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A BOUND FOR THE MAGNITUDE CHARACTERISTICS OF
NONLINEAR OUTPUT FREQUENCY RESPONSE FUNCTIONS

PART II: PRACTICAL COMPUTATION OF THE BOUND
FOR SYSTEMS DESCRIBED BY THE NARX MODEL

S. A. Billings and Zi-Qiang Lang

Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street, Sheffield, S1 3JD, U.K.

Abstract: In Part I of this paper the concept of a bound for the output frequency response magnitude

characteristics of nonlinear systems was proposed and general calculation and analysis procedures

were developed. In this, the second part of the paper, a new recursive algorithm for the computation

of the gain bounds for the generalised frequency response functions of the polynomial NARX model

is proposed and effective procedures for the practical computation of the new bound are developed.
Simulated examples are included to verify the effectiveness of the proposed procedures.

1. INTRODUCTION

In Part I of this paper the concept of a bound for output frequency response magnitude
characteristics of nonlinear systems was proposed. It was shown that the expression for the
new bound is similar in form to the relationship between the input and output magnitude
frequency characteristics of linear systems and that the practical computation of the bound
can easily be performed for nonlinear systems of finite but arbitrary order nonlinearities.

In this the second part of the paper the practical computation of this new bound for
nonlinear systems described by the polynomial NARX (Nonlinear AutoRegressive model with
eXogenous input) model is investigated. The emphasis is placed upon developing a new
recursive algorithm for the computation of the gain bounds for the generalised frequency
response functions (GFRFs) of the polynomial NARX model and then using this together
with the results from Part I of the paper to produce effective procedures for the practical
computation of the new bound on this model. The results can be applied to analyse or
synthesise a wide class of nonlinear systems to evaluate or formulate appropriate bounds on
the output magnitude frequency domain responses. Simulation studies are included to
illustrate the effectiveness of the proposed methods

2. PRELIMINARIES
2.1 Output Frequency Characteristics of Nonlinear Systems

The output frequency characteristics of nonlinear systems which are stable at the zero
equilibrium point and can be described in the neighbourhood of the equilibrium point
by the Volterra series can be expressed as (Lang and Billings 1994)
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Y(jo)=YY,(jo) forVa
n=l

1/\n

(21,[):1—1

Y, (jo) = [1Go,,....j0,)ds, @.1)

) +,..., 0O, =0

Y, (jo,,..., jo,) = H,(jo,,....jo) [ JU(jo,)

L i=1

where Y(jo) and U(jw) represent the Fourier transformations of the system output and
input, ¥ (jw) is the nth order output frequency characteristic, N is the maximum order of the

dominant system nonlinearity, H,(j®,,...,j®,) is the nth order GFRF and
J‘K‘(jo)],...,j(ﬂn)dcm denotes the integration of Y (j®,,..., j®,) over the n-dimensional

hyperplane @ = ®, +,...,4, .
For an input frequency spectrum defined by

U(jo) ®e[a,b] b>a=0

2
0 for other@ =0 (2.2)

U(J'CD)={

R, the nonnegative frequency range produced by the nth order nonlinear output can be
calculated using the following algorithm (Lang and Billings 1994)

21—]
R, =JIxl.y!1
i=l

{xé}{fg[min{B,,A,,(i,:)},max{BnAn(i’:)}]], i=12,..,2"

v fo[min{B A, (i,:)},max{B, A, (i,:)}]

4 LA, I, [ I,B_ (1) B

A = : Pl B o= ‘ il ,n22
LA (2% 1, LB, (2", B,

s el ] e

(2.3)
where the functions f, and £, are defined as
x ify>x20
fitx,y)=3ly if02y>x (2.4)
0 ify>0>x
and
y ify>x20
LH(xy)=1 |x| f02y>x (2.5)

max[y,|x|]] ify>0>x
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and A, (i,:) and B, (i,:) represent the ith row of A and B, respectively. From R, the frequency
range produced by the nth order nonlinear output can easily be obtained as

R UR,=-R UR \{0) (2.6)
’ where —R, denotes the set which possesses elements of opposite signs to those in the set R.

The above results are natural extensions of the well known facts in linear systems that the
output frequency characteristics are linearly related to that of the input by

Y(jo) = H,(jo)U(jw) (2.7)

and that the frequency range of the system output is the same as that of the corresponding
input.

2.2 General Expression and Calculation Procedures for the Bound on
Output Frequency Response Magnitude Characteristics of Nonlinear
Systems

In Part I of this paper it has been shown that for the nonlinear systems considered in
Section 2.1 a bound for the output magnitude frequency domain characteristics can be
expressed as

N

1 : .
¥ o= 2(27:)"'1 |H, (jook ... jo,)
n=1 %

Ul*--#U (jo)| (2.8)

n

where Y?(®) denotes the bound, {w? ,...," } represents the co-ordinates of a point on the
nl nn P p

n-dimensional hyperplane @, +,...,+®, = ® and

|U|**

n

vGo) = [ et uGe, Ulie-0-~o,)]do,do,_,

represents the n-dimensional convolution integral of [U ( jm)] for discrete time nonlinear
systems.

Part I of this paper also suggests the following general procedures for the practical
computation of this bound.

First compute

H,(jo,,...,jo,)[., a bound for |H, (jo,,..., j0,)| with ®,,...,®, satisfying
the constraint @, +,...,+®, = ©; then calculate |U[*---*|U(jw)| using the developed algorithm
| S——

n
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Ufpe-os =T0li+ (=D i=onle 1), 0,n 2
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(O10]..., Oln(M =)} = Conv{[T(0),...,U(M -1),.. ,[0(0),..., OM-D]))  2.9)
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v
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where U,(.)=U(.) and T=1 when only the cases of discrete time nonlinear systems are
considered, M is a sufficiently large even number to be given a priori and Conv[x,...,x]

denotes the n-dimensional convolution of the vector x. Finally evaluate

Y ()= 2

| n(JO 5y JO, ’ *HU(jo)| (2.10)

n

1 (2m )'1

to yield an approximate result for Y®(w) which possesses the same properties as Y?(w). The
difference between the exact result Y?(®w) and the approximation Y? () is that the
maximum value of the term hsees JO* )| is used in the la}l;:%

2.3 Descriptions of the Polynomial NARX Model in Both the Time and
Frequency Domains

A large class of deterministic discrete time nonlinear systems can be described by the

) NARX model (Chen and Billings 1989). The time domain description of this model is
]
y(k)=Y v, (1) (2.11)
=] .
where y, (¢), the NARX mth-order output' of the system, is given by
m K Ptq
Y=Y Y ¢k, p+q>1'[y(r-k)1'[u<r~k> (2.12)
p=0ky kp, =1 i=p+l
with
K K K
p+q=m, k=1,.K i=l...p+tqand Y =YY (2.13)
k].km-':] k=1 kpo=l

Peyton Jones and Billings (1989) have proved that the GFRFs of this nonlinear model can be

computed recursively from the time domain parameters in (2.12) using the following
algorithm

K
{1—zcm(k])exp[—j(m1+,---,+con)k1]]H,,(j(ol,...,jmn)

k=1

K
= Y conlkyyeesk, ) eXpl— (@, +,00, 40 K, )]
ky k=1

A

n-l n—q K
+ z pg(Kiseenskp JEXPI=J(@, K, ootk OIH, (O, OO, )
=1 p=1 k .ky =1
+2 cho(kl, Kk )H, (O, jo,) (2.14)
p=2 ky k=
where
n—p+l

H,,(jo,,.... j0,)= O H(jo.... jo)H,_ , (jO,,.., j©,)expl-j(®,+--+0,)k,] (2.15)

i=1



3. RECURSIVE CALCULATION OF THE GAIN BOUNDS FOR THE
GFRFS OF THE POLYNOMIAL NARX MODEL

The gain bounds for the GFRFs of nonlinear systems are an important concept which can
be applied to measure the significant orders of nonlinearities associated with system
properties. In Chua and Liao (1991), this problem was addressed and an experimental
algorithm was developed to find the highest significant order of the GFRFs. In Zhang and
Billings (1994), an expression for the gain bound for each order of the GFRFs was derived for
nonlinear systems which can be described by the polynomial NARX model . In this section,
an explicit recursive algorithm for the computation of the gain bounds on the polynomial
NARX model is developed to give a calculation procedure which can easily be applied in
practice. The new algorithm will be taken as an important procedure in the next section to
calculate the bounds for the output frequency response magnitude characteristics of nonlinear
systems described by this model.

3.1 Derivation of the New Recursive Algorithm

From (2.14), H, (j®,,..., jo,) can be written as

. . 1
H,(jo,,...,jo, )= = X

(=Y ¢, (k) expl-j(@, +,--+,+®, )k, ])

k=1

{ Zcen(k],--nk,,)CXP[-j(mlk]+,---,+mnkn)]
Ve

n=1 n—q
+22 ch(k1 P+q)exp[_j(wn-q+1kp+l+ +mnkp+q)] n-q.P(jml" ’jmn q)
g=1 p=1 k.kp =
n K '
Y, Y e gens B, W, 005000, ) (3.1)
P=2k; k=1

From (3.1) it is obvious that

1
H, (@ jo0,) S T— —— X

1= Y ciolk Y expl=j(@, +,+-,+0, )k ]

k=1

K n-1 n-
{ Z|Cﬁn(k1" Pq p+q n-q,p(jmh"'9jmn—q)
ky k=1 g=1 p=1 k.k,, =1
n K
+2 Zxcpo(k,,..., A D)
p=2k k=1
1 K n-1 n-g K B
gt ¥ o ok ) # Dlen kpesk I H, L (O O, )
Ln ky k, =1 q=1 p=1k .k, =1




n K ‘ ) B
+Y Y etk H, G0y j0,)| ) (3.2)
p=2ky k,=1
where
] K
L= min l—écm(k,)cxp(— jeok,) (3.3)
with R,UR_, given by (2.6), and |H,_,(jo,....,jo,_,)| and |H, ,(jo,,...,jo,)| represent
the bounds of |H,_,  (j@,,..., jcu,,_q)’ and |H, (jo,,..., jo,)| respectively.
From (2.15) it is known that
n—p+1
an(jo‘)] """ Jo‘)n)ls ZlHJ(J(’O] """ Jml) Hrt—i,p—l(jmi+1""7jmn)
i=1
& ; . B ; . \|B . N1
< Y H (0 JO) | Ho p (GO s jo )| =|H (GO0, j,) (3.4)
i=1
where |H,.(j(ul ..... ju),.)|3 denotes the bound for |H,.(jc01 ..... jcot.)| and |\H, . (j©,,..., jmn}a is
defined as
. . B " +1 . . . . 'B
an(_](D] ----- Jjo,) = i IH,'(}(D] ----- J(Df)|E Hn—.i.p—] 87 FH— jo,) (3.5)
i=1
Denoting

Co (kyeinnk,)

=C

ek g)

= chq (3'6)

N
“'M:-:
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5
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P

and

B
_ 78
=k

H, ;(J0, urey JOO,)

B
H,,,(o,....jo, ) =H,, (3.7
d " B
[H,.(]o)l ..... _,r(x)r.)l = g’

in (3.2) and (3.5) and unfolding the summations for p and q in (3.2) yields

; {Zco;: +2620Hr‘:82+’“.’+zcn0Hnﬂn

B B B
+2 cliHn—]l+"“’zC1nv2H21 +zcln—]H]l
B B

+2‘321Hn-12+""’+z Cynn o

H, (jo,..., jo ) <

n




+ZC nH, ln-Z +ZC - —2!1-2
+zcn 0 b ln—
=L{ZCOn +2C20Hf2+,---,+ZCHOH,ﬁ,
L (3.8)
+ 2 THP) +Y G (H ) 4y Y cr (HE)T)

where

'ZC;=[2cn,26u,...,2clﬂ_l]
{Z{C:=[Zcil’zckl""’zckn-k] (39)
ZC:-—l =[ch—‘ll]

"'[HBII’ n—217° Hia]]

1H [HBIk’Herk"" HE —(nkt ) (3.10)

_[HHIH 1]

In view of (3.5), it can be shown that
Hi_HBan*'H Hle "+Hf-1H1ﬁ=§n—1(Hlﬁn)T
HB HBHflz HBH:} nt :+Hf—2Hfz = Hn—z(Hzﬂn)T

(3.11)

r T

HB HHS]&:‘*'H HnBZk] +Ha—k+1HkBu =11, g )(

H, =H| H‘i],,_ = H,(H")"

where
=i [ 1 ] i=1321“-1n'—1 (312)

which yields

2c20Hf2+,-—-,+2 CoHa =X CoH, (HP) + ey H, ., (H )+,

+ZCHDH (H» T
(3.13)

Substituting (3.13) into (3.8) gives
. . 1 — _
|H, (ja,,..., jo_)| < L—{Z Cont 2 CooH,  (HP Y + Y o H, L (HP ) 4,
+ 2 S HP) + Y el (HP ) 4,0+ Y cn (HE)T)

—_1.._{260” +[2C;" +Zczoﬁn_1](H|B") oy Ecn 1‘*2%1‘1 ](HB (3.14)

S+ ol (H)T

L@, j,)|




where

n i 1,...,_]'0)")|B iSdeﬁnedas

1 --Jmn)ls =Li{2%n +HX e +Zczoﬁn-x](Hla')T+""’+[ZC:—1 + 2 CoH I(H )T

—[ZCOH,ECl-i-ZC n=1%" ZC:-—I+2CHDﬁI]I1’HIB"""’HnB:I]T

(3.15)
In (3.15) H,*, k=1,2,...,n—1 can be expressed as
- =[H, —n’H:—zx’--wHﬁ]=[Hf-nH18'-l]
4 [H ~1k? n 21:’ H{i—(n-k))t]'—[Hn 1k ’H.fhl] (316)

Hfz —[Hiln-l’ r=2r- 2]_[Hn-1n 2,Hffil]
a =[H ]

From (3.11) it is known that the first elements of Hf" , fork =2,...,n—1 can be written as

HnB—12 = ﬁn—z(ngn-' )’

{Hns = —n-l (k- 5)(H ')T

H = E(Hf:;f
(3.17)
and H_ , the first element of H;, can also be expressed similarly as
HuB-n =H, —1—(1- 1)(HBH)T n—1(Hcf"_')T
(3.18)
if Hy=' is defined as below
B = [H o HY o HO%]=[0,---2,0,1]
(3.19)
Thus H/», fork =1,2,...,n—1, can be expressed uniformly as
H: =[ n—ik’:‘{tg'-l]=[H_n-k(Hf_n? )T?Hf”—l]’ k:1=2:'-'an_2 (320)
Hn-—l - [H: (Hn-"al )T]

and (3.15) can therefore be written as

__[o 02% e+ Y cH, e Y+ Y e H I HE HE L HE T

(3.21)




Moreover combining (3.21) , (3.19), (3.20) as well as (3.9) and (3.12) yields the new

recursive algorithm for computing the bounds on the GFRFs of the polynomial NARX model
as follows

[le(n-l) zcun zcl +2c20 =1 2‘3"-1 +ECHOH I Ho HE Hf-'1]T:
Hy' =[0ppn. 1), Hi =[H,  (HI), HP= 1, k=12,..,n-2, H: =[H,(H)],

Ec2=[zch Zc,,, . k=1,...n-1, zcﬁ= E‘lcm(k1 ..... kM}l,
k,

(3.22)
Equation (3.22) shows that H, the nth step result of the recursive algorithm, is obtained

n

by the multiplication of A and two vectors. The first vector is composed of parameters of

the NARX model and the gain bounds associated with the model GFRFs from order one
to n-1 which are determined in previous recursive calculation steps. The second vector is
composed of Hy*,H;*,...,H which are obtained from H>~',H,..., H* by the recursive

computation in (3.20) and H, =[O,H§“]=[O,x(n_l),l] where the 1mt1a1 value for this

recursive process is H,' =[1]. Therefore using the algorithm (3.22) H? can eventually be
described as a function of L,, the model parameters as well as the gain bounds for the GFRFs
from the first to n-1th order. In the next section, the computation for the first three gain
bounds for the GFRFs, H,H,, and H;, are performed to illustrate the recursive calculation
processes and corresponding results.

3.2 Ilustration of the Recursive Calculation Process
For n=11in (3.22)

p_ 1 By _ 1 _ Zcm
HE = A[Zco,J[Ho IF= 3 [Zcm]m—T (3.23)

I —
Hf ZL_[lenzcoz:ch + ¢y H, HHOB2 ’HlB2 1"
(3.24)
=_—[o D e Dt + 0o H 01, H ™)
Substituting
HIBI :[E (Hc-)ﬁa)f] :[]—171 Xl] = HIB (325)




into (3.24) yields

1 = 1
Ha = ;10w 20w el + oo JUHG HE Y =10, 3 e, 31 + B NOL YT
2

1
= E_[Zc02 +3 e HE + Y e (HP)?]
2

(3.26)
For n=3
1 o o
Hy =Z[01x2,2%3,263+Zfon2,EC§+ZCanH1][H§‘,Hf‘,HzB’]T
1
=L_[0,0,2503,[Zc”,zc12]+2c20[Hf,Hf],2c21+ZC3OHIB][O,O,1,H,B’,H53 g
(3.27)
From (3.20)
. 0
HP =[H,(H) ,H>)=[(H} ,H] )(J’ H)=1H B (3.28)

H;* =[H,(H*)" 1= H’H}
Substituting (3.28) into (3.27) gives

Hf = i[o,o, Y. Coxe 3 05 * EcwH,”,zcn + 3 enHy, Y oy + > 3, HN0,0,1, H \H} HIHE T

=LL[ZCG3 +Hf(26” +ZCZDHIB)+H132 (ZCIZ +Zconf)+HlﬂHzﬂz (zczl +2C30HIB)]
3

(3.29)
Finally using (3.25), (3,29) can be written as

HE = {?[Zcm + 3 e HE + Y e HIHE + 3 e HE + Y e HEH? + 3 ¢y (HP 2 + 3 ey (HE)']

(3.30)

These recursive calculations demonstrate that the new algorithm can easily be
implemented by hand if the orders concerned are not very high. In addition the results from
(3.23), (3.26) and (3.30) also reveal which model terms make contributions to the gain bound
for each GFRF and how these contributions are made. For example, it can be seen from the
subscripts of the coefficients in (3.26) that in total four kinds of NARX model polynomial
terms make contributions to the gain bound H, . These are

y(k=k), u(k—k)u(k—k,), u(k—k)y(k—k,) and y(k—k)y(k—k,)
and the effects of these terms on H; are reflected by

%_2, N Oy ¥l and Y o B

respectively.

By extending the above recursive calculations to an arbitrary order n a general expression
for H; in terms of the model parameters and H?,...,H? can be obtained. This provides a

n-1

10



basis for formulating the gain bounds on the GFRFs for the polynomial NARX model. This is
not directly related to the topic considered here and will be discussed in detail in another
paper.

4. PRACTICAL COMPUTATION OF THE BOUND FOR SYSTEMS
DESCRIBED BY THE POLYNOMIAL NARX MODEL

Consider systems described by the polynomial NARX model (2.11) and satisfying the
conditions mentioned in Section 2.1. Then the bound for the output magnitude frequency
domain characteristics can generally be written in the form of Equation (2.8) and the practical
computation of this bound can be carried out by calculating an approximate value of the
theoretical result Y* () as shown in (2.10).

From (3.1) it is known that

. : 1
H,(jO, o, JO) o om0 = - X
(1= ¢4 (k;) exp[—jok,])
k=1
K
| { D conChyoenik, Yexpl—j (@K, +,0+, 40, k, )]
ky k=1
n-1 n—-q K
Y Y, (kysesk,, VeXPI= (@, ok, etk IH, (O 0, )
q=1 p=1 ky kp, =1
n K
+3, 20Kk ) H, (GO0 JON |, o
p=2ky.kp=1
< : LH 4.1)

(1= €10 (k) expl- jok, 1)

k=1

where L and H” are given by (3.3) and (3.15) respectively. Defining

PRI Y —_ “2)
(1= ¢,(k) exp[— jook, 1)
k=1
and substituting (4.2) into (2.10) yields
— N L e
=3 —— i iU o)
el 2,4 x A
(1= ¢,y (k) exp[— jook, ]) "
k=1
A 1
=C(w)), L HE|U*-HU(jo) (4.3)

n=1 (zn)n_] "

where

11




1

clo)=r— (4.4)
(1= cio(k Y expl—jowk 1)

k=1

In (4.3) N denotes the maximum order of the dominant system nonlinearities. Generally N
can not be determined directly from parameters of the polynomial NARX model because of
the well known fact that in practical cases the amount of nonlinearity exhibited in the output
of a system depends on the system model and on the magnitude of the input. Consequently an
appropriate N should be determined based on both the GFRFs and |U( jo)|.

Notice that in (4.3)
1
Qn)™!

C(@)LH}|UP---*U(jo)|

actually reflects a bound for

Y, (jo)
nth order nonlinear output. Defining

L= 1 —L H’ max C(@)|UJ*--*
(27[)"1 " " weR UR,

, the magnitude frequency domain characteristic of the

U(jo) (4.5)

n

and substituting (3.3) and (4.4) into (4.5) yields
1 5

G, = - HSL, max C(m)ma}}%_"|U|*---* U(jo)
]. B 1 F 1 B -
= < H L,— max |U*--*U(jo) = —H; max |UP*---*U(jo)|
‘ 2n)" L ekl ) (o) weR, UR_,\

(4.6)

Clearly this can be taken as a measure for the effect of the nth order system nonlinearity on the
system output under the input excitation with a frequency characteristic U(jw).

Based on the above results and assuming that parameters of the NARX model, the
frequency characteristic of the input U(j), and an integer N, >N are known a priori,

procedures for the practical computation of the bound for systems described by the
polynomial NARX model are proposed as below.

(1) Compute R, for n=1,2,...,N,, using the algorithm (2.3)
(i1) From (3.3), obtain L, for n=1,2,...,N,,.

(iii) From the algorithm (3.22) and using the L_obtained in (ii), calculate Hf,..., H,f,'M.
2T

U(j—i

(J ; )

for i=—(M/ -1),...,0,.... M4

and n=1,2,...,N,, using the algorithm (2.9) with U, (.) = U(.) and T=1.

(iv) For an a priori given M, compute |U]*---*

/

(v) Evaluate G, as

— H? ma
Too@ur)t " ieoa.. M)

|U|*---*

2T
Uit
(JMI)

(O J
v
n

for n=1,...,N,, (4.7)

12




to find an n” such that

G <eg forn>n"

where € is a small number given a priori. Then take N =n".

(vi) Evaluate the bound at the frequencies of interest within the range

27 M M
w=—-:I;, i=—(—-1),...,0,...,— using (4.3).
MI i (2 ) 5 ing (4.3)

In view of the simplicity and practicability of the algorithms used in (i), (iii) and (iv), the
proposed procedures can easily be applied in practice.

It is worth emphasising that when using the above procedures N the maximum order of the
dominant system nonlinearities is determined by evaluating the values of G, given by (4.6) for
n=1l,...,N,, which reflects the effects of both the GFRFs and U(j®) . This implies that for
different U(j@) the maximum order of dominant system nonlinearities may be different and
even if the gain bounds for the GFRFs do not converge as n increases it is still possible to
describe the system output frequency characteristics using a model of finite order
nonlinearities. These conclusions are in fact an extension of the well-known engineering
concept that a practical system can usually be approximated quite well by a linear model when
the system input varies within a small neighbourhood of the working point but have not
previously been seen in the frequency domain analysis of nonlinear systems.

5. SIMULATION STUDIES

Example 1.

Consider a discrete time nonlinear system described by the NARX model

(k) = cpy (Du(k =1)+ ¢, (Dy(k = 1)+ ¢, (2) y(k = 2) + c4, (1, 3)ua(k = Dua(k = 3) + €4 (1,1,2) (k = Du(k = 2)

(5.1)
where ¢;,(1)=0.5, ¢,,(1)=0.8, ¢,,(2) =—0.64, c,(1,3)=-0.4, c,,(1,1,2) =10 and the input
is defined by the sequence _
sin okT, —sin BT,
kT,

u(k)=—1-|: ] fork=0,%1%2.... (5.2)
21

with x=5,B=1, and T, =0.2.

For this simple example there is no need to follow the procedures in Section 4 step by step
to evaluate the bound Y?(w). From (3.23) (3.26) and (3.30) it is known that for this
particular case

H]ff:_Z%:"‘OL_”)L% (i.e. HPL =0.5) (5.3)
H; =';"2‘[2C02 +ZC11H13 +zczo(H13)2]=‘£:[ 602(1’3)“:%’ (ie. H;L,=04)

(5.4)
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and
1
H? =Z[Zc03 +3 c HY + D cyHIHY +Ecmh'f +ZcmH;’H;” +Y ey (HP )+ ey (HP)?)

ﬁ|c03(1,1,2)| =% (i.,e. H}L, =10)
(5.5)
and the maximum order of dominant system nonlinearities is N=3.
Thus substituting N=3 , equations (5.3)-(5.5) and
1 1

e | 1=0.8exp(—j)+0.64 exp(—j20)
(1 —;clo(kl)expt—mkl )
into (4.3) yields
Yo ()= |1_OISCXP(_J_Q))_IFOIMCXP(_ﬂm)I[L,Hf|U(joJ)|+%Lzh'ﬂm*|U(jcu)|+(—211;)—1L3H3”|U|*3U|*[U(jm)|]
N 1-o0. Sexp(—jcﬂ)i 0.64 exp(—j2w)| (05U (o) +%_;|Ul UG+ (2118)2 vl

(5.6)
U*---*|U(jw)| for n=1,2,3
_—

n

Using the algorithm (2.9) with U,(.)=U(.), T=1 and M=2000,

can be obtained at the frequencies cu:-l—o%%,i=—999,...,0,...,1000. Combining

1
|1-0.8exp(—jw)+0.64 exp(—j2w)|
then yields Y?(w) as shown in Fig.1.

|U|*.--*|U(jw)| for n=1,2,3 and as indicated in (5.6)
—_—

To enable a comparison between Y°(®) and |Y(jw)

, ¥(k), k=0,%1,... can be computed

using (5.1) and (5.2). Y(jw), at frequencies co:%éa, i=-999,...,0,...,1000 , is then

obtained by applying an FFT routine to y(k) k=-999,...,0,...,1000 in order to compute -
|Y(jw)|. The results in Fig.1 indicate that the trend in the variation of |Y(jo)| is well
reflected by the computed bound Y *() .

Example 2.
Consider a discrete time nonlinear systemn described by the NARX model
Y(k) = o (Dulk —1)+¢,g (1)Y= 1)+, (2)y(k = 2) + €0y (1, 3)u(k = Du(k = 3) + ¢, (1,1)y(k — Dk =1)
(5.7)
where ¢;,(1)=0.5, ¢,,(1)=0.8, ¢,,(2)=-0.64, ¢,,(1,3)=-0.4, ¢,,(1,1)=0.2 and the input
is defined by the sequence
sin okT, —sin BT,
kT,

u(k)=2><L

} for k=0,+1,%2.... (5.8)
27

where 6. =2, f=1, and T, =0.2.
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The frequency characteristics of u(k), which are shown in Fig.2, indicates that the
nonnegative frequency range of the input is [a,b] with a=0.2 and b=0.4. N,, in this example is
taken as 8.

Following the procedures in Section 4, R, for n=1,....8 can be obtained by using the
algorithm (2.3) to give the results in Table 1. Then from (3.3), L,, for n=1,...,8 , is computed
to give the results in Table 2.

Table 1 Table 2

n R - n L n

1 [0.2, 0.4] 1 0.7243
2 [0, 0.2]U[0.4, 0.8] 2 0.4291
3 [0, 1.2] 3 0.3118
4 [0, 1.6] 4 0.3118
5 [0, 2] 5 0.3118
6 [0, 2.4] 6 0.3118
7 [0, 2.8] £ 0.3118
8 [0, 3.2] 8 0.3118

The new algorithm for calculating the gain bounds i‘n’lﬁ,...,Hf;’3 for the GFRFs can then be
employed to yield the results shown in Fig.3.

The algorithm in (2.9) can now be applied with U,(.)=U(.), T=1 and M=2000 to
compute

|U|*- ¥

, fori=-999,...,0,...,1000 and n=2,...,8

2n
-y
U2000")

and the results for n=2,4,6,8 are shown in Fig.4.

At the fifth step, G,, forn=1,2,...,8 are evaluated using (4.7) and shown in Fig.5 which
indicates that n~ can be taken as 4 if € is chosen to be 0.1. Therefore take N=4.

Finally evaluate the bound Y’(w) using (4.3) with N=4. The results for

—-—9211:,...,0,...,@75 are shown in Fig.6 together with |Y(jw)| at these frequencies.
1000 1000

The results indicate that the trend in the variation of |Y(jw)| is reflected quite well by the
bound Y?(w) and illustrate the effectiveness of the proposed procedures .

In this example N is finally taken as 4 because the values of G, are almost zero when
n25. But from Fig.3 it can be seen that although H? will converge as n increases, the values
of H) are still considerable when n>5. This indicates that because of the properties of the
input signal the influence of the system nonlinearities at orders higher than 5 on the system
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output are negligible. In fact this phenomenon can be seen even in the cases where fr8 doas
n
not converge as n increases.

Example 3

Consider a nonlinear system the description of which is exactly the same as that of the
system considered in Example 2 except that ¢,(1,1)=0.9 rather than 0.2 where the input
sequence is also given by (5.8).

Take N,, =8 and apply the proposed procedures to compute the output frequency domain
magnitude bound. The results for steps (i) (ii) and (iv) are obviously the same as in Example 2.

For step (iii) the result is shown in Fig.7 indicating that as n the order of nonlinearity
increases H® the gain bound for the GFRFs does not converge. But the result of step (v)

shown in Fig.8 indicates that G, will eventually converge to zero so that the output response
of the system only depends on finite order nonlinearities under the given input excitation.

The result of evaluating the bound Y?(w) using (4.3) with N = N, =8 is shown in Fig.9
together with |Y(jw)| for this particular case.

This example demonstrates the analysis given in the last section regarding the influence of
the convergence of the GFRFs gain bounds on the output characteristic descriptions of
nonlinear systems and reflects the importance of considering the effects of the input in the
frequency domain analysis of nonlinear systems.

6. CONCLUSIONS

A new recursive algorithm for the computation of the gain bounds for generalised
frequency response functions of polynomial NARX models has been proposed. By
combining the new algorithm with techniques developed previously effective procedures for
the practical computation of the bound for the output frequency response magnitude
characteristics of nonlinear systems described by the NARX model have been developed. The
effectiveness of the proposed procedures has been verified by simulation studies and it has
been shown that based on the new procedures the maximum order of dominant system
nonlinearities is determined by the influence of both the GFRFs and the system input. This
implies conclusions which are natural extensions of the well-known engineering concept that a
practical system can usually be approximated quite well by a linear model when the system
input varies within a small neighbourhood of the working point. These results provide a basis
for the analysis and synthesis of a wide class of nonlinear systems to evaluate or formulate
appropriate bounds on the output magnitude frequency domain responses.

Acknowledges

SAB gratefully acknowledges support from the UK EPSRC for part of this work under grant

ref. GR/J05149 and ZQL acknowledges the support provided by Sheffield University under
the scholarship scheme.

16




REFERENCES

Chen, S. and Billings, S. A., 1989, Representations of nonlinear systems: the NARMAX
model. Int. J. Control, Vol.49, pp. 1013-1032.

Chua, L.O. and Liao, Y., 1991, Measuring Volterra kernels III: how to estimate the highest
significant order. Int. J. Circuits Theory Appl.(UK), Vol.19(2), pp.189-206.

Lang Zi-Qiang and Billings, S.A., 1994, Output frequency characteristics of nonlinear
systems. submitted for publication.

Peyton Jones, J.C. and Billings, S.A., 1989, A recursive algorithm for computing the
frequency response of a class of nonlinear difference equation models. Int. J. Control,
Vol.50(5), pp.1925-1940.

Zhang, H. and Billings, S.A., 1994, Gain bounds for higher order nonlinear transfer functions.
Research Report No. 495, Dept. of Automatic Control and Systems Engineering, University
of Sheffield.

Output Frequency Characteristic (solid) and the Bound (dashed)
T T

Magnilude (db)

1 L 1 L
- —g -1 o 1 2 3
Frequency

Fig.1 The comparison between the magnitude characteristic of the output frequency
response and the bound in Example 1.
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Fig.2 The frequency characteristic of u(k) in Example 2
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The Bounds for the GFRFs
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Fig.4 The n dimensional convolution integral results for |U( jo)| with

n=2,4,6,8 in Example 2
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Fig.6 The comparison between the magnitude characteristic of the output frequency
response and the bound in Example 2.
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Fig.7 The bounds for the GFRFs of the system in Example 3
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Fig.8. Nllustration of the measurement for the effect of nth order nonlinearity on the system
output in Example 3
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Fig.9 The comparison between the magnitude characteristic of the output frequency
response and the bound in Example 3.
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