
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performance. The 3L Parallel C for the C40 introduces a run-time micro-kemnel which
orchestrates all communications of that processor. This results in severe degradation of the
communication performance for short messages, typical of control systems, which will

affect both these results.

Code template benchmarking The code template library represent the building blocks of
the algorithms. Each of the code templates were integrated into a timing harness and
executed on both processors. The benchmarking results shown in Table 5 are a small, but
representative, number of the code templates that have been designed.The TMS320C40
appears to dominate the performance of the transputer in simple execution times. However,
consider the unexpected disparity in the timing of the *“Medium Transfer Function' library
module. In this case the C40 is slower than the Transputer. This can be explained by
register, on-chip memory or cache contention occurring on the C40 more readily than on
the transputer. This is typical of the complex computational characteristics of a -
heterogeneous architecture. Such disparities are often not well understood.

The communication times in Table 4 are comparable with the measured execution
times in Table 5, for some blocks the communication times are significantly larger clearly
demonstrating the massive overheads communication can have on the execution time of an
algorithm. The mapper must consider the cost of placing tasks on alternative processors
against the cost of placing the modules on the same processor which may lead to a module

being computationally mis-matched.

3.2.4 Architecture execution model and hardware-in-the-loop

The mapping heuristics rely on a value of cycle time of the complete algorithm in order to
determine a solution. As introduced the algorithms either use a model of the architecture
execution behaviour or the hardware within the optimisation loop. The model utilises the
communication and code template benchmarking results that have been calculated in
advance of the mapping phase. The model then only requires the DFD and a mappng in

order to calculate an execution time. The benchmarking results are measures of average
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performance of only single tasks, and the model cannot infer additional costs due to
interference of tasks mapped to the same processor. The model can determine an execution
time instantaneously.

The experimental architecture can also provide a measure of cycle time. However, this
requires the code generator to create the source code for the implementation, this then
must be compiled and run. Obviously, this does take significantly more time than that of the
model. A clear trade-off results between accuracy and speed for the two methods of

determining cycle time.

5.2.5 Source code generation and the template library

The subsequent stage in the development is the generation of an executable code for the
specified architecture. An in-house developed code-generation tool is used for this. The
code generator is the tool used to transfer the algorithm from the mapped and scheduled
DFD to an executable code. It is recognised that algorithms from a particular application
domain are often built from a small number of computational block types. This
characteristic has been exploited by the code generator. A library of reusable code
templates has been designed, that represent the most common building blocks of the
application domain. For example, in the control systems domain, blocks representing
transfer functions and state-space equations are characteristic. The library is extendible
allowing the integration of additional templates. However, it currently supports the
common building blocks of control algorithms such as transfer functions, integrators,
adders and gains. In addition, there is also support for fault-tolerant mechanisms in the
implementation through the use of voter blocks, for example. The library can easily be
extended to allow other classes of algorithms to be implemented. For example, libraries of
code templates for implementing active noise control and adaptive control algorithms are
being considered.

The code generator plucks the code templates from the library that represent the
blocks of the algorithm, and assembles these code fragments with the addition of software

harnesses into complete source code files ready for compilation. This is based on the results
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of the mapping and scheduling phase which has annotated each block of the algorithm with
a processor of the architecture. The code templates extracted from the library are then
instantiated with the parameters of that instance of the block in the algorithm. Subsequently
the instantiated templates are integrated into source code files, one for each processor.
Furthermore, the code generator also generates the configuration files and “make’ files for
automating the compilation phase. The generated source code is 3L Parallel C, although
other generators are available for homogeneous networks of Transputers generating Inmos
ANSI C using the same code template library.

The mechanism for building the complete source code is relatively straightforward,
however several issues must be considered to preserve the transfer properties of the
algorithm. These are both related to numerical representation. For example, the analogue to
digital converters in the final architecture generate integers as output. However, the
controller would usually use floating point representation. The code generation must
provide the conversion routines for this. The use of heterogeneous architectures introduce
related problems. For example, the transputer uses formats based on the IEEE floating-
point representation, whereas the C40 uses the Texas Instruments format. Again
conversion routines must be integrated. Other common problems, such as round-off,

truncation and overflow must also be considered.

5.3 Implementation results

At this stage the real-time performance of the implemented algorithms is finally assessed,
and the results can be seen in Table 6. The results show both the simulated cycle time
derived from the model, and the measured cycle time of the implemented algorithms. The
TTs were used to restructure the VAP control algorithm into the independent path VAP,
and the resulting cycle time is half that of the original. The tuning of the parallelism and
task granularities are responsible for this significant enhancement. Tuning the algorithm
within the application domain should be explored further. In particular, recasting into

alternative representations should be examined. For example, transforming the algorithms
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into state-space is potentially profitable for architectures employing processors with vector
(e.g. Intel 80i860) or zero overhead looping (e.g. C40) facilities.

The simulated cycle times have been calculated by the architecture execution model,
and when compared to the actual measured cycle times a clear disparity is observed. For
the VAP and turnip algorithms this has misled the mapping heuristic into identifying poorer
solutions than when the hardware-in-the-loop is used. This proves the model is not accurate
and should be developed further. However, modelling execution behaviour is challenging as
it also requires an understanding of interference costs between_ tasks on the same processor.
The use of the hardware-in-the-loop does provide vastly improved results, although the
evaluation time of an implementation requires compiling the complete source code of the
implementation and this takes a significant amount of time. If the system was increased in
complexity by using a large number of processors and tasks this approach may be infeasible
and modelling may be the only solution.

The mapping algorithms are shown to vary significantly. The increased complexity of
the heterogeneous mapping optimisation problem is clearly challenging. The MM approach
fairs particularly badly for the algorithms with a larger number of tasks when compared to
the GA approaches. However, the use of the hardware-in-the-loop for the GA improved
the performance significantly. The heterogeneous mapping problem needs to be

investigated further.

6 Conclusion

This paper has introduced a generic method for the implementation of control algorithms
onto parallel architectures. A suite of design tools have been developed to automate many
stages of the development and these have been discussed for the implementation of several
algorithms. The tools provide a highly automated route from algorithm to implementation,
permit tuning by the user and provide a method of rapid prototyping of parallel
implementations. Throughout the development of the implementations, the paper has

focused on and addressed many of the development problems that can lead to a detriment
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to the real-time performance of the implementation. The use of application domain
transformation has been shown to provide real-time performance advantages in the final
implementation. Several mapping policies have been explored and the use of the hardware-
in-the-loop within the optimisation loop is shown to significantly improve the optimisation
process in terms of identifying a good distribution of tasks. However, the large time spent

compiling may render it less useful approach for larger systems.
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Table 2: Granularity calculations for the independent path representation of the VAP control
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Table 3: Granularity calculations for the parallelised independent path representation of the
VAP control law
Link Type . | e fr Mesdee pasing | Das e ofMessg
T8 and C40 24 1.333
C40 and C40 38 0.842
Table 4: Communication Benchmarking Results
Library Module EZ:;;;:S?&IS{)Z 805 .'II:K?; 3(?2[;)?32(])\/1(11;) iggs(T;fnspizsfgzg)n
Simple Transfer Function 11.21 5.21 2.15
Medium Transfer Function 36.01 41.81 0.86
Complex Transfer Function 114.08 67.61 1.69
5 Input Summer 252 0.74 3.41
3 Output Demultiplexer 1.21 0.55 2.37
Gain 1.65 0.47 3.51

Table 5: Library Module Execution Time Benchmarking
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Simulated | Measured
Algorithm Mapper Cycle Cycle
Time(uS) | Time(pS)
VAP Flight MM 290.93 354.00
Control Law
GA+model 113.62 281.00
GA-+hard. 240.76 239.00
Independent MM 117.27 128.00
Path VAP Flight
Control Law GA+model 117.27 127.00
GA-+hard. 117.27 120.00
Turnip Helicop- MM 230.08 299.00
ter Flight Control
Law GA-+model 111.00 195.00
GA-thard. 327.87 168.00

Table 6: Algorithm cycle times
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