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Abstract
_' Selective model structure and paramcter updating algorithms are introduced for both the on-
‘ line estimation of NARMAX models and training of radial basis function neural networks.
Techniques for on-line model modification which depend on the vector-shift properties of
. regression variables which are widcly used for lincar models cannot be applied when the model is
nonlinear. In the present paper two new mcthods for on-linc model modification are developed.
. The first is based on sclectively updating the nonlincar model structure and this leads to a
reduction in computational cost. The second is buscd on sclccting specified regression variables to
efficiently obtain nonlinear models for applications such as one-step-ahead controllor design.
Experiments on both simulated and rcal data scts arc used (o demonstrate the performance of the
new algorithms.

Keywords
adaptive structure detection, on-linc processing, sysiem identificatiion, ncural networks
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1. Introduction

Lattice algorithms and related techniques that are widely applied for the on-line
modification of model structure for linear models cannot generally be applied in the nonlinear
cases because most nonlinear models do not satisfy the simple regressor-shift properties on
which lattice type techniques are based. It is therefore necessary to develop new efficient
methods for nonlinear systems. Two adaptive model selection methods for nonlinear systems
have been developed in previous studiés using numerically stable orthogonal routines with
forward selection including both exponentiul and sliding data windows 202!, Both these
algorithms can minimize the loss function at each step by selecting significant variables while
maintaining the orthogonality of the vector space as each new observation is processed. These
algorithms can be used to determine the model structure and parameters on-line and have
demonstrated a satisfactory performance in experiments.

However both these algorithms modify the model structure at every sample instant in a
point-updating manner. But many systems have a stable structure over long time periods and
therefore the operation of adjusting the model structure at every computational interval
becomes unnecessary. The main focus of the present study is therefore to introduce new
algorithms which only selectively update the mode!l structure when the underlying system
shows significant change according to some specified criterion, so that if model structure is
stable only the parameters are updated based on the model structure determined at the
previous selection step. It is therefore important to develop methods for selectively updating

the model structure. The use of these methods should also reduce the computational cost.

e

Sometimes it may be difficult to specify a tolerance which can be used to determine whether
the system structure has changed. When the structure of the system is stable over a long
period, the tolerance may be considered as the mean of the residuals in a large data window
and this leads to an adaptive search scheme for updating the model structure.

In some applications the selected regressors must be constrained to include some
specified variables. One su-ch application is the one-step-ahead control of nonlinear systems.
This requires that the control term u(r) must be maintained in the model at every time point.

The models fitted using such methods reflect both the system dynamics and simplify the design
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of controllors. The estimator is therefore required to select the optimal regressors with some
restrictions on candidate regression variables and it is shown that conditional-selection can be
realized using an extension of the adaptive orthogonal algorithms based on either point- or
selective-updating.

Radial basis function neural networks (RBFN) have been extensively applied in system

| modelling and signal processing. In radial basis functions network every output of the network
is a linear combination of the outputs of neurones from a single hidden layer. Since the
NARMAX model may involve different functions, called the extended model set 2, RBFN can
be considered as part of an extended set of the polynomial NARMAX model. The on-line
algorithms derived for the polynomiul NARMAX model can therefore be extended to the
training of RBFN. The present study will focus on applying the selective structure updating
algorithms presented in this paper to radial basis function networks.

The paper is organized as follows. Section 2 describes the NARMAX model. The
Square-Root-Free version of Givens rotation with Forward selection and EXponential
windowing algorithm (GFEX) will be briefly derived in Section 3. Section 4 introduces
methods for model selective structure updating to suve computational cost for systems with
stable model structures. In Section 5 the conditional selection of regressors is discussed for
one-step-ahead control of nonlinear systems represented by the NARMAX model. In Section
6 the results from the previous sections are extended to RBFN. The final two sections contain
experimental results and conclusions. For clarity only the exponential windowing algorithm
will be considered here, but the principles described can easily be carried over to the sliding

window algorithm 2!,

2. The NARMAX Model and the Extended Model Set
. # A single-input single-output NARMAX '8 can be defined as
' YO =FLy(=1),., =1, ult =d), oo, u(t=d =1, +1),£(t=1),...,6(t =, )] +£(2).
(2-1)
where y(1), u(t) and £(r) represent the output, input, und residual respectively at time interval

t, n,, n, and n_ are the corresponding orders, F|.| is some nonlinear function and 4 is the
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minimum time delay of the input. In practice the noise e(t) cannot usually be measured and
therefore all variables related to the noise have been replaced in (2-1) by the residual which is
defined as

e(t)=y(r)-y(1) (2-2)
where + denotes estimate of. The polynomial NARMAX model often involves power and

cross-product terms of the inputs, outputs and residuals. For example, a polynomial
NARMAX model with a nonlinearity n, =2, n, =2, n, =n_=1and d =1 can be expressed as
Y(£)=0o(1)+y(1=1)8, (1) + y(1 = 2)8, () + u(1 = 1)B; (1) + y* (1 = 1)B, (1) + y(2 = 1) y(t - 2)8,(r)
+Y2(1=2)8, (1) + y(r = Du(u=1)0, (t) + y(r =2)u(t = 1)8, (2) + u* (1 = 1)8, (1)
+(t=1)8,, (1) + €2t —1)8,, (1) +£(r = 1) y(t = B, (1)
+e(r—=1)y(t—=2)0,, (1) +e(r = Nu(z=1)6,, (1) +£(r).
and can be represented concisely as a pseudo-linear regression model

y()= i¢;(f)9f(f)+5(f) (2-3)

i=0
where ¢, (1) expresses the i'th regression variable (regressor) which are monomials of lagged
u(t), y(1) and/or €(t), ¢,(t)=1, 6,(r) is the unknown parameter corresponding to ¢,(t) and
m is the number of the regressors (in the ubove example m =15). A variable structure
NARMAX model can be obtained by replacing m with u variant m(z) in Egn (2-3).

The choice of functions F[.] in (2-1) are various and the generalised polynomial
NARMAX models may involve different functions, such as absolute value, exponential,
logarithmic, sgn(.) etc. 2. Since every output of the radial basis function network can be
expressed as a regressor which may involve different kinds of activation functions (radia) basis
functions), the RBFN can be considered as an extended set of the polynomial NARMA)E
model and methods developed for the polynomial NARMAX model can therefore be applied

to RBFN's. The extension to the RBFN will be considered in detail in Section 7.

3. Square Root Free - GFEX algorithm
The on-line model selection and purameter estimation algorithm derived previously by

Luo et al % involves square-root Givens rotation routines that are considered to involve




higher computational costs than the square-root-free routines 314, Unfortunately the square-
root-free Givens rotation routines given by Gentleman 314 are not so easy to apply for
structure detection, because these routines change the scaling factors and hence affect the
structure detection. A square-root-free version of the GFEX algorithm will therefore be
derived by modifying the original square-root-free Givens routines of Gentleman. Full details
are given in Appendix I. The new routines cun be used in recursive orthogonal transformation,
retriangularization and on-line structure detection. |
The regression equations for data at the time points 7, 2, ......, t can be given as

y(£)=®(0)0(r) +e(r) _ (-1
where ®(z), 6(r), y(r) and €(z) have corresponding dimensions. The least squares solution
for 6(¢) can be obtained by solving the normal equations

OT(ND(1)B(1) = DT (1)y(r) . (3-2)
Unfortunately, the matrix &7 is often ill-conditioned and can be greatly affected by roundoff
errors. The problem of ill-conditioning can be particularly serious in overparameterized
polynomial nonlinear models which involve a large number of candidate regressors where the
nonlinearity is of a high degree. One solution to this problem is to use orthogonal
decomposition

®(1) = QR (1) (3-3)
where Q(¢) is an orthonormal matrix and R(r) is an upper triangular matrix. Substituting
(3-3) into (3-2) yields

ST (NDNB(1) =R"(NQT(NQMR(1B() =R (NR(1)B(1) =R (1)Q" (1)y(r)
and therefore R(£)8(2)=Q7 (1)y(1). If R(z) is non-singular the estimate of 6(r) can easily be
obtained by solving the above triangular system.
Such an orthogonal decomposition process .miy be performed in a recursive manner.

Assume that the regression equations corresponding to m time points and m regressors have
been decomposed to form

R(m)8(m) = v, (m)-Q (m)e, (m)




where v, (m)=Q" (m)y(m) and €, (m) is the residual vector. When data at time point m+1
needs to be added to improve the previous estimates, the procedure may be executed using an
augmented form of the above equatioqrs given by o

[:((:i 1)}9('") - [;'{;’Tl)}{gq(m)}“(m) ) L m+ 1)}’
where g(m+1) is the a priori prediction error defined by g(m+1) = y(m+1)—¢(m+1)8(m)

and O, is a zero row vector. Further orthogonal decomposition yields

. 1
[R(m+l)}e(m+l) =[vm(m+1)J_Qr(m+1)[em(m+ )],

0, v(im+1) ge(m+1)
where O, is a zero row vector. Since v(m+1) is not used to determine é(m+l) using the
backsubtitution operation, this may be replaced by a zero element, O,. Later data are located
sequentially in the positions of O, and v(m+1) and re-transformed using orthogonal routines
so that the estimate of é(r), (t=m+2,m+3,...... ), can be obtained sequentially. The

implementation of the decomposition is recursive and the transformed form at time point ¢

should be
R()]- v, (1) g, (2]
8= " " |-Q’ " 3-4
[01 J(t) [02 J Q ([)L(I)J (3-4)
The corresponding residual sum of squares (RSS ) can be computed from
RSS @) =[e@)] =y ~[v. @ =y" ©y)vL)v, (1) : (3-5)

Combining R(¢) and v,_(r) to form an augmented matrix

R(1) v,(1)
0, O

(3-6)
Using the square-root-free algorithm (A-1), the row vectors of R(r) mentioned above should
be scaled by the corresponding diagonal elements, namely,

R(1)=D"R"(r) (3-7)
and correspondingly

v,.()=D"v (1) (3-8)
where D(z) is diagonal and R"(z) is an mxm upper triangular matrix with unit diagonal

elements. Since the procedures for selecting regressors, which will be described later, involve

the exchange of column vectors and retriangularization of the upper triangular matrix, the

matrix (3-6) is modified to the following form




[ dirr i Vi ]
dy 0ry Fim V2
D'R'v, | | . .. . - (3-9)
0,0,0,
g, 00 0 v
L O; 0, 0, |

where D" =[d,,...,d_]" consists of m diagonal elements of D(z) and O, is the zero element.

In the exponential windowing methods a forgetting fuctor A should be used to multiply
d,,....d, when a row of new data are added into the bottom row of the matrix (3-9). To
clearly express the operations the notation "t” has been ignored in (3-9) and such a
simplification will be used throughout the remainder of this section.

In the initial stage of processing many candidate regressors may emerge but most of
these are often insignificant or linearly dependent. This means R may be singular and
therefore there is no unique solution to the normal equations. But if adeqruate techniques are
applied to R, the linear independent regressors can be decomposed and the significant

regressors which should be in the model can be determined based on a pre-set tolerance of

RSS. Dividing (3- 5) by y"y gives the normualized RSS (VRSS), given by

NRSS =1- A —I-ZERR (3-10)

i=l

where ERR‘.=d,.(v: )2/ y'y. This is defined as the error reduction ratio (ERR) of the
orthogonal vector q, !92. In the exponential windowing methods D” is exponentially weighted
at every time interval and therefore v, (=D"?v. ) is a weighted quantity. Correspondingly
y'y should be taken as the weighted value in the exponential window. The values of d, (v, )?
or ERR, can conveniently be utilized to select significant regressors from all the candidate
regression variables by using a forward search procedure so that every selected variable

minimizes NRSS(t) at every selection step. The number of selected regressors at time ¢, named




m,, will normally be less than the number of candidate variables, m. Therefore the selection
will be continued for m, () steps until

m, (1)

NRSS ., =1- Y ERR,(1) <&, (3-11)
i=]

where &, is a pre-set tolerance. Generally, the selected variables at every computational
interval are different and the number of these regressors, m (), is ime-varying, .

Assume that the j'th optimal regressor is being selected. Combining the bottom m-j+1

elements of the column vectors of R”, r,, some elements of v, , v, and some elements of

D, d;, (p=Jj,...,m), forms the m-j+1 computational matrix given by

dj oV
(3-12)
_dm Tmp Vi |
where p= j,...,m. Using the orthogonal rotution in Eqn (A-1) to eliminate rj'+LP, rj.+2.p’ s

T.., Eives the result v, located at the position of v,. The practical operation of the above

procedure does not involve the storage of the m-j+1 compurtational marrices above and a
simple subroutine to implement this is given in Appendix II. According to (3-10) the regressor
with the maximum d, (v} ,,) is selected as the j'th optimal regressor so that the NRSS can be
minimized at the j'th selection step. Then the column vector corresponding to the selected
optimal regressor is exchanged to the position of the j'th column vector of R”. To maintain
the orthogonality of the vector space, a retriangularization procedure must be performed using
the formula given in (A-1). The selection stops if the critical value is satisfied for Eqn (3-11),
where m, (z) = j and the resulting model is the sub-model available at time point r.

The operation may be summarized briefly into follows: -

(1) Add a row of new data into the bottom row of the augmented matrix (3-9), multiply
d,, ..., d, by the forgetting factor A ;

(ii) Update y"y by multiplying the previous vale of vy by A and then adding y*(z)

(iii) Perform an orthogonal transtorm using Givens rotation to produce a new matrix that

is of the form of (3-9);
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(iv) Using the subroutine in Appendix I, compute d,(v))* and select the optimal
- regressor with the maximum d, (v, )? by selecting the columns of R”;
(v) Exchange the column vectors of R™ and then retriangularize R” and v:“ in (3-9);
(vi) Continue the selection until (3-11) is satisfied, e.g. m, regression variables are
selected;
(vii) Use back-substitution to obtain estimates of the parameters 6,, i=1,...,m_ from
R;. (this is the top left triangular portion of the final R"), v:,. (which consists of the first m,

elements of v, ) and d,, (which consists of the first m, elementsof d,).

(viii) Compute the residual at the time instant ¢

&(r) = y(t)—zlqh(r)@i(r)
i=0

The prediction error €(r) will become part of the next input signal if the model specification
includes noise terms. Notice that if the columns of R hive been permuted new data added in
the next computational interval must be input to the corresponding columns.

The candidate regressors can involve many terms and these should be sufficient to
describe the system dynamics in a wide range of operation. At the beginning of the
computation the algorithm also permits the addition of "empty” regrcssoré; by assigning very
small numbers to these. Variables which have not been involved as candidate regressors can
then replace these "empty" variables later in the computational process. Removing some
useless candidate variables can also be eusily realized by substituting all the elements of the
associated columns of R’ with very small numbers. An alternative method of adjusting
candidate variables is to extend or contract on-line the dimension of the augmented matrix (3-
9). All the new elements are initialized to very small numbers at time r and then the data

i associated with these new variables are added successively to the computations.

4. Selective Model Structure Updating
Under a basic assumption that the noise signal is stationary, some methods for model

structure selective-updating are considered in this section.
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When the system structure changes suddenly, the prediction error increases rapidly. This
. is because the effect of past input-output data decays based on the exponential factor A and
estimators need time to track the change in the system. If slowly time-varying systems have a
change in the structure, the estimates based on the previously detected structure cannot
always match the system dynamics very well and an appreciable deviation may appear. If the
structure does not change, the time-varying parameters can induce a deviation, but such errors
often reduce quickly when the correct model structure is applied. Based on these observations
a measurement for selectively updating the structure can be defined as the mean of the sum of
the squares of the residuals in an interval

e 1 & .
Bl ()= 2=, (4-1)

I i=0

where M, is the length of the specified interval. In every computational interval, new data are
first ransformed into the augmented matrix (3-9). The parameter estimation is then computed

based on the structure produced at time 7-1. After considering the present error, if

B () 285 (4-2)

where &,, is a pre-set critical value, the system structure will be updated at the present or

next computational interval.

The choice of M, should minimize the effect of large additive noise signals and cancel

out the periodicity of the prediction error if the signal to be processed has periodicity. But a
large value of M, reduces the capacity for detecting 4 change in the structure. Ideally M,

1
should be smaller than the asymptotic memory length N, (= ﬁ) 12,

Although both &, in (3-11) and &, in (4-2) are based on the sum of squares of the
residuals, the role of each is different. £, controls the reasonableness of sub-models subject to

the least squares principle and uses data based on the dimension of the exponential window,

namely the asymptotic memory length N,. But &, determines the update of the structure

based on a time average over a measurement length M . Therefore &, is similar to a bound

on the errors. Since the GFEX algorithm always uses stable Givens rotations to completely
transform the new measurement data into the augmented matrix (3-9), the complete

information about the system structure and parameters can be represented concisely in this




)

matrix. Thus at a particular time instant both the point-updating and selective-updating

method should result in the same model, but the latter saves computational cost.

Ideally éM‘ should be selected close to the meun of the sum of the squares of the noise

given as
1

"
o)== e =i, (4-3)

s i=0

Since e}, ,(¢) is unknown, &,, will be considered as a criterion of the square of the residuals.

Usually, it is difficult to design the optimal value of §,, , but an approximate value can be
found in an adaptive search scheme.
Define

M= :
Eiq',m(f)='"ﬂ'§"‘ ZEZ(I—I') (4-4)

a =0

where M, is a large number compared with the asymptotic memory length N, so that

ei,‘m(r) is the time average over a large period and ¢(r) has been replaced by €(z). Take the

minimum of &2, w), i=1=M_ +1,...,1, as the optimal approximate value of &, . Then

design

€y, =min (e}, () xa i=1=M,+1,...1 (4-5)

where the coefficient o is chosen typically as 1.0~2.5. Since efwﬂ(,)(i) is usually computed

recursively, to avoid the effect of very large residuals and to ensure the correct structure, it is
necessary to detect the structure regularly. For example, a regular detection manipulation
should be added to the adaptive search process and executed every M, computational

intervals where M, is a pre-set value.

Since different systems may have ditferent levels of residuals, the design of the absolute

value of &M, can become difficult. It is possible to replace the critical function Ei,l(,) (t) in (4-

1) by the normalized value €}, ,(1)/ y3 (1), where

1 M, -1
YO =—3 y (t-0) (4-6)
Mq i=0

Consequently, (4-4) is replaced by €}, ,,(1)/ y}, (,(0).

M,
In the computation of (4-1), £(1 —i) may be replaced by the priori prediction error

er=0)=y(r-)=0( - -i-1) (4-7)
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S. Reservation of Input Terms for Control Problems
In some applications, there are some requirements on the selection of regressors. For
example, one-step-ahead adaptive controllers '¢ usually require that the control term u(r) can
be easily expressed as a non-zero monomial in control equations given in
u(t)=Fly@+d),y(@),...y(t=n ) u(t=1),...,u(t=n,)] (5-1)
where F[.] is some function, y(r+4) is the desired output and d is the time delay. If nonlinear
models of the form of (5-1) can be estimated on-line, good one-step-ahead control
performance should be possible for complex nonlinear systems. This can easily be realized
using the GFEX algorithm with a judicious selection of the regressors. Assume a predictor is
represented by the following NARX model
y(t) = ieb‘-(y(t-d),...,y(z—d—ny),u(r =d),.u(t—=d-n))0,(rt=d)+€(1). (5-2)
i=l

The form of u(r-d) terms in sub-models produced by the on-line estimators can be constrained
using the GFEX algorithm so that after simple transtormation a fitted sub-model can have the
equivalent form
y(t)= P[] Flu(t-d)]+ Al.] ‘ (5-3)

where F,[.] is one term selected from u(t—d) or W (t—d) or u’(1—d), and R}, BJ.] are
polynomials excluding F,[.]. Such a restriction can reduce computational costs and avoids
cases where the control equation has imaginury solutions. For example, the solution of a sub-
model given by y(r) =a,y(r—1)u(r—1)+hu’ (¢ —1) may involve imaginary numbers for some
choices of the coefficients a, and b, and hence this form of sub-model should be avoided.
Similarly, the form with u?(r —d) must be used carefully. Using (5-3) the control law (5-1) is
easily obtained. For example, for the two models

y()=a,y(t=1D)+by(t=Du(r=1)+c¢,y(t=2)u(r=1)
and  y(£)=a,y(t—=2)u’(t=2)+h,y(t=3)u(r - 4)

where a,, b,, c¢,, a, and b, are coefticients, the one-step-uhead control law is given as
Y+1)—a,y(r)
by(t}+ay(t—1)

u(t) =

and




D |

2)=byy(t=Nu(r=2)
u(t)=(z(t+ )=byy (1 =T)ulr ))A
a; y(1)

respectively.

In the initial design of candidate variables two methods may be adopted. The first
involves considering a single form of control terms, say u(r-d). In the selection of TEZTESSOTS
every fixed sub-model must contain one or more terms which are monomials or products of
u(1-d). Another method is to design different forms of control terms, but the selection is still
constrained to obey the above restriction on the form of terms. Under this restriction optimal
sub-models cannot always be produced at every computational interval, but sub-optimal sub-
models can usually be found by means of the design of candidate variables and the flexibility in
selecting regressors using the GFEX algorithm.

The method for conditional selection of regressors can be extended to multi-step-ahead
control and other applications. In the above discussion the problems of dividing by zero and
control stability, were not considered. These issues can be solved by combining the GFEX

algorithm with other techniques 6.

6. Extension of the Algorithms to Radial Basis Function Networks

RBF approximations were originally investigated for numerical interpolation in
mulddimensional space 2425. A generalized form of the RBF expansion was introduced by
Broomhead and Lowe * and this provides a more suitable basis for system modelling and other
applications of signal processing. The basic structure of a RBFN consists of three layers an
input layer, one hidden layer and an output layer. The neurones in the hidden layer perform a
nonlinear mapping but the neurones in the input and output layer just effect a linear

ransformation. A RBF approximation with n, input variables (e.g. n, =n,+n,) and a

constant input term takes the following form

F(x)=8,+>.8, w(|x—x) (6-1)
i=1
where x & R™, represents the input data vector, X, €A™, is the i th centre, 0<i<n_, n, is

the number of RBF centres (neurones), || denotes the Euclidean norm, w(||) represents the




activation function (RBF), 6, and 6, are the parameters associated with the constant input
and the activation function corresponding to the i th centre respectively. The centres are
usually chosen as a sub-set of the input datw or distributed uniformly in the input space. The
choice of activation function can be varied but popular choices are the thin plate spline
function
V() =4 logp,
and the gaussian function
W (i) =exp(=p?/p®)
or the multiquadric or inverse multiquadric function, where , =|]x - x‘.“, and P is the width.
It has been shown that RBF posses the property of the best approximation but multilayered
perceptron neural networks do not '3. Many studies of RBFN, e.g., Chen et al %10, Leonard
and Kramer !7, Park and Sandberg 22, etc., reveal very good performance in a wide range of
applications. To use RBFN suitable neurones {centres) of the hidden layer have to be
determined from a large number of candidute centres. Off-line solutions to this problem have
been suggested based on modified Gram-Schmidt orthogonal wansformations with forward
selection procedures %103, These methods can usually be used to provide good global
solutions for time-invariant systems but they are inappropriate for time-varying systems.
Consequently on-line estimation should be considered. Most of the published results relevant
to on-line processing methods work in such a way that the structure of RBFN, that is the
number and position of the centres, is determined initially using off-line methods, and then the
parameters, i.e. connection weights, are estimated on-line. A recursive hybrid algorithm based -
on this principle was suggested by Chen er al ' und this algorithm has been extended and
applied in adaptive noise cancellation by Billings and Fung ¢. In the hybrid algorithm k-means
clustering is used to locate the positions of the centres und Givens rotation is used to update
the parameter estimates at every computational step. Since the number of the centres is fixed
at the beginning of the computation, the ability to model time-varying structure systems is
restricted. Poggio and Girosi 23 showed that the performance of the network given in (6-1)

can be improved by including direct links of the input signals to give
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FR=0,+36, wlx-x) + 2.6, 5., (6-2)
i=]

i=l+n,

In fact Eqn (6-2) can be considered as an extended polynomial NARMAX model and can be
concisely represented in the form of Eqn (2-3) as a pseudo-linear regression model

Fx)= 0,108, (1) +£(1) 63)

i=0
where m, =n_+n, +1, 0,(r) denotes regressors which are either the radial basis functions or
direct links X;_, » and the parameters can be time-varying 8,(z). The GFEX algorithm and
variants derived in Section 3, 4 and 5 can therefore be readily extended for on-line structure
detection and parameter estimation of RBFN.

The algorithms derived in Section 3 and 4 can be applied directly to the RBF problem
and will not be repeated here. In applications where control terms are required for one-step-
ahead control, the same control terms should not be used to compute the norms p,. Initial
centres can be arranged in a grid in the input space bused on a knowledge of underlying
system or selected randomly from the first few data points and then adjusted on-line using
"empty" regressors or by modifying the dimension of the computational matrix (3-9). To
simplify the problem in the present study the candidate centres will be considered to be fixed
in advance. The derivation of more flexible raining methods will be addressed in subsequent

papers.

7. Experimental Results

Two experiments will be used to illustrate the methods described above. The first
experiment was performed on a simulated system and the second relates to a pilot scale liquid
level system. For convenience, in this section the Point-Updating GFEX algorithm will be
referred to as the PU method, and the Selective Updating methods with a fixed Tolerance and
with an Adaptive search scheme will be referred as the SUT and SUA methods respectively.
7.1 Experiment 1: A Simulated System

To illustrate the new algorithms, a time-varying system will be simulated where both the

structure and parameters change suddenly. The first 250 data points were generated using a

linear model




2(1)=0.5z(t =) +u(t-1)
y(@)=z(r)+e(r)
and the second 250 data points by a NARMAX model
2(1)=0.2z(r=1)+0.8u(r = 1)+ 0.1 (s =1)
y(£)=z(1)+e(r)
Notice that the models relating y(z) to u(r) will involve coloured noise terms.

In the test, the input signal u(r) was an independent sequence of uniform distribution with
zero mean and variance of 1.03, and the noise signal ¢(r) was a Gaussian white noise with zero
mean and variance 0.005. The system output is illustrated in Fig.1. The first five hundred data
samples were used to fit a time-varying NARMAX model using the PU method with initial
parameters

n=n,=n=n=2 & =001, A :0.97.
The total number of the candidate variables is 28. The results are tabulated in Table 1 and
illustrated in Fig. 2 and 3. Fig.2 clearly shows the change in the number of selected regression
variables from point 250 onwards. Fig. 3 illustrates a similar effect showing how the u?(r—1)
term is selected and the parameters of the linear terms are updated. The estimator tracks both

the change in model structure and the changes in individual parameter values.
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Table 1: Simulated System (point-updating, tolerance)
point term 6 ) ERR
u(r=1) 1.0000 1.0116 0.7332
250'th y(-1) 0.5000 0.5110 0.2636
wr(r=1) none none *
u(r=1) 0.8000 0.7927 0.9236
500'th yir—1) 0.2000 0.2015 0.0519
u(r=1) 0.1000 0.0981 0.0210
sse = 2.3338 ol =0.0047 e'e/y"y =0.0043

The same data set was processed using the SUT algorithm with
=2 €.=001, 3A=097,

n,=n,=n =

M, =20, &, =0.05
Model structure updating was only triggered at 43 data points and this is much less than in the

point-updating method. Most of the updating operations happened in the initial stages of

processing and the period when the system structure appears to change, Fig. 4. Inspection of

the results, Table 2 shows that the estimator produces the correct system structure and good
500

parameter estimates. The sum of squared errors (sye =Z e*(r) ) was 3.395 which is larger

1=
than in the point-updating methods, Table 1. Since the SUT method selectively updates the

model structure based on the critical value &, and does not perform point by point
operations based on §_, the errors may be slightly larger over the period when the structure

changes. But such errors reduce continuously when the structure is stable. It is worth noting

that at the 250'th and 500'th point the sub-models from PU and SUT are the same although



the number of structure updates has been considerably reduced in SUT. The parameters

profiles
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Table 2: Simulated System (selective-updating, tolerance)
point term 8 8 ERR
u(r—1) 1.0000 1.0116 0.7332
250'th y(-1) 0.5000 0.5110 0.2636
w(t-1) none none *
u(r=1) 0.8000 0.7927 0.9236
500'th yi=1) 0.2000 0.2015 0.0519
u (=1 0.1000 0.0981 0.0210
Structure Upd. No.=43  sse=3.3951 o> =0.0068 &'e/y"y=0.0062

in Fig. 5 show that the transition between the 250th and 350'th point is still smooth, especially

for the parameter y(z-1).

The SUA method was also used to process this data set. The initial parameters were
=n=2, £,=0.01, A=0.97,

n=n-=n

y u €

M, =20, M, =30, M,=70, a=1.1.
The sub-models at the 250'th and 500'th points indicate that the adaptive search scheme has .
performed well and the fitting is good, Table 3 and Fig. 6. The sse is 2.621 which is lower
than that from the SUT method. In the period where the structure changes the transition of
y(t-1) (Fig. 7) is not very smooth, compared with the PU and SUT routines. This is due to the
adaptive search process used for the tolerance. Although the total number of data points was

500 the operation of updating the structure was only performed at 218 points.
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Table 3: Simulated System (selective-u utin:_{_, adaptation)

point term 6 8 ERR
u(r=1) 1.0000 1.0116 0.7332

250'th y(r=1) 0.5000 0.5110 0.2636
ui(r-1) none none *
u(t=1) 0.8000 0.7927 0.9236

500'th y(t=1) 0.2000 0.2015 0.0519
w(r—1) 0.1000 ©0.0981 0.0210

Structure Upd. No.= 218 sse=2.6205 > =0.0053 &’e/y"y=0.0048

7.2 Experiment 2: A Pilot Scale Liquid Level System

The system consists of a DC water pump feeding a conical flask which in turn feeds a
square tank. The system input is the voltage to the pump motor and the system output is the
water level in the conical flask. 1000 data samples were collected from this system and are
used in the present study to demonstrate how the new algorithm performs for a real system.
The input and output data are illustrated in Fig. 8.

First the PU method was applied to process the 1000 data samples. The inidal
parameters were

n=n=n=n=2 & = 0005 A=0.99.

and the number of candidates were 28. The predicted output and residuals are shown in Fig. 9

and the sub-model at the 1000'th point is tubulated in Table 4. Inspection of the result shows

that the predicted output matches the real output giving a sum of squared errors
1000

(sse=) €*(1) ) of 1.817. The variance of the residuals o (0.0018) was also small, compared

t=1
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Table 4: Liquid Level System (point- Lpdmrw tolerance)

point term e ERR
YiF=1) 1.0177 0.9586
u(t-1) 0.4660 0.0286
1000'th u(r—2) -0.2134 0.0043
y(r-2) 0.0705 0.0013
u(rt—2)u(r—1) -0.1157 0.0007
efr=1j -0.2286 0.0002
sse =1.8167 ol =0.0018 e'e/y'y =0.0044

with the results (0.0020) produced from a recursive prediction error parameter estimator .
Although the system output shows a large change at the 325'th point the estimator tracks the
change quickly and the residuals only increase over a short interval. The adjustment behaviour
can be observed from the changes of the number of regression variables in Fig. 9.
The SUT method was also used to process the same data set. The initial parameters were

n=n=n=mn=2, & =0.005, 1=0.99,

M, =2 § u, =0.05.
The results tabulated in Table 5 shows that the sse becomes 2.396 and o 0.0024. Both are_ .

just higher than the results obtained using the PU method. The maximum residual is slightly
high but is only 0.536, while in the PU method this was 0.270. It is more significant that the
points at which the structure was updated have been reduced to 48, only one twentieth of the
updates required by the PU method. The variation of the model structure can be observed

from the number of the regressors illustrated in Fig. 10.
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Table 5: Liquid Level System (selective-updating, tolerance)
point term 8 ERR
y(i-1) ' 1.0155 0.9586
u(r=1) 0.4207 0.0286
1000'th u(r=2) -0.2162 0.0043
¥ (r-2) 0.0712 0.0013
W(r=1) -0.0726 0.0006
e(t—1) -0.2810 0.0003
u(t=1y(t=1 -0.0982 -0.0004
Structure Upd. No.= 48
sse = 2.3963 o; =0.0024 e'e/y’y =0.0059
Table 6: Liquid Level System (selective-updating, adaptation)
point term 6 ERR
Wr—1) 1.0196 0.9586
u(r-1) 0.4309 0.0286
u(r-2) -0.2205 0.0043
1000'th yA(1-2) 0.0727 0.0013
u(t=Nu(r-2) -0.0750 0.0007
e(t—1) -0.3257 0.0004
u(t=1)y@-1) -0.0861 0.0003
Structure Upd. No.= 254
sse = 1.9865 o? =0.0020 e'e/y’y =0.0049

In the third part of this experiment, the SUA method was employed. The initial parameters
were designed as
n=n=n=n=2, & = 0.005 A=0.99,
M, =20, M =30, M, =65 a=11
With this initialization a time-varying model was fitted and the sub-model at the 1000'th point

is shown in Table 6. The results from this algorithm are illustrated in Fig. 11. The sse is only
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1.987 and o7 is 0.0020. Comparing the selected terms at the 1000 th point with those from
the PU and SUT method, it is found that the first four terms of the three sub-models are the
. same and have the same ERR, value (the contribution to the output). It is worth noting that
the sum of the ERR; values for the first four terms is about 0.9928. This means that the rest of

the terms in these sub-models only make a very small contribution even though these terms
are different. This difference in the mode! structures comes from the generation of the critical
values and the fact that the model structures are updated at different time instants. These
differences also induce different residual sequences and hence affect whether noise terms are
included in the sub-models. For example, the sub-models at the 1000'th point from the PU,
SUT and SUA methods involve a noise term. The points at which the model structure was
updated were reduced to 294 in the SUA algorithm.

This data set was also used to test the method of constraining a control input term in the
model for the one-step-ahead control problem based on the nonlinear polynomial model in
Egn. (2-1). The test investigated whether there was a possibility of fitting a time-varying
model containing specified control terms. Using the point-updating method with the initial
parameters

n=n=n=2 n=0, & = 0005 A=0.99,

Y

but excluding u®(r-1), a time-varying NARX model with 14 candidate variables was fitted

to the liquid level system. The results are illustrated in Fig. 12 and the sub-model at the
1000'th point is tabulated in Table 7. The sse is 1.980 and this value is close to the result,
1.817, obtained using the PU algorithm in the first part of the experiment, Table 4. It is easy,
to obtain the control equation at every time instant from the sub-models produced. At the

1000'th point, for example, the control equation is
y(+1)=101y(e)+0.210u(r = 1)=0.065y* (1 = 1)

0.424—-0.0865u(t=1)=0.0756y(r)

u(t) =
Similarly, using a set of initial parameters given as

,=n,=2, n=3, n.=0, & = 0.005 A=0.99,
but excluding all the terms containing u(-1) except w?(1—-1), w*(r-Du(t=2),

u*(t=1)y(r—1) and u*(1=1)y(r-2), to fit one time-varying model with the term u?(r—1) and



24 candidate regressors, the result indicated that the sse rises, Table 8, because the term wu(r-
1) is one of the optimal regression variables for this system. But the amplitude of the residuals

do not rise greatly, see Fig. 13. The control equation corresponding to the sub-model at the

1000'th point is given as

R e

u(r)

respectively. The above results demonstrate that using the GFEX algorithm it is easy to fit a

time-varying model containing specified control input terms to a nonlinear system and thus to

perform one-step-ahead control.

e (x(t+1)—1.442y(r)+0.481y(f—1)+O.345u3(t-1)—0.043y2(1‘-—1)+0.020)%

—0.089 +0.673u(r-1)

Fig. 12 Predicsed OQugxat, Esrors and No.of Regressors (Ligud Level Sysmm, with U(h)
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Table 7: Liquid Level System (one-step-ahead control with u(z))

point term 8 ERR
yir=1) 1.0104 0.9586
u(t—=1) 0.4236 0.0286

1000'th u(r=2) -0.2099 0.0043
yi(r=2) 0.0650 0.0013
u(t=2)u(r-1) -0.0865 0.0007
u(t—=1)y(r-1) -0.0756 0.0002

sse =1.9804 ol =0.0020 e'e/y'y =0.0048

[
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Table 8: Liquid Level System (one-step-ahead control with u?(r))

point term ) ERR
y(r=1) 1.4422 0.9586
y(t—2) -0.4808 0.0212

1000'th u(t-1) -0.0892 0.0018
W (t=Du(t-2) 0.6732 0.0012
w(=-2) -(.3447 0.0014
Y(t=2) 0.0429 0.0006
S il -0.0197 0.0003

sse =4.5349 o2 =0.0045 g'e/y’y =0.0111

The PU, SUT and SUA were applied to training a radial basis function neural networks of
the liquid level system. The main aim of this experiment was to demonstrate the ability of
RBFN's to track the system dynamics. The first 40 data points were considered as candidate
centres, and the significant centres to the output were selected from these candidate centres.
The input signals were not linked directly to the output layer and the thin-plate-spline function
was considered as the activation function. The initial parameters for three algorithms are
indicated as follows |

PU: n,=3, n,=4, n.=0, n,=1, No.of Centres =40, &, = 0.005, A =0.99,

SUT: n,=3, n,=4, n,.=0, n,=1, No.of Centres =40, & = 0.005, A =0.99,

M, =20, §, =0.05.

SUA: n,=3, n,=4, n,=0, n,=1, No.of Centres =40, &, = 0.005, A =0.99,

M, =20, M, =30, M, =65 a=1.1
From the numerical results shown in Table 9, it is observed that the sse from PU (5.238) is
higher that the value obtained from PU based on the NARX model. Large errors appeared in
several periods when the system output changed very quickly, but the estimator could still .
track such variations, see Fig.14. It is worth noting that the first 40 data points were used as
candidate centres. If these candidate centres are distributed properly in the input space, the
prediction errors should reduce greatly. But the result shows that the distribution of these
candidate centres is only sub-optimal. To improve the accuracy of the prediction, on-line
processing methods for optimizing the candidate centres should be considered. The relevant
issues will not be considered here but will be uddressed in forthcoming papers. It is also worth

noting that the computation did not involve any direct input links. The direct links usually
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improve the linear mapping of RBF networks. From the liquid level NARX model experiments
it was shown that y(z—1), u(r—1) and u(z—2)-are three of the optimal regressors. If the
existing network was augmented by adding some of these global variables, the performance
should improve. This consideration has been confirmed by the result in Tables 9 obtained from
the method relevant to one-step-ahead control where one direct link, u(r—1), was used. The
number of updates to the network structure were 52 in SUT and 343 in SUA respectively.
These are only a fraction of the updates used in PU, but the cost is an increase in the errors,
illustrated in Fig.15, 16 and Tables 9. Therefore the use of SUT and SUA should be balanced
between the accuracy of the prediction and the requirement of the constraints for control.

The data set was used to investigate the method of constraining a control input term in
the RBFN for one-step-ahead control. The initial parameters were given as

n,=3, n,=4, n,=0, n,=1, No.of Centres =40, §, = 0.005, A =0.99,
and the first 40 data points were considered as the candidate centres. Only one input u(t—1)
was linked directly to the output node. Consequently the control input can easily be computed

using the equation

Y+ 1)—é0 = iéiw(“x‘ _f_'_”)
u(t)= =

D

where x, is the data point available up to time ¢, that lies in the input space made up of y(r),
y(=1), y(t=2), u(r-1), u(r—2) and u(r-3). Fig.17 shows that the estimator can track the
system dynamics well.- Since the input signal was linked directly to the output, the
performance of the estimator was improved and the sse shown in Table 9 is less than the
values obtained from other RBFN's without direct links. But the value is still higher than the
level obtained from the prediction for one-step-ahead control using the NARX model,
Table.7. This is because the initialzation of the candidate centres has not been optimized as

mentioned above.
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Table 9: Liquid Level System (RBFN with PU, SUT, SUA and Control Relevant method)
Method sse c? ee/y’y Upd. No.

PU 5.2380 (0.0052 0.0128 997

SUT 8.3698 0.0084 0.0204 52

SUA 5.7469 0.0057 0.0140 343

Control Relevant 2.9920 0.0030 0.0073 996
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8. Conclusions
A square-root-free GFEX algorithm and variants of it have been derived for nonlinear

NARMAX models and RBF networks. The operation of these methods does not depend on
regressor-shift properties nor is there a need to store all regression data and orthogonal
vectors. The numerical results show that the algorithm can determine the model structure on= -
line and update estimates of the corresponding parameters, so that the sum of squared errors
is minimized.

The selective structure updating method can greatly reduce the computational cost using
both a fixed tolerance or an adaptive search procedﬁre. The estimates produced by these
methods often exhibit a smooth ansient when structure changes. The fixed tolerance method

has a relatively low computational cost but the design depends on a knowledge of the
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underlying system. The adaptive search method avoids this problem and can provide more
flexibility for adaptive signal processing.

A conditonal selection of regressors for one-step-ahead control problems has also been
discussed. The GFEX algorithm provides an easy method for selecting the regressors and
designing one-step-ahead controllers. A real system was used to demonstrate the performance
of this algorithm which easy be extended to other adaptive control applications.

The application of GFEX to training radial basis function networks provides an ability to
track changing systems. However the initialization of the candidate centres is very important.
Methods which use the fixed centres selected from the initial data set may not be the best
choice, unless these points are distributed uniformly in the input space. Worthwhile
improvement can be obtained using either k-means clustering or adaptive generation of the

candidate centres and these issues will be addressed in subsequent papers.

Appendix I: A Modified Version of Square-Root-Free Givens Routine
The transformation of two rows, for exumple, the {'th and j'th rows, is presented as

follows
rowi: 0,..,0,\d, ¢ Jd ¢ urronifd . = ()‘...,(),\/d_,'c:_',‘, N . g

row s OpunsOiufd; €4 33]d; € pionss d;C, e = 0....0, 0, 1/djcf.‘,m,..., d;Cjm

where ' denotes transformed quantities. Note that the above transformation does not require

=1
d;=(Jd ) +(Jd; ;) =di () +d, ()} (A-1a)
d;c; d;c
a=— b=—= A-1b, A-1
’; ) ( c)
¢, =ac, +bc, (A-1d)
. _dd;, ad,
d;=—L(=—%) (A-le)
d, Cix
Cip =€k Cjp ~Ci Cp (A-1D)
where p=k,...,m+1. It is obvious that if ¢/, =1 this is equivalent to the formulas in

(Gentleman 1973, 1974).
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Appendix IT: A Subroutine for Selecting Regressors
Assume that the j'th optimal regressor is being selected. The column vectors of R”, rp
p=j,...,m, have the form
- - L - - T
r,=[n,n,..r,0..0].
set v%,, =d;(v})* and the three auxiliary variables

d(J')

i(p)

i D =, 5
Sl y By =y Vi =V -
fori= j+1,..., p. Based on (A-1) calculate

d(i} =d(i-l) (rFi—l))2+dE‘(’};)2

itp) ity M jlp)
G=1) . Gi=1) -1y,
oo _di(P)rf(p) -1, Diip licpy -
ie) = d(i) i d(s’) ip
i(p) ip)
and finally
2 _ q(p) (p) 2
Vit =90 (Vi)™ -
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Fig.1a System Output (Simulated System)
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Fig.2 Predicted Output, Errors and No.of Regressors (Simulated System, PU)
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Fig.4 Predicted Output, Errors and No.of Regressors (Simulated System, SUT)
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Fig.8 System Output and Input (Liquid Level System)
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Fig.8 Predicted Output, Errors and No.of Regressors (Liquid Level System, PU)
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Fig.10 Predicted Output, Errors and No.of Regressors (Liquid Level System, SUT)
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Fig.11 Predicted Output, Errors and No.of Regressos (Liquid Level System, SUA)
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Fig.12 Predicted Output, Errors énd No.of Regressors (Liquid Level System, with U(t))
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Fig.13 Predicted Output, Errors and No.of Regressos (Liquid Level System, with Ur2(t))
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Fig.14 Prediction Errors and ‘No.of Centres (Liquid Level System, RBFN, PU)
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Fig.15 Prediction Errors and No.of Centres (Liquid Level System, RBFN, SUT)
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Fig.16 Prediction Errors and No.of Centres (Liquid Level System, RBFN, SUA)
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Fig.17 Prediction Errors and No.of Centres (Liquid Level System, RBFN, Control U(t)
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