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Using Ion Mobility Spectrometry–Mass Spectrometry to Decipher the
Conformational and Assembly Characteristics of the Hepatitis B Capsid
Protein

Dale A. Shepherd, Kris Holmes, David J. Rowlands, Nicola J. Stonehouse,* and Alison E. Ashcroft*
Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom

ABSTRACT The structural and functional analysis of the core protein of hepatitis B virus is important for a full understanding of

the viral life cycle and the development of novel therapeutic agents. The majority of the core protein (CP149) comprises the

capsid assembly domain, and the C-terminal region (residues 150–183) is responsible for nucleic acid binding. Protein mono-

mers associate to form dimeric structural subunits, and helices 3 and 4 (residues 50–111 of the assembly domain) have been

shown to be important for this as they constitute the interdimer interface. Here, using mass spectrometry coupled with ion

mobility spectrometry, we demonstrate the conformational flexibility of the CP149 dimer. Limited proteolysis was used to locate

involvement in this feature to the C-terminal region. A genetically fused CP dimer was found to show decreased disorder, consis-

tent with a more restricted C-terminus at the fusion junction. Incubation of CP149 dimer with heteroaryldihydropyrimidine-1, a

small molecule known to interfere with the assembly process, was shown to result in oligomers different in shape to the capsid

assembly-competent oligomers of the fused CP dimer. We suggest that heteroaryldihydropyrimidine-1 affects the dynamics of

CP149 dimer in solution, likely affecting the ratio between assembly active and inactive states. Therefore, assembly of the less

dynamic fused dimer is less readily misdirected by heteroaryldihydropyrimidine-1. These studies of the flexibility and oligomer-

ization properties of hepatitis B virus core protein illustrate both the importance of C-terminal dynamics in function and the utility

of gas-phase techniques for structural and dynamical biomolecular analysis.

INTRODUCTION

Hepatitis B virus (HBV) poses a major risk to human health,

with chronic infections in excess of 350 million worldwide

(1). These infections are associated with a significantly

increased occurrence of hepatocellular carcinoma (2). HBV

is an enveloped virus with a partially double-stranded DNA

genome. The genome codes for four classes of protein: the

surface antigen, the reverse transcriptase, the X protein (a

transcription activator), and the capsid (core) protein (CP).

A detailed understanding of the virus replication cyclewould

aid the development of new remedies, and one possible target

for future antiviral therapy is the virus assembly process.

In vivo virus assembly is initiated by the association of the

pre-genomic RNA with the reverse transcriptase and core

proteins and results in the formation of icosahedral nucleo-

capsids (3); however, the core protein has the ability to

assemble spontaneously into capsid-like particles in vitro.

Recent studies conducted on the in vitro assembly of the

HBV core protein have focused on the recombinant

C-terminally truncated assembly domain as a model system

for capsid assembly (4–7). The core protein assembly

domain up to residue 149 is dimeric and has been shown

to form capsids in vitro that are indistinguishable from those

isolated in phosphate-buffered saline from infected patients

(8). These capsids are composed of either 90 or 120 dimers

each, with T ¼ 3 or T ¼ 4 icosahedral symmetry, respec-

tively. Theoretical modeling of the assembly process has

suggested that aggregation occurs through a kinetically

limited mechanism nucleated by a trimer of dimers (6),

and it has been proposed that weak cation binding induces

a crucial conformational change in vitro (5). Other evidence

for a nucleus composed of a trimer of dimers has come from

structural studies using ion mobility spectrometry–mass

spectrometry (IMS-MS) with a CP140 construct that sug-

gested an incomplete capsid five-fold vertex as the assem-

bly-competent conformation of this nucleus (9).

The x-ray crystal structure of the intact T ¼ 4 capsid (10)

(Fig. 1, a and b) shows the HBV core protein to be predom-

inantly a-helical, with five helices linked by flexible loops.

Helices 3 and 4 of each monomer make up the intermonomer

interface, a four-helix bundlewith a disulphide bond between

the two Cys61 residues. The C-terminal region following he-

lix 5 lacks structure and has high crystallographic B factors.

The four conformers (A to D) are very similar and both A/B

and C/D dimers have well-defined two-fold symmetry.

However, using x-ray crystallography an assembly-

incompetent Y132A mutant has been shown to aggregate

into asymmetric dimers, with the main differences in the

spike regions. This has led to speculation that a conforma-

tional switch between assembly active and inactive states

is key for assembly (7). NMR spectroscopy has shown the

C-terminus to be subject to high picosecond dynamics,

and that asymmetry is induced in the structure of the core

protein on binding to anti-HBV peptides (11). In addition,

kinetic hydrolysis experiments have suggested a major un-

folding event in the C-terminal region in both capsid and
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dimer forms (12). However, the conformeric signature of

wild-type HBV core protein, and any changes that may be

involved in or required for the start of its assembly into cap-

sids, has not been defined in any detail.

Noncovalent electrospray ionization–mass spectrometry

(ESI-MS) is accepted as a valuable technique employed in

structural biology for studying the conformational proper-

ties of proteins and the stoichiometry and dynamics of

biomolecular assemblies (13,14). More recently, with the

commercial introduction of integrated traveling-wave

IMS-MS instrumentation (15,16), additional information

describing the three-dimensional structure of biomolecules

is now readily accessible (17). IMS provides structural in-

formation by measuring the time taken for ions to traverse

a buffer gas-filled ion mobility cell. The arrival time

observed for an ion can be used to calculate its rotationally

averaged collision cross-sectional area (CCS), which is a

description of the shape of the ion. Using travelling-wave

IMS-MS, CCS values can be estimated after calibrating

the IMS device using protein standards of known CCSs

(18–20). IMS-MS has been used to study the conformational

properties of both ordered (21–24) and intrinsically disor-

dered proteins (25–30), the latter displaying a high degree

of structural heterogeneity making them less tractable for

analysis by established techniques such as NMR and x-ray

crystallography, in addition to providing mass, stoichiom-

etry, and low-resolution structural information for a multi-

tude of species populated within heterogeneous systems,

including viral protein complexes (31–33).

The majority of structural data on the HBV core protein

has been obtained from studies of intact capsids by x-ray

crystallography (7,10) and cryoelectron microscopy

(34,35), and a few studies have generated data on the preas-

sembled dimer (11,12). Here, we used noncovalent ESI-MS

coupled with traveling-wave IMS to gain insights into the

conformational dynamics of a dimer of the C-terminally

truncated assembly domain (CP149 dimer) and the proper-

ties of capsid assembly-related and -unrelated oligomeric

species. We have demonstrated the direct measurement

and characterization of copopulated conformeric species

of various CP149 dimers with differing extents of disorder.

Limited proteolysis and comparison of CP149 dimer with a

C-terminally fused CP dimer suggest that the disorder

observed in the former is significant and lies within the

C-termini. Furthermore, a small molecule reported else-

where to inhibit HBV core assembly (36) has been found

to induce the formation of noncapsid assembly-competent

oligomers, which are shown to differ in their three-dimen-

sional shape from assembly-competent fused CP dimer olig-

omers. The data not only illustrate the use of ESI-IMS-MS

in characterizing protein disorder and protein complex

structure, but also the importance of the CP149 C-terminus

in HBV capsid dynamics, assembly, and stability.

MATERIALS AND METHODS

Protein expression and purification

CP149 capsids (expressed as described previously (36)) were treated with

4 M urea and subjected to gel filtration on a sepharose S300 size exclusion

column (GE Healthcare Bio-Sciences, Piscataway Township, NJ) to sepa-

rate protein dimer from nondisassembled capsid. CP149 dimer was dia-

lyzed against 50 mM ammonium acetate (pH 7.5/9.5) using Slide-a-lyzer

FIGURE 1 The structure of the HBV core protein (10). (a) The core protein is predominantly a-helical and exists as a dimer. Each monomer contains five

helices numbered from the N- to the C-terminus, linked by loop regions. Helices 3 and 4 constitute the four-helix bundle that forms the intermonomer inter-

face. The C-terminus is unstructured in the crystal structure and is preceded by a trypsin cleavage site at R127 (yellow). The monomers in the dimer are

covalently bound through a disulphide bond between the two C61 residues (green). (b) The T ¼ 4 capsid of HBV with each quasiequivalent conformer indi-

cated with a different color. The color coding of conformers A (green), B (yellow), C (red), and D (blue) is consistent with that used by others (PDB ID 1QGT).
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dialysis cassettes (3,500 MWCO, ThermoPierce, Rockford, IL). Dithio-

threitol (DTT) was added from a 1-M aqueous stock solution to a final con-

centration of 2 mM as required. The fused dimer CP was expressed and

purified in a similar way to CP149.

The amino acid sequence of CP149 is as follows: MDIDPYKEFG

ATVELLSFLP SDFFPSVRDL LDTASALYRE ALESPEHCSP HHTA

LRQAIL CWGELMTLAT WVGNNLEDPA SRDLVVNYVN TNMG

LKIRQL LWFHISCLTF GRETVLEYLV SFGVWIRTPP AYRPPNAPIL

STLPETTVV.

NanoESI-MS and ESI-IMS-MS of CP149 dimer

Spectra were acquired using a Synapt HDMS orthogonal acceleration quad-

rupole-traveling wave IMS-time-of-flight mass spectrometer (Micromass

UK, Waters Corp., Manchester, UK). In-house assembled, gold-plated

borosilicate vials were used for sample introduction and nanoESI. The

nanoESI capillary voltage was set at 1.4 kV. Cone voltages of a maximum

of 40 V were used with trap and transfer collision voltages of 6 V and 4 V,

respectively. The trap flow rate was 0.1 ml min�1. The trap DC biases were

4 V in MS mode and 10 V in IMS mode. The source pressure was 2.8 mbar.

All data were analyzed using the MassLynx 4.1 software package supplied

with the instrument.

For measurement of the CCS of CP149 dimer, the traveling-wave IMS

device was calibrated with denatured equine cytochrome c and horse heart

myoglobin (10 mM, 50:40:10 MeCN/H2O/acetic acid, v/v) using CCS

values determined using conventional IMS-MS and available from the data-

base of Clemmer (www.indiana.edu/~clemmer) (18). The traveling-wave

IMS wave height and wave velocity were optimized at 10 V and 300 m

s�1, respectively. CCS values were calculated from drift time measurements

using the procedure outlined previously (20). The CCS values are quoted as

an average of at least three measurements with errors propagated from the

error in the calibration curve. Theoretical CCS values were calculated for

monomeric and dimeric CP149 extracted from the Protein Data Bank

(PDB) structure PDB ID 1QGTusing the Leeds method (20) andMOBCAL

(37) projection approximation algorithms.

Trypsin proteolysis was used to assess the dynamic nature of the CP149

dimer C-terminus. Modified porcine trypsin (sequencing grade, Promega,

Madison, WI) was added to CP149 dimer to a final molar ratio of 1:35

(trypsin:dimer) in 50 mM ammonium acetate solution (pH 7.5). The

mixture was incubated at 20�C (heating to 37�C would induce assembly)

and the proteolysis reaction was monitored over several hours/days. Spectra

were acquired under the same conditions as intact CP149 dimer. The ratios

of compact to extended CP149 dimer, D1C, and D2C conformers were

assessed by centering the MS spectra by peak area and summing the area

for each of the charge state ions populated by the folded/compact protein

ions. The charge state ions assigned as compact and extended for CP149

dimer were 9þ to 13þ and 14þ to 20þ, respectively; those assigned as

compact and extended for D1C were 9þ to 13þ and 14þ to 20þ, respec-

tively; those assigned as compact and extended for D2C were 8þ to 12þ

and 13þ to 17þ, respectively.

The fused dimer CP was dialyzed against a solution of ammonium ace-

tate (50 mM). The pH was adjusted to 9.5 with ammonia solution to prevent

neutral pH-driven protein assembly. DTT (final concentration 2 mM) was

added to prevent the formation of interdimer disulphide bonds. Spectra

were acquired under the same conditions as CP149 dimer to facilitate

comparison of the spectra. Folded to unfolded ratios were estimated using

the same method as described for CP149 dimer.

ESI-MS and ESI-IMS-MS analysis of

heteroaryldihydropyrimidine-induced CP149

dimer oligomers

Heteroaryldihydropyrimidine (HAP)-1 (synthesized as described previ-

ously (36)) was added to CP149 dimer (in 50 mM ammonium acetate,

pH 7.5) in various molar ratios ranging from 0.5:1 to 50:1 HAP:dimer.

NanoESI-MS was conducted with a cone voltage of 80 Vand trap and trans-

fer voltages of 10 Vand 20 V, respectively, optimized to increase the trans-

mission of the oligomeric species. The capillary voltage was 1.8 kVand the

source pressure was 5.8 mbar, with a trap flow rate of 5 ml min�1. For ESI-

IMS-MS drift time measurements, a ramped wave height of 8–15 V and a

wave velocity of 250 m s�1 were used. The trap DC bias was optimized

at 20 V. The traveling-wave IMS device was calibrated using the native-

like calibrants b-lactoglobulin A, avidin, concanavalin A, yeast alcohol

dehydrogenase, pyruvate kinase, and glutamate dehydrogenase (all pur-

chased from Sigma, Dorset, UK) (38). CCS values were determined as an

average of at least three measurements, and errors were quoted as a standard

deviation of the mean.

ESI-MS and ESI-IMS-MS of fused dimer CP149

dimer oligomers

Fused dimer CP oligomers were generated by disassembling fused dimer CP

capsids using urea (4 M) at high pH (50 mM ammonium acetate, pH 9.5,

2 mM DTT), and incubating at 4�C for 16 h. The solution was then buffer-

exchanged (against 50 mM ammonium acetate, pH 9.5, 2 mM DTT) to

remove the urea. MS was conducted under the same conditions as the

HAP-induced oligomers. Drift times were measured under the same condi-

tions as for the HAP-induced oligomers, and the same calibrants were used.

Theoretical CCSs and modeling of CP149

oligomers

Models of CP149 oligomers were built using the Oligomer Generator func-

tionality available on the Viper database (39). PDB file 1QGT was used to

construct oligomers based around a three-fold and six-fold capsid axis. The

five-fold capsid axis oligomers were not created as they are similar in shape

to the six-fold models. Theoretical CCS values were calculated using the

Leeds method algorithm (20).

Circular dichroism spectroscopy

Circular dichroism spectroscopy was used to study the secondary structural

features of CP149 dimer and the C-terminal cleavage product D2C. Far-

ultraviolet circular dichroism spectra were acquired between 260 and

190 nm on a J-715 spectropolarimeter (Jasco UK, Great Dunmow, UK)

in triplicate and background subtracted. The background samples were

ammonium acetate (50 mM, pH 7.5) or ammonium acetate with 0.2 mM

trypsin for the cleavage reactions. Ellipticity was quoted in units of molar

ellipticity (deg cm2 dmol�1).

Transmission electron microscopy (TEM)

Negative-stain TEM was carried out on a CM10 transmission electron

microscope (Phillips, Guildford, UK) at various magnifications. Samples

were mounted on hexagonal 400 mesh copper grids (Agar Scientific, Essex,

UK) via a carbon film using the Valentine technique (40) and were stained

with uranyl acetate (4% w/v).

RESULTS

Observation of disorder in the CP149 dimer

and monomer

CP149 dimer is known to assemble into capsids in vitro

at high ionic strength, neutral to low pH, and high con-

centration. To characterize the protein in terms of its
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conformational properties, we conducted noncovalent ESI-

IMS-MS on the purified CP149 dimer in solution (50 mM

ammonium acetate, pH 7.5), conditions under which the

C61–C61 intermonomer disulphide bond remains intact. Un-

der these low ionic strength conditions, CP149 dimer assem-

bles on long timescales, making it feasible to study its

properties using MS experiments, which take only minutes.

ESI-IMS-MS is capable of separating ions with the same

mass and m/z ratio but with different shapes, allowing copo-

pulated conformers arising from a single protein or protein

complex to be separated and mass measurements and CCS

estimations to be made independently on each species. The

ESI-MS m/z spectrum of CP149 dimer (Fig. 2 a) displayed

signals indicating a species of mass 33,702 Da, consistent

with the mass of the expected sequence. The spectrum ex-

hibited a bimodal charge state distribution centered on the

10þ and 17þ charge state ions, indicating a minimum of

two conformer populations with distinct solvent-accessible

surface areas, each exposing different numbers of charge-

accepting basic residues. Using the formula of de la Mora

(41), we expected the maximum number of charges a folded

protein of this mass to carry in the gas phase would be 14þ,

indicating that the lower charges (9þ to 12þ ions) are

consistent with a compact conformation. The higher charges

(13þ to 22þ ions) suggest more extended, disordered struc-

tures, despite the analysis being carried out under solvent

conditions and instrumental parameters that have been opti-

mized and established for maintaining the noncovalent inter-

actions involved in the tertiary and quaternary structure of

proteins and biomolecular complexes intact (19,20). Varying

the buffer solution conditions to assembly-unfavorable pH

(pH 9.5) had no effect on the conformational characteristics

of CP149 dimer (see Fig. S1 in Supporting Material).

The CCS values of these copopulated CP149 dimeric

conformers were estimated from the transit times of

their multiply charged ions through the IMS drift cell

(Fig. 2 b). CP149 dimer was found to populate two distinct

conformers, one compact and one more extended, consistent

with the bimodal charge state distribution observed in the

m/z spectrum (Fig. 2 a). One advantage of ESI-IMS-MS

over ESI-MS alone is that the three-dimensional data pro-

vide a detailed evaluation of precisely which charge states

are populated by each conformer. The compact conformer

(shown as squares in Fig. 2 b) was found to populate charge

states 9þ to 14þ and the extended conformer (shown as tri-

angles in Fig. 2 b) charge states 12þ to 22þ, with both con-

formers populating the intermediate charge states, 12þ to

14þ. The CCS of the compact conformer is consistent for

the four lowest charge state ions (9þ to 12þ) within the

accepted experimental error (i.e., 5–7% (19,20)), whereas

there is some increase in CCS for the higher charge state

ions (13þ and 14þ, squares) arising from this conformer,

likely due to Coulombic repulsion. The CCS value esti-

mated for the lowest charge state ions of the compact

conformer (9þ) was 24.7 5 1.1 nm2, which is consistent

with the theoretical values of 23.3 nm2 and 24.5 nm2 calcu-

lated from the crystallographic structure of the capsid (10)

using the Leeds method (20) and MOBCAL (37) projection

approximation algorithms, respectively. The CCS estima-

tions for the extended conformer increase in a linear manner

as the number of charges on the ions increases, consistent

with Coulombic repulsion. The CCS value of the lowest

charge state ions (12þ, triangles in Fig. 2 b) of the extended

conformer was estimated at 27.9 5 0.9 nm2, some 13%

greater than that of the compact conformer, indicating a

distinct expansion in shape and an increase in disorder.

FIGURE 2 ESI-MS and ESI-IMS-MS of the

CP149 dimer and monomer. (a)m/zmass spectrum

of CP149 dimer in 50 mM ammonium acetate (pH

7.5). A bimodal charge state distribution, centered

on the 10þ and 17þ charge states, consistent with

two conformers with distinct solvent accessible

surface areas is observed. (b) Charge state (z)

versus CCS (nm2) plot for CP149 dimer showing

the ion mobility separation of conformeric fam-

ilies, one compact (squares) and one extended (tri-

angles). (c) m/z mass spectrum of CP149 dimer in

50 mM ammonium acetate (pH 7.5) with 2 mM

DTT added. The charge state distribution of the

dimer overlaps with monomeric ions (stars). The

monomer populates three charge state distributions

centered on 7þ, 10þ, and 14þ ions (monomer

charge states underlined). (d) Charge state (z)

versus CCS (nm2) plot for CP149 monomer

showing the separation of three conformeric fam-

ilies, compact (squares), extended (triangles),

and very extended (circles). Error bars indicate

the standard deviation from the mean of at least

three measurements.

Biophysical Journal 105(5) 1258–1267

Characterizing the Hepatitis B Capsid Protein 1261



To investigate whether the disulphide bond has any influ-

ence on the populations of these conformers or on dimer sta-

bility, we treated CP149 dimer with 2 mM dithiothreitol to

reduce the intermonomer disulphide linkage. This resulted

in the observation of CP149 monomer ions (7þ to 17þ) in

the m/z spectrum, in addition to some remaining dimer ions

(Fig. 2 c). There was no evidence for any reduced CP149

dimer, indicating that the dimer dissociates on reduction of

the disulphide bond. The charge state distribution of mono-

mer ions showed the presence of three distinct, copopulated

conformers centered on the 7þ, 10þ, and 14þ ions, suggest-

ing one reasonably compact and two more extended struc-

tures, and indicating the dynamic nature of the CP149

monomer when not involved in dimer formation. ESI-IMS-

MS separation of these monomeric conformers allowed their

individual CCSs to be estimated. The conformers are labeled

as compact (7þ to 12þ ions), extended (9þ to 13þ ions), and

very extended (12þ to 15þ ions) structures (Fig. 2 d). The

CCS value of the lowest charge state ions of the compact

monomer was estimated as 15.3 5 0.9 nm2, consistent

with the calculated values obtained from the crystallographic

data of the intact capsid (10) using the Leeds method and

MOBCAL projection approximation algorithms (16.0 nm2

and 15.9 nm2, respectively). The CCS values of the extended

and very extended conformations were estimated at 19.0 5

1.1 nm2 and 27.1 5 1.4 nm2, respectively. It is noteworthy

that the very extended monomer conformation has an esti-

mated CCS value similar to that of the folded dimer, indi-

cating a significant extent of conformational flexibility.

The C-terminus induces extensive disorder in the

CP149 dimer

To elucidate which region(s) of the protein is responsible for

the disorder in CP149 dimer, we conducted limited proteol-

ysis to investigate the quaternary structure and dynamics of

this protein complex. CP149 dimer (i.e., with the disulphide

bond intact) was incubated with trypsin in a 1:35 molar ratio

at 20�C and proteolysis was recorded in real time using ESI-

IMS-MS (Fig. 3, a–c). During the course of the reaction,

evidence for a single cleavage of one of the two C-terminal

peptides at R127 was apparent: doubly charged peptide ions

appeared at m/z 1168 (data not shown), corresponding to the

peptide comprising residues 128–149 (2334 Da), and resid-

ual CP149 dimer lacking this peptide from one of its two

subunits was observed also (Fig. 3 b). R127 is the first C-ter-

minal amino acid residue that is susceptible to trypsinolysis,

as R133 is adjacent to P134 and hence not cleavable (see

Materials and Methods for the amino acid sequence of

CP149). The second C-terminal amino acid residue that

is susceptible to trypsinolysis is R112, but no cleavage

was detected at this site. The cleavage product observed,

CP149 dimer (1–127), where one C-terminus is lost, is

denoted as D1C. Before proteolysis, intact CP149 dimer

was observed with a bimodal charge state distribution, as

described above (Figs. 2 a and 3 a); from the m/z spectrum,

the ratio of the CP149 dimeric conformers was estimated as

70% extended versus 30% compact. This ratio remained

constant for the residual intact CP149 dimer throughout

the proteolysis experiment, that is, no protein folding or

unfolding was observed in the presence of the enzyme.

Although the m/z spectrum of the D1C proteolysis product

showed a similar bimodal charge state distribution to that

of intact CP149 dimer, a significant reduction in the amount

of disorder was indicated by the reduced ratio of its

extended to compact conformers, which was measured as

55% extended versus 45% compact protein (Fig. 3 b).

FIGURE 3 C-terminal cleavage reduces disorder of CP149 dimer. m/z

spectra of full- length CP149 dimer (red) undergoing proteolysis observed

(a) immediately after addition of 1:35 (molar ratio) trypsin; (b) after 8 h,

when the single C-terminal cleavage product, D1C, appears (green); (c)

after 24 h, when the double C-terminal cleavage product, D2C (blue), pre-

dominates. (d) Circular dichroism spectra of CP149 dimer before (black)

and after (red) cleavage of both C-termini with trypsin. The minima at

208 and 222 nm, characteristic of an a-helical fold, are present in both

spectra indicating little change in secondary structure after C-terminal

cleavage.
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As proteolysis continued, a second cleavage product was

observed, corresponding in mass to a double cleavage,

denoted as D2C, in which both subunits had lost the C-ter-

minal residues 128–149 following enzyme cleavage at the

R127 residues in both protein chains (Fig. 3 c). Again, the

charge state distribution indicated the presence of both

extended and compact conformers, but the more highly

charged ions indicative of protein disorder were reduced

further for this double cleavage product; the ratio of

extended to compact conformers for D2C was measured

as 22% versus 78%.

The differing populations of compact versus extended

conformers for CP149 dimer,D1C, andD2C observed using

noncovalent ESI-IMS-MS support the notion that the disor-

der, or flexibility, in the CP149 dimer is due primarily to its

C-terminal amino acid sequences. This observation is

further supported by the fact that the C-terminal peptide,

comprising residues 128–149, includes only one basic resi-

due, R133, which is insufficient to accommodate all of the

charges (11þ to 17þ) observed in the m/z spectrum of the

extended conformer of D2C. Indeed, the difference between

the average integer charge states of the compact (10þ) and

extended (17þ) conformer of CP149 is 7þ, indicating that

an exposure of additional basic sites must occur in the

case of the extended conformer. Removal of the C-terminal

peptide shifts the equilibrium between the compact and

extended dimeric conformations in favor of the more

ordered conformer; however, there still remains a small

amount of disorder that indicates that the C-terminus is

not quite responsible for all the disorder observed.

To check that no major structural rearrangements

occurred following cleavage of the C-terminal peptide, we

conducted circular dichroism spectroscopy before and after

proteolysis. The spectra (Fig. 3 d) show characteristic

minima at 208 and 222 nm indicative of an a-helical sec-

ondary structure as expected and demonstrate that the cleav-

age event does not disrupt the overall protein fold. Further

evidence of the retention of protein structure following

limited proteolysis comes from the ESI-IMS-MS analyses

of the cleaved forms of CP149 dimer. CCS values of D1C

and D2C over the full range of charge state ions display

similar trends to those of the intact CP149 dimer

(Fig. S2), in that similar compact and extended conforma-

tions were observed in addition to an expected, modest,

systematic decrease in CCS as a result of proteolysis with

the loss of first one, then the second, C-terminal peptide.

As expected, cleavage of the C-termini abrogated assembly

(Fig. S3). It has been previously demonstrated that residues

up to 140 inclusive are necessary for assembly (9,42,43).

Conformational flexibility is required

for assembly

To explore further the role that the C-terminus contributes to

the disorder observed in the CP149 dimer, we constructed

and analyzed a fused CP149 dimer in which one C-terminus

is restricted by a C- to N-terminal linker. The fused dimer

was expressed as a single polypeptide linked by five Gly-

Gly-Ser repeats from the C-terminus of one monomeric sub-

unit to the N-terminus of the next (Fig. 4 a). Noncovalent

ESI-IMS-MS analysis of the fused dimer was conducted

from a solution of 50 mM ammonium acetate (pH 9.5), as

these conditions were found to be unfavorable for its self-

assembly. This was essential for the analysis of the fused

dimer as it exhibits an increased propensity to aggregate

at neutral pH, in comparison to CP149 dimer. The m/z spec-

trum of the fused dimer displayed a similar bimodal charge

state distribution of ions covering charge states 9þ to 14þ

and 15þ to 20þ (Fig. 4 b), with the latter ions being very

low in intensity. The ratio of the extended to compact fused

dimer conformers (16% vs. 84%) is significantly less than

the ratio observed for the noncovalently bound CP149 dimer

(70% vs. 30%), indicating a significantly lower degree of

disorder compared with that observed for the CP149 dimer

and a slightly lower degree of disorder than that observed

for the D1C and D2C proteolysis products.

HAP-1 induces CP149 oligomer formation but not

capsid assembly

The roles that the CP149 dimer conformers play in its

assembly were also examined. The protein was incubated

FIGURE 4 The fused dimer CP149 displays reduced dynamics. (a) A

linker of five GGS amino acid repeats links the C-terminus of one monomer

(dark gray) to the N-terminus of the second (light gray). (b) Noncovalent

ESI-MS m/z spectrum of the fused dimer CP showing a bimodal charge

state distribution centered on 11þ and 17þ ions. The high charge state dis-

tribution is low in intensity relative to that observed for CP149 dimer, sug-

gesting a reduced propensity to unfold. This is consistent with one of the

C-termini being restricted by the C-to-N-terminal linker.
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with varying concentrations of HAP-1, a compound known

to accelerate and misdirect capsid assembly (36). This small

molecule has been suggested to bind to the C-terminus of

CP149 dimer (42) and so may stabilize this region of the

protein. The addition of HAP-1 to CP149 dimer in various

ratios had little effect on the ESI-MS charge state distribu-

tion, nor did it affect the observed relative ratios of the

compact and extended dimer conformers. Furthermore, no

CP149 dimer–HAP-1 complexes were observed, indicating

that if any binding between CP149 dimer and HAP-1 did

occur, it was insufficiently robust to be maintained and/or

detected under these conditions (Fig. 5 a). However, high

m/z signals (m/z 4000–10,000) were detected that corre-

sponded to noncovalently bound oligomers consisting of

two, three, four, five, and six CP149 dimers (masses ranging

from 67.4 to 202.2 kDa), with evidence of low-intensity

signals from higher order oligomers. Such signals were

observed at CP149 dimer:HAP-1 molar ratios of 1:5 and

above. Previous work by Zlotnick et al. (36) suggested

that HAP compounds induce the formation of kinetically

trapped assembly intermediates that persist up to 24 h after

initial incubation. Although CP149 dimer had not been sub-

jected to the high ionic strength conditions favored for as-

sembly in the experiments described here, it is likely that

the oligomers observed in this MS study are related to those

species detected by Zlotnick et al. In support of this propo-

sition, TEM analysis of CP149:HAP-1 mixtures displayed

large, aberrant, noncapsid structures (Fig. 5 b) consistent

with the hexameric arrays observed by Zlotnick et al. Capsid

particles, akin to those observed under normal assembly

conditions (Fig. 5 c), were not observed in our micrographs.

ESI-IMS-MS experimentally estimated CCS values of the

HAP-induced oligomers were compared with theoretical

values modeled from atomic resolution models of CP149

oligomers with tiled shapes, that is, as they appear in the

structure of the T ¼ 4 capsid (Fig. 1 b). As demonstrated

FIGURE 5 CP149 dimer and fused dimer oligomers. (a) nanoESI-MS m/z spectrum showing CP149 forms oligomers of two (red), three (blue), four

(green), five (purple), and six (magenta) dimers in the presence of HAP-1 (10:1 molar ratio, HAP:CP149 dimer) with little change to the unbound

CP149 dimer ions remaining in the spectrum. There are also low-intensity signals indicating the presence of species greater in mass than six dimers.

(b) TEM analysis of CP149 dimer after incubation with 50:1 HAP:1 showing large, noncapsid structures and (c) a regular CP149 dimer assembly reaction

induced by 0.5 M NaCl, displaying capsid particles ~30 nm in diameter. The scale bars represent 100 nm. (d) Noncovalent ESI-MS m/z spectrum showing

fused dimer CP oligomers produced from disassembly of fused dimer CP capsids using 4 M urea. Oligomers of two (red), three (blue), four (green), and five

(purple) fused dimers are observed. (e) CCS values of core protein oligomers versus oligomer order. The fused dimer CP oligomers (red triangles) lie on the

tiled line (dashed line), whereas the HAP-induced oligomers (black squares) deviate from this, indicating a more compact structure. Error bars indicate the

standard deviation from the mean of at least three measurements.
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by Uetrecht et al. (9), the CCS values of capsid-related olig-

omeric species of the HBV core protein were consistent

with tiled morphologies. However, unlike the oligomers

observed by Uetrecht et al., the HAP-induced oligomers

detected here were not consistent with a tiled morphology

(Fig. 5 e and Table S1). The estimated CCS values of the

oligomers were more compact than the models predicted,

implying that these oligomers are not capsid-related

structures.

Our previous work has demonstrated that oligomers

isolated from CP149 fused dimer disassembly reactions

are reassembly-competent (K. Holmes, D.A. Shepherd,

A.E. Ashcroft, M. Whelan, D.J. Rowlands, and N.J. Stone-

house, unpublished). It is likely, therefore, that the shapes of

these oligomers would be different from those of the HAP-

induced oligomers. ESI-IMS-MS analysis of a fused dimer

capsid disassembly reaction yielded signals corresponding

to dimers, trimers, tetramers, and pentamers of the fused

dimer (Fig. 5 d). These oligomers are reassembly-compe-

tent, suggesting that they may recapitulate intermediate

capsid assembly states. CCS values estimated from ESI-

IMS-MS analysis showed that these fused dimer oligomers

do indeed exhibit a different trend in shape from HAP-

induced oligomers (Fig. 5 e). The values for the fused dimer

oligomers lie on a line representing capsid-derived atomic

models with tiled structures, consistent with the observa-

tion that these are assembly-competent structures. When

comparing the charge state ions of the fused dimer oligo-

mers with those of the HAP-induced oligomers, it is

apparent that the former populate, on average, higher charge

states. For example, the most intense charge state for the

tetramer of fused dimers is the 24þ ions, whereas for the

HAP-induced tetramer of CP149 dimers, this is the 20þ

ions. This is further evidence that the fused dimer oligomers

have a more extended structure with a larger solvent-acces-

sible surface area relative to the HAP-induced oligomers.

DISCUSSION

Noncovalent ESI-IMS-MS has been used to study a key

HBV antiviral target in terms of its conformational charac-

teristics and distinctive oligomerization properties. Using

noncovalent MS conditions, the CP149 dimer has been

shown to populate two quite different conformational states.

The range of charge state ions populated, together with their

measured CCS values, indicates that one conformer is

compact and the other is unfolded or extended significantly.

The disorder observed is consistent with previous NMR

studies that implied a degree of flexibility within the

C-termini (11). However, ESI-IMS-MS, which has the

ability to separate and individually measure copopulated

species rather than present an average of all molecules, in-

dicates the presence of two distinct conformeric families

and provides a comparison of their structures in terms of

shape. Although the projection approximation algorithms

used to calculate the CCS values of proteins from their

respective PDB coordinates tend to underestimate slightly

the CCS of the protein, in general they are in reasonable

(within 5%) agreement with the IMS-MS-estimated CCS

values because of a small, general compaction of protein

structure in the absence of solvent in the gas-phase experi-

ments, and thus can be used as an indicator of the compact-

ness, or foldedness, of the protein under investigation (44).

Furthermore, the presence of the intermonomer disulphide

linkage has been shown to be necessary to maintain the

dimeric nature of CP149. In the absence of this chemical

bond, the dimer dissociates into monomer, the latter having

a high degree of disorder even under the mild solution con-

ditions and instrumental parameters employed, consistent

with the weak interdimer association energy in capsids (4).

Trypsin proteolysis of the CP149 dimer resulted in a spe-

cific cleavage at R127, releasing the first 22 amino acid

residues of the C-terminus. The loss of these residues was

accompanied by a significant reduction in the intensity of

the lower m/z, more highly charged envelope of ions that

is associated with the extended conformer. As little disorder

is apparent in the two truncated products, D1C and D2C,

this suggests that the disorder associated with intact

CP149 dimer is related to the presence of the two C-termini

on account of their orientation within the quaternary struc-

ture of the dimer. This observation is consistent with the

x-ray crystal structure of the intact capsid, in which the

C-terminal peptide is unstructured (10) (Fig. 1 a), and also

with work by Hilmer et al. (12), who showed that the C-ter-

minal peptide is cleaved by trypsin in a conformation-

dependent manner.

In addition, the decrease in the population of the extended

conformers observed for the truncated dimers compared

with the intact CP149 dimer when analyzed under the

same experimental conditions is a good indication that the

compact and extended conformers detected reflect the solu-

tion behavior of these species and are not simply artifacts of

the MS technique.

The effect of the C-terminus on CP149 disorder was

tested further by ESI-IMS-MS analysis of a modified

C-to-N-terminally fused dimer of CP149. The fused dimer

has one C-terminus restricted by the linker group and

therefore should exhibit less structural disorder. This was

confirmed given that the high charge state ions correspond-

ing to the extended fused dimer conformer were much lower

in intensity than the corresponding signals observed for the

CP149 dimer. Indeed, the proportion of the extended

conformer decreased from 70% for the CP149 dimer to

16% in the case of the fused dimer, and was lower than

the values observed for both the D1C and D2C truncated

proteolysis products, which indicated the extended

conformer population to be 55% and 22%, respectively.

The oligomers generated from CP149 dimer in the pres-

ence of HAP-1, an anti-HBV small molecule and capsid-as-

sembly misdirector, were formed under noncapsid-assembly
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conditions (i.e., in the absence of any added NaCl), indi-

cating that these assemblies are not dependent on either

high ionic strength or the presence of metal cations. The

oligomers are likely analogous to the oligomers observed

by Zlotnick et al. (36), although they appear not to be kinet-

ically trapped because a significant reservoir of free CP149

dimer is still present in these samples. Zlotnick et al. re-

ported that the oligomers they observed persisted to >24 h

in some cases, which is consistent with our observations

(data not shown). The CCS values obtained from ESI-

IMS-MS analyses suggest that the HAP-induced oligomers

of CP149 dimer are not tiled, as may be expected for assem-

bly-competent complexes (9) (Table S1). The observed

oligomers have slightly but consistently more compact

structures than those expected for the tiled models, the exact

morphologies of which are not known. Incubation of HAP-1

with D2C, lacking the C-terminus and therefore the dimer–

dimer interaction interface, did not result in the formation of

oligomers, implying that the CP149 dimer oligomers

observed are formed through native C-terminus contacts

(Fig. S3). Oligomers of the CP149 fused dimer were found

to be distinctly more extended in shape compared with

HAP-induced CP149 oligomers and consistent with a tiled

assembly pattern. The capsid-assembly competence of the

fused dimer was verified using TEM, whereas the addition

of HAP-1 to the CP149 dimer did not lead to capsid assem-

bly, but rather the production of large, aberrant noncapsid

structures (Fig. 5 d). It is possible that the reduced flexibility

of the fused dimer is responsible for reduced sensitivity to

assembly misdirection by HAP-1.

The work described here highlights the importance of the

C-terminus and dynamics of the HBV CP, which influence

the conformational dynamics of the dimer, its stability,

and its assembly patterns. Distinct assembly pathways

have been highlighted, with differences in the structural

build of the oligomeric intermediates, and the nature of

small molecule-induced assembly misdirection has been

described. The combined ability of IMS and MS to separate

species within a heterogeneous mixture based on mass and

shape in a single experiment provides a valuable tool to

study myriad biological processes. Key to this study, these

techniques have been used to characterize order–disorder

transitions in proteins and protein complexes and macromo-

lecular assembly processes rapidly, using only picomolar

amounts of material. Such techniques are valuable for the

characterization of targets for future antiviral therapy.
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