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Abstract

Artificial Neural Networks (ANNs) perform adaptive learning. This advantage can
be used to solve knowledge acquisition bottle-neck in knowledge engineering by
rule extraction from the ANNs. This paper proposes a rule extraction method com-
bining both open-box (white-box) and black-box approaches to analyse a trained
Muldilayer Perceptron in order to extract general production rules accurately, ab-
stractly and efficiently.
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1. Introduction

Knowledge Acquisition (KA) is the bottle-neck in knowledge engineering. KA is a process to transfer the do-
main knowledge into an explicit declarative knowledge formula such as a set of rules. The quality of the ac-
quircd knowledge depends on many aspects, such as the availability of the domain experts, their expertise, their
ability and attitude 1o express their expertise, the relationship between the knowledge engineers and the domain
experts, and so forth. KA is a time-consuming and not generally reliable process in knowledge engineering. A
efficient and reliable KA method is a crucial factor to convince users accepting Al technology, such as expert
systems.

Artificial Neural Networks perform adaptive learning on the given pattern set, instead of being told the do-
main knowledge. This shifts the burdens to one of high quality data gathering. If the knowledge acquired by the
ANN:s can be translated into symbolic forms, such as production rules, it may then be used to rule-based expert
systems. This approach is called Arrificial Expert because an ANN plays the role of the group of domain experts
and knowledge engineers in the KA process.

Rule extraction methods from ANNs can be categorised depending on whether or not they correspond to the
black-box or to the open-box (white-box) approach. In the process of rule construction, the open-box approach
is concerned with the internal connections of an ANN, and the black-box approach only takes account of the
input/output correspondence of the ANN. Domain knowledge has been encoded in the ANN during training, in
a subsymbolic form. Analysis of this knowledge in a quantitative way, which is required by knowledge-based
systems, is extremely difficult owing to the parallel, distributed properties, the effect of the control parameters,
and the mutual dependence of the substructures of the ANN. This is the problem that rule extraction technology
using the open-box approach are facing. In order to simplify this problem, some methods alter the trained ANN
by pruning or by grouping the connections, adding more layers of units, or retraining the ANN[2][6]. These are
usually very time-consuming and the generality of the ANN is not usually guaranteed in such cases. Methods
using the black-box approach, on the other hand, must face the problem of combinatorial explosion, as does [5].
To overcome this, some arbitrary protocol is usually adopted to restrict the size of the search space, but this in
turn may have an adverse effect on the extracted rules.

The rule extraction method described here combines both the black-box and the open-box approaches, aiming
to collect maximal information with as small a computational cost as possible. In the open-box approach, it turns
out to be simple to obtain some qualitative properties of the domain knowledge, such as the statistical relation-
ship between the input and the output variables. In the black-box approach, we try to correlate the inputs and
outputs of the ANN restrictively in the context of the training set, rather than of the whole possible space. Al-
though neither the qualitative knowledge from the open-box approach nor the quantitative knowledge from the
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black-box approach alone is usually sufficient, they complement each other for improving the quality of the rule
extraction process. We have generated a hybrid knowledge-based system, GR2, which integrates an ANN and
a rule-based system via the rule extraction interface [4].

We take a Multilayer Perceptron (MLP) as the ANN example in this paper. The paper is organised as follows.
Sections 2 and 3 define the attribute selection criteria in the open-box and the black-box approaches respective-
ly. We use the term “attribute selection” since the rule extraction is a Machine Learning technology. Section 4
describes the rule extraction algorithm. Full details of the method can be found in [3] and [4]. The method has
been used on a real-world medical data set of breast cancer diagnosis which is described in Section 5. A sum-
mary is given in the last section.

2. Attribute Selection Criterion 1: Potential Default Set (PDS)*

For the open-box approach, the Potential Default Set specifies a set of input variables which are potentially un-
important in deriving the network’s output. This is obtained in two steps.

(1) Calculate the Siatic Link between each input unit and each output unit of the MLP L, = %“’jh “Wios
where wy, is a connection from an input unit I; to a hidden unit H,, in the MLP, w,,, is one from the hidden unit
Hj;, 1o an output unit O,. The static link represents the statistical quality of the /O correspondence regardless of
the presence of any unit’s activation.

(2) In each pattern, select those input variables satisfying the conditions in Table 1

Table 1: Conditions when I, may be ignorable

Loi Oo Ii.
24 ¢ [1-8, 1] 0
=0 T 10,8) 1
<0 [1-8,1] 1
<0 [0, 8] 0

where 6 is the error tolerance for the classification by the MLP [4]. These conditions are given under the as-
sumption that if the static links always reflect the correspondence between the input and output units involved,
switching those input variable values will not change the output status. The strengths of the static links are not
important here. However, the assumption does not always hold for nonlinear problems, so a further stage is re-
quired.

3. Attribute Selection Criterion 2: Feature Salient Degree (FSD)

In the black-box approach, the Feature Salient Degree is defined to represent the dependence degree of the out-
put variable on an input variable in each pattern. The FSD is a P x N matrix, where N is the number of input
variables and P is the number of the patterns in the training set. First, we define the fsd" matrix, whose jith ele-
ment is

— 1
deji - P P 21131’ Pk! (1)
{ki(jik,oi#oz,lji¢lkJ}l i Py
and the FSD matrix is defined thus:
FSDh = ——
max (fsd)

In equation (1), P; and Py denote different patterns in the training set. IP;,Pyl is the Hamming distance of the
input vectors of the patterns. (1) takes account of those patterns, Py, in the training set whose input variable I8
and the output variable are different from those in P;. If we define I(Pj) as the input vector of P;. To each pair of
patterns Pj and Py, the subset I(P))-1(Py) is regarded as the subset determining the class which Pj’s output repre-
sents. The population of those possible input vectors subsuming this property set in the input space {0,1}%, is

N~ PRy
2

1
N 2|PJ, P,|

2

Furthermore, assuming each input in the property set equally characterises the property, the contribution of each
input variable is W . This explains how equation (1) is formed.
|Pi, Pk| -2M!

». We consider rules with only one output variable. If a domain possesses more than one output variable, it can
be partitioned into subproblems, each of which has single output variable.

+ This definition slightly differs from those given in our previous papers [3][4]. Although the results using the
different definitions for fsd are similar, this one has the best intuitive explanation.

200292272
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The fsd matrix is normalised by its maximal element in equation (2) so that all its elements lie in [0,1], since
fsd is a non-negative matrix. This operation regularises the matrix when the training set is redundant or incom-
plete to the whole input space.

4. Rule Extraction Algorithm
The kemnel rule extraction algorithm uses the two attribute selection criteria on each training pattern P
(1) Set a control parameter 1€ (0,1].

(2) Collect all input variables y={I; { FSD;; 2 1 or (1;2 PDS and FSD;; 2 7/( N x logN )}

(3) Each minimal subset 8,y constructs the premise part of a new rule, and the output variable forms the
conscquence of the rule. The “minimal subset” means 6y is not subsumed by other subsets.

In step 2, FSD;; 2 T/( N x logN ) is used to filter out those I;s having very small FSD values. This greatly re-
duces the computation to find subsets in step 3. In practice, we can define separate control parameters for classes
respectively, as shown in the next section.

The algorithm also includes other operations such as rule pruning and generalisation. The extracted rule set
will then be processed by a rule validation and a rule verification processes, resulting in a representation of the
domain knowledge under uncertainty. These details have been described in [4].

5. Experiment on Breast Cancer Diagnosis Records

The rule extraction method has been successfully applied to some traditional artificial problems such as the two
or more bit AND, OR, and parity problems, and to several medical domains. We report here the experiment of
the method to breast cancer diagnosis. The data sel consists of 413 patient records, each comprising ten binary-
valued symptoms (inputs) recorded from human-observation of breast lissue samples, together with the actual
outcome for each case, which is a lesion proved to be either malignant or benign. The data set possesses a certain
level of noise: there are only 188 distinctive cases including 12 conflicting cases. Further details can be found
in [1].

There are three performance useful indicators used in the domain. Sensitivity is defined as the ratio of the
number of correct positive diagnoses to the number of positive outcomes. This is important as the disease is life-
threatening. Specificiry is defined as the ratio of the number of correct negative diagnoses to the number of neg-
ative outcomes. This is important as treatment is expensive and can be risky. Accuracy is defined as the ratio of
the number of correct diagnoses to the total number. In this domain, specificity of benign must be high, to avoid
unnecessary surgery being carried out,

The data were divided into three randomly selected sets: 100 cases as the training set, the next 100 cases as
the verification set, and the remaining 213 cases as the test set. A conventional MLP with one hidden unit layer
was trained on the training set. And then test it on the verification set in order to find the optimal MLP structure,
which was found to be one with 10 input units and 5 hidden units. The results on the verification set are sensi-
livity=95.4%, specificity=93.5% and accuracy=95%. This MLP was then applied on the test set, whose results
are shown in Table 2,

Using the rule extraction algorithm on the optimal MLP and the training set, we chose two thresholds for the
two classes, the positive threshold (pt) for the malignant class, and the negative threshold (nt) for the benign
class. Both thresholds were varied in the range [0.01, 0.5], increasing in 30 steps respectively. When the rule set
was extracted at each of the 30 x30 choices of the thresholds, it was applied to the test set. The results of the
900 tests are plotted in Figure 1. We find the optimal choice of the thresholds to be; pt in [0.195,0.212] and nt
in [0.144,0.163]. The 900 tests took only 22 minunes 16 seconds on a Sun Sparcstation.

Table 2 compares the results of the extracted rules on the test set with those from the MLP.
Table 2: Results on the Test Set of the Breast Cancer Diagnosis Records

(%) MLP, with 10:5:1 structure | Ryle Extraction, pt=0.2, nt=0.16
Sensitivity 929 94.7
Specificity 95 93
Accuracy 939 939

The extracted rules at the choice pt=0.2, nt=0.16 are given as the follows, each of which was attached a con-
fidence degree, which may be used to assess the level of belief the user might have in any particular rule [4].

IF (~Naked, ~Foamy) THEN (Benign); (0.173913)
IF (Naked, Apocrine) THEN (Benign); (1)

IF (~Foamy, Apocrine) THEN (Benign); (1)

IF (~Necrotic) THEN (Benign); (0.2)

" IF (~Foamy) THEN (Benign); 0.2)



Ma and Harrison | Artificial Expert 4

IF (Necrotic) THEN (Malignant); (0.733333)
IF (Size) THEN (Malignant); )

IF (ICL) THEN (Malignant); (0.777778)
IF (3D) THEN (Malignant); (0.703704)

The ten binary symptoms (inputs/premises) are defined as:
DYS: True if majority of epithelial cells are dyhesive, false if majority of epithelial cells are in cohesive
groups.
ICL: True if intracytoplasmic lumina are present, false if absent.

3D: True if some clusters of epithelial cells are not flat (more than two nuclei thick) and this is not due to
artefactual folding, false if all clusters of epithelial cells are flat.

NAKED: True if bipolar “naked” nuclei in background, false if absent.
FOAMY: True if “foamy” macrophages present in background, false if absent.

NUCLEOLI: True if more than three easily visible nucleoli in some epithelial cells, false if three or fewer
easily visible nucleoli in epithelial cells.

PLEOMORPH: True if some epithelial cell nuclei with diameters twice that of other epithelial cell nuclei,
false if no epithelial cell nuclei twice the diameter of other epithelial cell nuclei.

SIZE: True if some e}ailthe‘liai cells with nuclear diameters at least twice that of lymphocyte nuclei, false if
all epithelial cell nuclei with nuclear diameters less than twice that of lymphocyte nuclei,

NECROTIC: True if necrotic epithelial cells present, false if absent.
APOCRINE: True if apocrine change present in all epithelial cells, false if not present in all epithelial cells.

Speciiy

Figure 1. Performance of the Extracted Rules on the test set of Breast Cancer Records
as the positive threshold pt and the negative threshold nt are changed in [0.01, 0.5]

6. Conclusion

An optimal method 1o extract knowledge in symbolic form from ANNs can relieve the KA bottle-neck problem
and support knowledge engineering automatisation to a great extent. A combination of the black-box and open-
box approaches to rule extraction makes the process efficient, effective and easy to control, resulting in the ex-
tracted rules representing the domain knowledge as accurately as the ANNSs can learn.
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